Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Mol Biol Evol ; 40(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36721950

RESUMEN

Genomic imprinting is a parent-of-origin-specific expression phenomenon that plays fundamental roles in many biological processes. In animals, imprinting is only observed in therian mammals, with ∼200 imprinted genes known in humans and mice. The imprinting pattern in marsupials has been minimally investigated by examining orthologs to known eutherian imprinted genes. To identify marsupial-specific imprinting in an unbiased way, we performed RNA-seq studies on samples of fetal brain and placenta from the reciprocal cross progeny of two laboratory opossum stocks. We inferred allele-specific expression for >3,000 expressed genes and discovered/validated 13 imprinted genes, including three previously known imprinted genes, Igf2r, Peg10, and H19. We estimate that marsupials imprint ∼60 autosomal genes, which is a much smaller set compared with eutherians. Among the nine novel imprinted genes, three noncoding RNAs have no known homologs in eutherian mammals, while the remaining genes have important functions in pluripotency, transcription regulation, nucleolar homeostasis, and neural differentiation. Methylation analyses at promoter CpG islands revealed differentially methylated regions in five of these marsupial-specific imprinted genes, suggesting that differential methylation is a common mechanism in the epigenetic regulation of marsupial imprinting. Clustering and co-regulation were observed at marsupial imprinting loci Pou5f3-Npdc1 and Nkrfl-Ipncr2, but eutherian-type multi-gene imprinting clusters were not detected. Also differing from eutherian mammals, the brain and placenta imprinting profiles are remarkably similar in opossums, presumably due to the shared origin of these organs from the trophectoderm. Our results contribute to a fuller understanding of the origin, evolution, and mechanisms of genomic imprinting in therian mammals.


Asunto(s)
Marsupiales , Embarazo , Humanos , Femenino , Animales , Ratones , Marsupiales/genética , Metilación de ADN , Epigénesis Genética , Duplicación de Gen , Impresión Genómica , Zarigüeyas/genética , Mamíferos , Euterios/genética
2.
J Anat ; 245(4): 625-642, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38994851

RESUMEN

Opossums (marsupials of the Didelphidae family) retain a generalized masticatory apparatus and tribosphenic molars, often used as models to understand the evolution of mastication in early therian mammals. Like all marsupials, their growth goes through a stage when pups complete their development while permanently attached to the mother's teats before weaning and starting feeding on their own. Yet, while the masticatory muscles of adults are known, as is the ontogeny of the cranium and mandible, the ontogenetic changes in the masticatory muscles remain unknown. Here we describe for the first time the changes in the masticatory muscles observed in lactating pups, and weaned juveniles, subadults, and adults in the White-eared opossum, Didelphis albiventris, through dissection of 25 specimens and quantification of relative muscle masses, lines of actions and mechanical advantages whenever possible. We also assessed the scaling patterns of muscle masses and mechanical advantages through ontogeny. The main changes, as expected, were found between suckling and weaned specimens, although some changes still occurred from juveniles to adults. The adult adductor musculature is similar to the other Didelphis species already known, with a dominant m. temporalis that originates on the lateral wall of the skull, up to the sagittal and nuchal crests, and fills the zygomatic arch when inserting into the lateral and medial surfaces of the coronoid process, respectively through the pars superficialis and pars profunda. The m. masseter is also subdivided in superficial and deep bundles which originate posteriorly in the maxilla and zygomatic arch, and insert into the angular process and masseteric fossa in the mandible. The m. pterygoideus medialis originates from the palatine, the pterygoid bone and the alisphenoid, and it inserts on the angular process medially. Suckling pups showed muscles with more restricted attachments, reduced muscle lines of action, and less diversity in the fiber orientation. The absence of the postorbital constriction also resulted in a distinct morphology of the m. temporalis pars profunda, through two bundles, one anterior and one posterior, which insert more inferiorly into the mandible. These major changes can be related to the onset of mastication and to size-related changes in growing weaned age classes. In general, all adductor muscles grew with positive allometry, and increased their fixation areas through, in part, the development of specific regions of the cranium and mandible. Their lines of action also increase and diversify along ontogeny. These changes can be related to the functional requirements for fixation during lactation, which shift to adduction and mastication movements after weaning.


Asunto(s)
Músculos Masticadores , Animales , Músculos Masticadores/anatomía & histología , Músculos Masticadores/crecimiento & desarrollo , Músculos Masticadores/fisiología , Didelphis/anatomía & histología , Didelphis/crecimiento & desarrollo , Femenino , Masculino , Masticación/fisiología
3.
Brain Behav Evol ; 99(2): 69-85, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38527443

RESUMEN

INTRODUCTION: The gray short-tailed opossum, Monodelhis domestica (M. domestica), is a widely used marsupial model species that presents unique advantages for neurodevelopmental studies. Notably their extremely altricial birth allows manipulation of postnatal pups at timepoints equivalent to embryonic stages of placental mammals. A robust literature exists on the development of short-tailed opossums, but many researchers working in the more conventional model species of mice and rats may find it daunting to identify the appropriate age at which to conduct experiments. METHODS: Here, we present detailed staging diagrams taken from photographic observations of 40 individual pups, in 6 litters, over 25 timepoints across postnatal development. We also present a comparative neurodevelopmental timeline of short-tailed opossums (M. domestica), the house mouse (Mus musculus), and the laboratory rat (Rattus norvegicus) during embryonic as well as postnatal development, using timepoints taken from this study and a review of existing literature, and use this dataset to present statistical models comparing the opossum to the rat and mouse. RESULTS: One aim of this research was to aid in testing the generalizability of results found in rodents to other mammalian brains, such as the more distantly related metatherians. However, this broad dataset also allows the identification of potential heterochronies in opossum development compared to rats and mice. In contrast to previous work, we found broad similarity between the pace of opossum neural development with that of rats and mice. We also found that development of some systems was accelerated in the opossum, such as the forelimb motor plant, oral motor control, and some aspects of the olfactory system, while the development of the cortex, some aspects of the retina, and other aspects of the olfactory system are delayed compared to the rat and mouse. DISCUSSION: The pace of opossum development is broadly similar to that of mice and rats, which underscores the usefulness of this species as a compliment to the more commonly used rodents. Many features that differ the most between opossums and rats and mice were either clustered around the day of birth and were features that have functional importance for the pup immediately after or during birth, or were features that have reduced functional importance for the pup until later in postnatal development, given that it is initially attached to the mother.


Asunto(s)
Monodelphis , Animales , Ratones , Ratas , Monodelphis/anatomía & histología , Benchmarking , Femenino , Modelos Animales , Masculino , Especificidad de la Especie
4.
Biochem J ; 480(9): 685-699, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37132631

RESUMEN

The Na+-dependent phosphate cotransporter-2A (NPT2A, SLC34A1) is a primary regulator of extracellular phosphate homeostasis. Its most prominent structural element is a carboxy-terminal PDZ ligand that binds Na+/H+ Exchanger Regulatory Factor-1 (NHERF1, SLC9A3R1). NHERF1, a multidomain PDZ protein, establishes NPT2A membrane localization and is required for hormone-inhibitable phosphate transport. NPT2A also possesses an uncharacterized internal PDZ ligand. Two recent clinical reports describe congenital hypophosphatemia in children harboring Arg495His or Arg495Cys variants within the internal PDZ motif. The wild-type internal 494TRL496 PDZ ligand binds NHERF1 PDZ2, which we consider a regulatory domain. Ablating the internal PDZ ligand with a 494AAA496 substitution blocked hormone-inhibitable phosphate transport. Complementary approaches, including CRISPR/Cas9 technology, site-directed mutagenesis, confocal microscopy, and modeling, showed that NPT2A Arg495His or Arg495Cys variants do not support PTH or FGF23 action on phosphate transport. Coimmunoprecipitation experiments indicate that both variants bind NHERF1 similarly to WT NPT2A. However, in contrast with WT NPT2A, NPT2A Arg495His, or Arg495Cys variants remain at the apical membrane and are not internalized in response to PTH. We predict that Cys or His substitution of the charged Arg495 changes the electrostatics, preventing phosphorylation of the upstream Thr494, interfering with phosphate uptake in response to hormone action, and inhibiting NPT2A trafficking. We advance a model wherein the carboxy-terminal PDZ ligand defines apical localization NPT2A, while the internal PDZ ligand is essential for hormone-triggered phosphate transport.


Asunto(s)
Hipofosfatemia , Fosfatos , Niño , Humanos , Ligandos , Fosfatos/metabolismo , Hormonas , Mutación , Fosfoproteínas/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo
5.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338755

RESUMEN

In marsupials, upper-layer cortical neurons derived from the progenitors of the subventricular zone of the lateral ventricle (SVZ) mature morphologically and send their axons to form interhemispheric connections through the anterior commissure. In contrast, eutherians have evolved a new extra callosal pathway, the corpus callosum, that interconnects both hemispheres. In this study, we aimed to examine neurogenesis during the formation of cortical upper layers, including their morphological maturation in a marsupial species, namely the opossum (Monodelphis domestica). Furthermore, we studied how the axons of upper layers neurons pass through the anterior commissure of the opossum, which connects neocortical areas. We showed that upper-layer II/III neurons were generated within at least seven days in the opossum neocortex. Surprisingly, these neurons expressed special AT-rich sequence binding protein 2 (Satb2) and neuropilin 1 interacting protein (Nrp1), which are proteins known to be essential for the formation of the corpus callosum in eutherians. This indicates that extrinsic, but not intrinsic, cues could be key players in guiding the axons of newly generated cortical neurons in the opossum. Although oligodendrocyte precursor cells were present in the neocortex and anterior commissure, newly generated upper-layer neurons sent unmyelinated axons to the anterior commissure. We also found numerous GFAP-expressing progenitor cells in both brain structures, the neocortex and the anterior commissure. However, at P12-P17 in the opossums, a small population of astrocytes was observed only in the midline area of the anterior commissure. We postulate that in the opossum, midline astrocytes allow neocortical axons to be guided to cross the midline, as this structure resembles the glial wedge required by fibers to cross the midline area of the corpus callosum in the rodent.


Asunto(s)
Monodelphis , Neocórtex , Animales , Astrocitos , Orientación del Axón , Neuronas , Cuerpo Calloso , Axones/fisiología , Euterios
6.
Emerg Infect Dis ; 29(12): 2541-2545, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37987590

RESUMEN

Opossums are considered resistant to rabies. Nonhematophagous bats are reservoirs of rabies in urban areas of South America. We analyzed bats and opossums tested for rabies during 2021 in a highly urbanized city in Brazil to understand spillover in an urban setting. Wildlife surveillance is necessary to prevent rabies in humans and domestic animals.


Asunto(s)
Didelphis , Rabia , Animales , Brasil/epidemiología , Quirópteros , Zarigüeyas , Rabia/epidemiología , Rabia/veterinaria
7.
Emerg Infect Dis ; 29(12): 2451-2460, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37987580

RESUMEN

We describe the pathology of natural infection with highly pathogenic avian influenza A(H5N1) virus of Eurasian lineage Goose/Guangdong clade 2.3.4.4b in 67 wild terrestrial mammals throughout the United States during April 1‒July 21, 2022. Affected mammals include 50 red foxes (Vulpes vulpes), 6 striped skunks (Mephitis mephitis), 4 raccoons (Procyon lotor), 2 bobcats (Lynx rufus), 2 Virginia opossums (Didelphis virginiana), 1 coyote (Canis latrans), 1 fisher (Pekania pennanti), and 1 gray fox (Urocyon cinereoargenteus). Infected mammals showed primarily neurologic signs. Necrotizing meningoencephalitis, interstitial pneumonia, and myocardial necrosis were the most common lesions; however, species variations in lesion distribution were observed. Genotype analysis of sequences from 48 animals indicates that these cases represent spillover infections from wild birds.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Animales , Estados Unidos/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Mephitidae , Gripe Aviar/epidemiología , Mamíferos , Animales Salvajes , Zorros
8.
Parasitology ; 149(11): 1487-1504, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35929484

RESUMEN

Cruzia tentaculata is a helminth parasite of marsupials and has a wide geographic distribution from Mexico to Argentina. The aim of this study was to analyse the genetic population structure of this nematode along the Atlantic Forest biome. Cruzia tentaculata specimens were recovered from Didelphis aurita, Didelphis albiventris and Philander quica in 9 localities. Morphological and morphometric data were investigated for phenotypic diversity among localities and hosts using multivariate discriminant analysis of principal components. Phylogenetic relationships of C. tentaculata were determined using maximum likelihood and Bayesian inference. The population structure was analysed by fixation indices, molecular variance analysis, Tajima's D and Fu's Fs neutrality tests, Mantel tests and Bayesian clustering analysis. A higher significant morphometric difference for males was observed between localities. In the haplogroup networks, 2 groups were recovered, separating locations from the north and from the south/southeast. The morphometric variation in C. tentaculata between different localities was compatible with this north and southeast/south pattern, suggesting adaptation to different ecological conditions. Population genetic analyses suggested a pattern of evolutionary processes driven by Pleistocene glacial refugia in the northeast and southeast of the Atlantic Forest based on the distribution of genetic diversity.


Asunto(s)
Ascarídidos , Didelphis , Marsupiales , Nematodos , Parásitos , Animales , Ascarídidos/anatomía & histología , Teorema de Bayes , Didelphis/parasitología , Bosques , Variación Genética , Genética de Población , Masculino , Filogenia , América del Sur
9.
Vet Clin North Am Equine Pract ; 38(2): 249-268, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35810151

RESUMEN

Advances in the understanding of equine protozoal myeloencephalitis (EPM) are reviewed. It is now apparent that EPM can be caused by either of 2 related protozoan parasites, Sarcocystis neurona and Neospora hughesi, although S neurona is the most common etiologic pathogen. Horses are commonly infected, but clinical disease occurs only infrequently; the factors influencing disease occurrence are not well understood. Epidemiologic studies have identified risk factors for the development of EPM, including the presence of opossums and prior stressful health-related events. Attempts to reproduce EPM experimentally have reliably induced antibody responses in challenged horses, but have not consistently produced neurologic disease. Diagnosis of EPM has improved by detecting intrathecal antibody production against the parasite. Sulfadiazine/pyrimethamine (ReBalance) and the triazine compounds diclazuril (Protazil) and ponazuril (Marquis) are effective anticoccidial drugs that are now available as FDA-approved treatments for EPM.


Asunto(s)
Coccidiosis , Encefalomielitis , Enfermedades de los Caballos , Sarcocystis , Sarcocistosis , Animales , Coccidiosis/tratamiento farmacológico , Coccidiosis/epidemiología , Coccidiosis/veterinaria , Encefalomielitis/tratamiento farmacológico , Encefalomielitis/veterinaria , Enfermedades de los Caballos/tratamiento farmacológico , Enfermedades de los Caballos/parasitología , Caballos , Sarcocistosis/tratamiento farmacológico , Sarcocistosis/veterinaria
10.
J Anat ; 239(1): 12-31, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33629373

RESUMEN

Animal body parts evolve with variable degrees of integration that nonetheless yield functional adult phenotypes: but, how? The analysis of modularity with Anatomical Network Analysis (AnNA) is used to quantitatively determine phenotypic modules based on the physical connection among anatomical elements, an approach that is valuable to understand developmental and evolutionary constraints. We created anatomical network models of the head, forelimb, and hindlimb of two taxa considered to represent a 'generalized' eutherian (placental: mouse) and metatherian (marsupial: opossum) anatomical configuration and compared them with our species, which has a derived eutherian configuration. In these models, nodes represent anatomical units and links represent their physical connection. Here, we aimed to identify: (1) the commonalities and differences in modularity between species, (2) whether modules present a potential phylogenetic character, and (3) whether modules preferentially reflect either developmental or functional aspects of anatomy, or a mix of both. We predicted differences between networks of metatherian and eutherian mammals that would best be explained by functional constraints, versus by constraints of development and/or phylogeny. The topology of contacts between bones, muscles, and bones + muscles showed that, among all three species, skeletal networks were more similar than musculoskeletal networks. There was no clear indication that humans and mice are more alike when compared to the opossum overall, even though their musculoskeletal and skeletal networks of fore- and hindlimbs are slightly more similar. Differences were greatest among musculoskeletal networks of heads and next of forelimbs, which showed more variation than hindlimbs, supporting previous anatomical studies indicating that in general the configuration of the hindlimbs changes less across evolutionary history. Most observations regarding the anatomical networks seem to be best explained by function, but an exception is the adult opossum ear ossicles. These ear bones might form an independent module because the incus and malleus are involved in forming a functional primary jaw that enables the neonate to attach to the teat, where this newborn will complete its development. Additionally, the human data show a specialized digit 1 module (thumb/big toe) in both limb types, likely the result of functional and evolutionary pressures, as our ape ancestors had highly movable big toes and thumbs.


Asunto(s)
Ratones/anatomía & histología , Modelos Teóricos , Zarigüeyas/anatomía & histología , Filogenia , Esqueleto/anatomía & histología , Animales , Miembro Anterior/anatomía & histología , Cabeza/anatomía & histología , Miembro Posterior/anatomía & histología , Humanos , Ratones/genética , Ratones/crecimiento & desarrollo , Zarigüeyas/genética , Zarigüeyas/crecimiento & desarrollo
11.
BMC Vet Res ; 17(1): 243, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34256761

RESUMEN

BACKGROUND: Infective lesions of the jaws and adjacent tissues (lumpy jaw disease, LJD) have been recognized as one major cause of death of captive macropods. Fusobacterium necrophorum and Actinomyces species serve as the main source of LJD in kangaroos and wallabies. Currently, little is reported about LJD or similar diseases in opossums. CASE PRESENTATION: Here we report a case of actinomycosis resembling the entity lumpy jaw disease in a gray four-eyed opossum, caused by a novel species of Schaalia. A 2.8 year old male Philander opossum was presented with unilateral swelling of the right mandible. After an initial treatment with marbofloxacin, the opossum was found dead the following day and the carcass was submitted for necropsy. Postmortem examination revealed severe mandibular skin and underlying soft tissue infection with subsequent septicemia as the cause of death. Histological examination demonstrated Splendore-Hoeppli phenomenon, typically seen in classical cases of actinomycosis. Bacteriology of liver and mandibular mass yielded a previously undescribed species of Schaalia, whose 16 S rRNA gene sequence was 97.0 % identical to Schaalia canis. Whole genome sequencing of the opossum isolate and calculation of average nucleotide identity confirmed a novel species of Schaalia, for which no whole genome sequence is yet available. CONCLUSIONS: The herewith reported Schaalia infection in the gray four-eyed opossum resembling classical actinomycosis gives a novel insight into new exotic animal bacterial diseases. Schaalia species may belong to the normal oral microbiome, as in macropods, and may serve as a contributor to opportunistic infections. Due to the lack of current literature, more insights and improved knowledge about Schaalia spp. and their pathogenicity will be useful to choose appropriate therapy regimens and improve the treatment success rate and outcome in exotic and endangered species.


Asunto(s)
Actinomycetaceae/aislamiento & purificación , Actinomicosis/microbiología , Actinomicosis/veterinaria , Zarigüeyas/microbiología , Actinomycetaceae/genética , Animales , Enfermedades Maxilomandibulares/microbiología , Enfermedades Maxilomandibulares/veterinaria , Masculino , Secuenciación Completa del Genoma
12.
Parasitol Res ; 120(10): 3537-3546, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34448058

RESUMEN

The order Piroplasmida encompasses tick-borne pathogens of veterinary and medical importance positioned in two main families: Babesiidae and Theileriidae. Even though previous studies carried out in Brazil recorded the occurrence of piroplasmid species circulating in small mammals, 18S RNA gene sequences were only partially sequenced, preventing the assessment of their phylogenetic positioning. The current study aimed to detect and characterize, using morphological, molecular, and bioinformatic approaches, piroplasmids from wild mammals and associated ticks sampled in Central-Western Brazil. Out of 67 Didelphis albiventris sampled, 22 (16.4%) were positive for piroplasmids by PCR. In contrast, none of the 48 small rodents and 14 capybaras (Hydrochoerus hydrochaeris) was PCR-positive. Four Amblyomma dubitatum ticks-one from Rattus rattus, one from H. hydrochaeris, and two from D. albiventris-out of 114 Amblyomma spp. DNA samples were positive for piroplasmids by PCR. The phylogenetic inference performed using the near-complete 18S rRNA gene positioned the putative novel piroplasmid species detected in D. albiventris and associated A. dubitatum ticks near to Babesia sensu lato clade (Western group-cluster III) and distant from the Australian marsupial-associated piroplasms. Phylogenetic inferences based on two additional molecular markers, namely hsp-70 and cox-1, supported the near-complete 18S rRNA gene phylogenetic inference. Finally, the partial 18S rRNA gene sequences detected in ticks from rodents (R. rattus and H. hydrochaeris) showed 97.2-99.4% identity with the Piroplasmida previously detected in a capybara from Brazil, raising evidence that a still uncharacterized piroplasmid species has been identified in the capybara, the largest rodent species from South America.


Asunto(s)
Babesia , Didelphis , Marsupiales , Garrapatas , Animales , Australia , Babesia/genética , Brasil/epidemiología , Filogenia , Ratas , Roedores
13.
Am J Physiol Renal Physiol ; 319(3): F541-F551, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32744087

RESUMEN

Plasma phosphate (Pi) levels are tightly controlled, and elevated plasma Pi levels are associated with an increased risk of cardiovascular complications and death. Two renal transport proteins mediate the majority of Pi reabsorption: Na+-phosphate cotransporters Npt2a and Npt2c, with Npt2a accounting for 70-80% of Pi reabsorption. The aim of the present study was to determine the in vitro effects of a novel Npt2a inhibitor (PF-06869206) in opossum kidney (OK) cells as well as determine its selectivity in vivo in Npt2a knockout (Npt2a-/-) mice. In OK cells, Npt2a inhibitor caused dose-dependent reductions of Na+-dependent Pi uptake (IC50: ~1.4 µmol/L), whereas the unselective Npt2 inhibitor phosphonoformic acid (PFA) resulted in an ~20% stronger inhibition of Pi uptake. The dose-dependent inhibitory effects were present after 24 h of incubation with both low- and high-Pi media. Michaelis-Menten kinetics in OK cells identified an ~2.4-fold higher Km for Pi in response to Npt2a inhibition with no significant change in apparent Vmax. Higher parathyroid hormone concentrations decreased Pi uptake equivalent to the maximal inhibitory effect of Npt2a inhibitor. In vivo, the Npt2a inhibitor induced a dose-dependent increase in urinary Pi excretion in wild-type mice (ED50: ~23 mg/kg), which was completely absent in Npt2a-/- mice, alongside a lack of decrease in plasma Pi. Of note, the Npt2a inhibitor-induced dose-dependent increase in urinary Na+ excretion was still present in Npt2a-/- mice, a response possibly mediated by an off-target acute inhibitory effect of the Npt2a inhibitor on open probability of the epithelial Na+ channel in the cortical collecting duct.


Asunto(s)
Fosfatos/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Zarigüeyas , Hormona Paratiroidea/farmacología , Técnicas de Placa-Clamp , Distribución Aleatoria , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética
14.
BMC Genomics ; 20(1): 866, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31730444

RESUMEN

BACKGROUND: The white-eared opossum (Didelphis albiventris) is widely distributed throughout Brazil and South America. It has been used as an animal model for studying different scientific questions ranging from the restoration of degraded green areas to medical aspects of Chagas disease, leishmaniasis and resistance against snake venom. As a marsupial, D. albiventris can also contribute to the understanding of the molecular mechanisms that govern the different stages of organogenesis. Opossum joeys are born after only 13 days, and the final stages of organogenesis occur when the neonates are inside the pouch, depending on lactation. As neither the genome of this opossum species nor its transcriptome has been completely sequenced, the use of D. albiventris as an animal model is limited. In this work, we sequenced the D. albiventris transcriptome by RNA-seq to obtain the first catalogue of differentially expressed (DE) genes and gene ontology (GO) annotations during the neonatal stages of marsupial development. RESULTS: The D. albiventris transcriptome was obtained from whole neonates harvested at birth (P0), at 5 days of age (P5) and at 10 days of age (P10). The de novo assembly of these transcripts generated 85,338 transcripts. Approximately 30% of these transcripts could be mapped against the amino acid sequences of M. domestica, the evolutionarily closest relative of D. albiventris to be sequenced thus far. Among the expressed transcripts, 2077 were found to be DE between P0 and P5, 13,780 between P0 and P10, and 1453 between P5 and P10. The enriched GO terms were mainly related to the immune system, blood tissue development and differentiation, vision, hearing, digestion, the CNS and limb development. CONCLUSIONS: The elucidation of opossum transcriptomes provides an out-group for better understanding the distinct characteristics associated with the evolution of mammalian species. This study provides the first transcriptome sequences and catalogue of genes for a marsupial species at different neonatal stages, allowing the study of the mechanisms involved in organogenesis.


Asunto(s)
Secuenciación del Exoma/estadística & datos numéricos , Regulación del Desarrollo de la Expresión Génica , Zarigüeyas/genética , Proteínas/genética , Transcriptoma , Animales , Animales Recién Nacidos , Brasil , Ontología de Genes , Anotación de Secuencia Molecular , Zarigüeyas/crecimiento & desarrollo , Zarigüeyas/metabolismo , Proteínas/clasificación , Proteínas/metabolismo , Análisis de Secuencia de ARN
15.
Development ; 143(1): 66-74, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26732839

RESUMEN

The amplification of distinct neural stem/progenitor cell subtypes during embryogenesis is essential for the intricate brain structures present in various vertebrate species. For example, in both mammals and birds, proliferative neuronal progenitors transiently appear on the basal side of the ventricular zone of the telencephalon (basal progenitors), where they contribute to the enlargement of the neocortex and its homologous structures. In placental mammals, this proliferative cell population can be subdivided into several groups that include Tbr2(+) intermediate progenitors and basal radial glial cells (bRGs). Here, we report that basal progenitors in the developing avian pallium show unique morphological and molecular characteristics that resemble the characteristics of bRGs, a progenitor population that is abundant in gyrencephalic mammalian neocortex. Manipulation of LGN (Leu-Gly-Asn repeat-enriched protein) and Cdk4/cyclin D1, both essential regulators of neural progenitor dynamics, revealed that basal progenitors and Tbr2(+) cells are distinct cell lineages in the developing avian telencephalon. Furthermore, we identified a small population of subapical mitotic cells in the developing brains of a wide variety of amniotes and amphibians. Our results suggest that unique progenitor subtypes are amplified in mammalian and avian lineages by modifying common mechanisms of neural stem/progenitor regulation during amniote brain evolution.


Asunto(s)
Ganglios Basales/citología , Ganglios Basales/embriología , Neocórtex/embriología , Células-Madre Neurales/citología , Neuronas/citología , Ambystoma mexicanum , Animales , Linaje de la Célula/fisiología , Proliferación Celular/fisiología , Embrión de Pollo , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Monodelphis/embriología , Neocórtex/citología , Tortugas/embriología , Xenopus laevis
16.
Clin Exp Nephrol ; 23(7): 898-907, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30895530

RESUMEN

BACKGROUND: Injection of parathyroid hormone (PTH) rapidly stimulates renal Pi excretion, in part by downregulating NaPi-IIa (Npt2a/SLC34A1) and NaPi-IIc (Npt2c/SLC34A3) transporters. The mechanisms underlying the effects of PTH on NaPi-IIc are not fully elucidated. METHODS: We analyzed the effect of PTH on inorganic phosphate (Pi) reabsorption in Npt2a-/- mice to eliminate the influence of Npt2a on renal Pi reabsorption. In opossum kidney (OK) cells and Xenopus oocytes, we investigated the effect of NaPi-IIc transporter phosphorylation. Studies of mice with mutations of NaPi-IIc protein in which serine and threonine were replaced with either alanine (A), which prevents phosphorylation, or aspartic acid (D), which mimics the charged state of phosphorylated NaPi-IIc, were also performed to evaluate the involvement of phosphorylation in the regulation of transport function. RESULTS: The Npt2a-/- experiments showed that PTH administration rapidly inactivated NaPi-IIc function in the apical membrane of proximal tubular cells. Analysis of mutant proteins (S71, S138, T151, S174, T583) at putative protein kinase C sites, revealed that S138 markedly suppressed the function and cellular expression of mouse NaPi-IIc in Xenopus oocytes and OK cells. In addition, 138D had a short half-life compared with wild-type protein. CONCLUSIONS: The present study suggests that acute regulation of NaPi-IIc protein by PTH is involved in the inactivation of Na+-dependent Pi cotransporter activity and that phosphorylation of the transporter is involved in the rapid modification.


Asunto(s)
Túbulos Renales Proximales/efectos de los fármacos , Hormona Paratiroidea/farmacología , Fragmentos de Péptidos/farmacología , Fosfatos/metabolismo , Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Reabsorción Renal/efectos de los fármacos , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/metabolismo , Animales , Línea Celular , Femenino , Túbulos Renales Proximales/metabolismo , Masculino , Ratones Noqueados , Zarigüeyas , Fosforilación , Estabilidad Proteica , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/deficiencia , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/genética , Factores de Tiempo , Xenopus
17.
Exp Parasitol ; 197: 68-75, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30439347

RESUMEN

BACKGROUND: In recent decades some outbreaks of food-borne acute Chagas disease (ACD) in humans were identified by clinical and epidemiological characterization after association through the ingestion of açaí pulp probably contaminated with Trypanosoma cruzi. Whereas Belém and Abaetetuba stood out as important risk regions for disease transmission, the importance of Rhodnius pictipes, and Philander opossum for the biological cycle of T. cruzi, and data from agribusiness market of açaí, to study T. cruzi from vector and reservoir of the Brazilian Amazon region is critical for this context. Thus, the purpose of this study was to verify the infective capacity and the virulence of T. cruzi in açaí pulp from vector and reservoir at Pará State experimentally. METHODS: 105T. cruzi I in in natura açaí pulp from Belém at Pará State, at room temperature, after forced sieving, by intraperitoneal, gavage or oral route of inoculation in B6.129S7Rag1-/-tmMom/J Unib allowed food-borne ACD analysis using common light microscopy. PRINCIPAL FINDINGS: T. cruzi in in natura açaí pulp from R. pictipes (Val-De-Cans Forest, Belém, and Ajuaí River, Abaetetuba, Pará), and P. opossum (Combu Island, Belém, Pará) caused ACD and death between 17 and 52 days after experimental infections in murine immunodeficient hosts. CONCLUSIONS: T. cruzi from different sources and locations at Pará State in in natura açaí pulp retained its infective capacity and virulence, and can cause new outbreaks of ACD by oral transmission. Additionally, quality basic education will facilitate efficient hygiene practices throughout the açaí productive chain can eradicate food-borne ACD in the coming decades.


Asunto(s)
Enfermedad de Chagas/transmisión , Euterpe/parasitología , Parasitología de Alimentos , Enfermedades Transmitidas por los Alimentos/parasitología , Trypanosoma cruzi/patogenicidad , Enfermedad Aguda , Animales , Brasil/epidemiología , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/parasitología , Reservorios de Enfermedades/parasitología , Vectores de Enfermedades , Femenino , Enfermedades Transmitidas por los Alimentos/epidemiología , Insectos Vectores/parasitología , Masculino , Ratones , Ratones Endogámicos , Zarigüeyas/parasitología , Parasitemia/epidemiología , Parasitemia/mortalidad , Rhodnius/parasitología , Virulencia
18.
BMC Evol Biol ; 17(1): 86, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28335721

RESUMEN

BACKGROUND: From bat wings to whale flippers, limb diversification has been crucial to the evolutionary success of mammals. We performed the first transcriptome-wide study of limb development in multiple species to explore the hypothesis that mammalian limb diversification has proceeded through the differential expression of conserved shared genes, rather than by major changes to limb patterning. Specifically, we investigated the manner in which the expression of shared genes has evolved within and among mammalian species. RESULTS: We assembled and compared transcriptomes of bat, mouse, opossum, and pig fore- and hind limbs at the ridge, bud, and paddle stages of development. Results suggest that gene expression patterns exhibit larger variation among species during later than earlier stages of limb development, while within species results are more mixed. Consistent with the former, results also suggest that genes expressed at later developmental stages tend to have a younger evolutionary age than genes expressed at earlier stages. A suite of key limb-patterning genes was identified as being differentially expressed among the homologous limbs of all species. However, only a small subset of shared genes is differentially expressed in the fore- and hind limbs of all examined species. Similarly, a small subset of shared genes is differentially expressed within the fore- and hind limb of a single species and among the forelimbs of different species. CONCLUSIONS: Taken together, results of this study do not support the existence of a phylotypic period of limb development ending at chondrogenesis, but do support the hypothesis that the hierarchical nature of development translates into increasing variation among species as development progresses.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Mamíferos/clasificación , Mamíferos/genética , Animales , Evolución Biológica , Extremidades/anatomía & histología , Extremidades/crecimiento & desarrollo , Extremidades/fisiología , Mamíferos/anatomía & histología , Mamíferos/crecimiento & desarrollo , Transcriptoma , Alas de Animales
19.
Am J Physiol Renal Physiol ; 313(3): F585-F595, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28615248

RESUMEN

The OK cell line derived from the kidney of a female opossum Didelphis virginiana has proven to be a useful model in which to investigate the unique regulation of ion transport and membrane trafficking mechanisms in the proximal tubule (PT). Sequence data and comparison of the transcriptome of this cell line to eutherian mammal PTs would further broaden the utility of this culture model. However, the genomic sequence for D. virginiana is not available and although a draft genome sequence for the opossum Monodelphis domestica (sequenced in 2012 by the Broad Institute) exists, transcripts sequenced from both species show significant divergence. The M. domestica sequence is not highly annotated, and the majority of transcripts are predicted rather than experimentally validated. Using deep RNA sequencing of the D. virginiana OK cell line, we characterized its transcriptome via de novo transcriptome assembly and alignment to the M. domestica genome. The quality of the de novo assembled transcriptome was assessed by the extent of homology to sequences in nucleotide and protein databases. Gene expression levels in the OK cell line, from both the de novo transcriptome and genes aligned to the M. domestica genome, were compared with publicly available rat kidney nephron segment expression data. Our studies demonstrate the expression in OK cells of numerous PT-specific ion transporters and other key proteins relevant for rodent and human PT function. Additionally, the sequence and expression data reported here provide an important resource for genetic manipulation and other studies on PT cell function using these cells.


Asunto(s)
Células Epiteliales/metabolismo , Túbulos Renales Proximales/metabolismo , Zarigüeyas/genética , Transcriptoma , Animales , Línea Celular , Biología Computacional , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Transporte Iónico , Túbulos Renales Proximales/citología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Fenotipo , Ratas , Especificidad de la Especie
20.
J Zoo Wildl Med ; 48(1): 228-231, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28363049

RESUMEN

Five sugar gliders ( Petaurus breviceps ), ranging in age from 3 mo to 3.5 yr of age, and one opossum ( Didelphis virginianus ), age 4.5 mo, presented for elective orchiectomy and scrotal ablation. The LigaSure™ device was safely used for orchiectomy and scrotal ablation in both species. Surgical time with the LigaSure was approximately 4 sec. No grooming of the incision site or self-mutilation was seen in the first 72 hr postoperatively. One sugar glider required postoperative wound care approximately 10 days postoperatively following incision-site grooming by a conspecific. The LigaSure provides a rapid, technologically simple and safe surgical technique for scrotal ablation and orchiectomy in the marsupial patient that minimizes surgical, anesthetic, and recovery times.


Asunto(s)
Marsupiales , Orquiectomía/veterinaria , Animales , Masculino , Orquiectomía/instrumentación , Orquiectomía/métodos , Escroto/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA