Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Annu Rev Biochem ; 88: 409-431, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30633550

RESUMEN

Aerobic life is possible because the molecular structure of oxygen (O2) makes direct reaction with most organic materials at ambient temperatures an exceptionally slow process. Of course, these reactions are inherently very favorable, and they occur rapidly with the release of a great deal of energy at high temperature. Nature has been able to tap this sequestered reservoir of energy with great spatial and temporal selectivity at ambient temperatures through the evolution of oxidase and oxygenase enzymes. One mechanism used by these enzymes for O2 activation has been studied in detail for the soluble form of the enzyme methane monooxygenase. These studies have revealed the step-by-step process of O2 activation and insertion into the ultimately stable C-H bond of methane. Additionally, an elegant regulatory mechanism has been defined that enlists size selection and quantum tunneling to allow methane oxidation to occur specifically in the presence of more easily oxidized substrates.


Asunto(s)
Bacterias/enzimología , Metano/metabolismo , Oxígeno/metabolismo , Oxigenasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía , Cinética , Methylococcus capsulatus/enzimología , Methylosinus trichosporium/enzimología , Oxigenasas/química , Conformación Proteica
2.
Annu Rev Biochem ; 88: 1-24, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31220975

RESUMEN

This first serious attempt at an autobiographical accounting has forced me to sit still long enough to compile my thoughts about a long personal and scientific journey. I especially hope that my trajectory will be of interest and perhaps beneficial to much younger women who are just getting started in their careers. To paraphrase from Virginia Woolf's writings in A Room of One's Own at the beginning of the 20th century, "for most of history Anonymous was a Woman." However, Ms. Woolf is also quoted as saying "nothing has really happened until it has been described," a harbinger of the enormous historical changes that were about to be enacted and recorded by women in the sciences and other disciplines. The progress in my chosen field of study-the chemical basis of enzyme action-has also been remarkable, from the first description of an enzyme's 3D structure to a growing and deep understanding of the origins of enzyme catalysis.


Asunto(s)
Coenzimas/química , Enzimas/química , Mujeres Trabajadoras/historia , Biocatálisis , Selección de Profesión , Coenzimas/metabolismo , Pruebas de Enzimas , Enzimas/metabolismo , Femenino , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Cinética , Teoría Cuántica
3.
Annu Rev Biochem ; 84: 923-46, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25784051

RESUMEN

Polysaccharide monooxygenases (PMOs), also known as lytic PMOs (LPMOs), enhance the depolymerization of recalcitrant polysaccharides by hydrolytic enzymes and are found in the majority of cellulolytic fungi and actinomycete bacteria. For more than a decade, PMOs were incorrectly annotated as family 61 glycoside hydrolases (GH61s) or family 33 carbohydrate-binding modules (CBM33s). PMOs have an unusual surface-exposed active site with a tightly bound Cu(II) ion that catalyzes the regioselective hydroxylation of crystalline cellulose, leading to glycosidic bond cleavage. The genomes of some cellulolytic fungi contain more than 20 genes encoding cellulose-active PMOs, suggesting a diversity of biological activities. PMOs show great promise in reducing the cost of conversion of lignocellulosic biomass to fermentable sugars; however, many questions remain about their reaction mechanism and biological function. This review addresses, in depth, the structural and mechanistic aspects of oxidative depolymerization of cellulose by PMOs and considers their biological function and phylogenetic diversity.


Asunto(s)
Celulosa/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Bacterias/metabolismo , Hongos/enzimología , Hongos/metabolismo , Filogenia , Células Vegetales/química , Células Vegetales/metabolismo , Plantas/metabolismo , Polisacáridos/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(33): e2205619119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939688

RESUMEN

Melanins are highly conjugated biopolymer pigments that provide photoprotection in a wide array of organisms, from bacteria to humans. The rate-limiting step in melanin biosynthesis, which is the ortho-hydroxylation of the amino acid L-tyrosine to L-DOPA, is catalyzed by the ubiquitous enzyme tyrosinase (Ty). Ty contains a coupled binuclear copper active site that binds O2 to form a µ:η2:η2-peroxide dicopper(II) intermediate (oxy-Ty), capable of performing the regioselective monooxygenation of para-substituted monophenols to catechols. The mechanism of this critical monooxygenation reaction remains poorly understood despite extensive efforts. In this study, we have employed a combination of spectroscopic, kinetic, and computational methods to trap and characterize the elusive catalytic ternary intermediate (Ty/O2/monophenol) under single-turnover conditions and obtain molecular-level mechanistic insights into its monooxygenation reactivity. Our experimental results, coupled with quantum-mechanics/molecular-mechanics calculations, reveal that the monophenol substrate docks in the active-site pocket of oxy-Ty fully protonated, without coordination to a copper or cleavage of the µ:η2:η2-peroxide O-O bond. Formation of this ternary intermediate involves the displacement of active-site water molecules by the substrate and replacement of their H bonds to the µ:η2:η2-peroxide by a single H bond from the substrate hydroxyl group. This H-bonding interaction in the ternary intermediate enables the unprecedented monooxygenation mechanism, where the µ-η2:η2-peroxide O-O bond is cleaved to accept the phenolic proton, followed by substrate phenolate coordination to a copper site concomitant with its aromatic ortho-hydroxylation by the nonprotonated µ-oxo. This study provides insights into O2 activation and reactivity by coupled binuclear copper active sites with fundamental implications in biocatalysis.


Asunto(s)
Proteínas Bacterianas , Melaninas , Monofenol Monooxigenasa , Oxígeno , Fenoles , Streptomyces , Sitios de Unión , Catálisis , Cobre/química , Melaninas/biosíntesis , Monofenol Monooxigenasa/química , Oxígeno/metabolismo , Peróxidos/química , Fenoles/química , Streptomyces/enzimología
5.
Small ; : e2405080, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39073300

RESUMEN

The design of electrocatalysts for oxygen evolution reaction (OER) remains a limitation of industrial hydrogen production by electrolysis of water. Excellent and stable OER catalysts can be developed by activating lattice oxygen and changing the reaction path. Herein, S and FeOOH on the Co(OH)2 nanoneedle arrays are introduced to construct a heterostructure (S-FeOOH/Co(OH)2/NF) as a proof of concept. Theoretical calculations and experimental suggest that the Co-O-Fe motif formed at the heterogeneous interface with the introduction of FeOOH, inducing electron transfer from Co to Fe, enhancing Co─O covalency and reducing intramolecular charge transfer energy, thereby stimulating direct intramolecular lattice oxygen coupling. Doping of S in FeOOH further accelerates electron transfer, improves lattice oxygen activity, and prevents dissolution of FeOOH. Consequently, the overpotential of S-FeOOH/Co(OH)2/NF is only 199 mV at 10 mA cm-2, and coupled with the Pt/C electrode can be up to 1 A cm-2 under 1.79 V and remain stable for over 120 h in an anion exchange membrane water electrolyzer (AEMWE). This work proposes a strategy for the design of efficient and stable electrocatalysts for industrial water electrolysis and promotes the commercialization of AEMWE.

6.
Small ; 20(30): e2310163, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38389176

RESUMEN

The oxygen reduction reaction (ORR) catalyzed by transition-metal single-atom catalysts (SACs) is promising for practical applications in energy-conversion devices, but great challenges still remain due to the sluggish kinetics of O═O cleavage. Herein, a kind of high-density iron network-like sites catalysts are constructed with optimized intermetallic distances on an amino-functionalized carbon matrix (Fe-HDNSs). Quasi-in situ soft X-ray absorption spectroscopy and in situ synchrotron infrared characterizations demonstrate that the optimized intermetallic distances in Fe-HDNSs can in situ activate the molecular oxygen by fast electron compensation through the hybridized Fe 3d‒O 2p, which efficiently facilitates the cleavage of the O═O bond to *O species and highly suppresses the side reactions for an accelerated kinetics of the 4e- ORR. As a result, the well-designed Fe-HDNSs catalysts exhibit superior performances with a half-wave potential of 0.89 V versus reversible hydrogen electrode (RHE) and a kinetic current density of 72 mA cm-2@0.80 V versus RHE, exceeding most of the noble-metal-free ORR catalysts. This work offers some new insights into the understanding of 4e- ORR kinetics and reaction pathways to boost electrochemical performances of SACs.

7.
Environ Sci Technol ; 58(1): 795-804, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38095914

RESUMEN

Iron plaque, as a natural barrier between rice and soil, can reduce the accumulation of pollutants in rice by adsorption, contributing to the safe production of rice in contaminated soil. In this study, we unveiled a new role of iron plaque, i.e., producing hydroxyl radicals (·OH) by activating root-secreted oxygen to degrade pollutants. The ·OH was produced on the iron plaque surface and then diffused to the interfacial layer between the surface and the rhizosphere environment. The iron plaque activated oxygen via a successive three-electron transfer to produce ·OH, involving superoxide and hydrogen peroxide as the intermediates. The structural Fe(II) in iron plaque played a dominant role in activating oxygen rather than the adsorbed Fe(II), since the structural Fe(II) was thermodynamically more favorable for oxygen activation. The oxygen vacancies accompanied by the structural Fe(II) played an important role in oxygen activation to produce ·OH. The interfacial ·OH selectively degraded rhizosphere pollutants that could be adsorbed onto the iron plaque and was less affected by the rhizosphere environments than the free ·OH. This study uncovered the oxidative role of iron plaque mediated by its produced ·OH, reshaping our understanding of the role of iron plaque as a barrier for rice.


Asunto(s)
Contaminantes Ambientales , Oryza , Contaminantes del Suelo , Hierro/química , Contaminantes Ambientales/análisis , Radical Hidroxilo/análisis , Radical Hidroxilo/metabolismo , Rizosfera , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Suelo/química , Compuestos Ferrosos/análisis , Compuestos Ferrosos/metabolismo , Oxígeno/análisis
8.
Environ Sci Technol ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250812

RESUMEN

Water is ubiquitous in various heterogeneous catalytic reactions, where it can be easily adsorbed, chemically dissociated, and diffused on catalyst surfaces, inevitably influencing the catalytic process. However, the specific role of water in these reactions remains unclear. In this study, we innovatively propose that H2O-driven surface lattice oxygen activation in γ-MnO2 significantly enhances low-temperature NH3-SCR. The proton from water dissociation activates the surface lattice oxygen in γ-MnO2, giving rise to a doubling of catalytic activity (achieving 90% NO conversion at 100 °C) and remarkable stability. Comprehensive in situ characterizations and calculations reveal that spontaneous proton diffusion to the surface lattice oxygen reduces the orbital overlap between the protonated oxygen atom and its neighboring Mn atom. Consequently, the Mn-O bond is weakened and the surface lattice oxygen is effectively activated to provide excess oxygen vacancies available for converting O2 into O2-. Therefore, the redox property of Mn-H is improved, leading to enhanced NH3 oxidation-dehydrogenation and NO oxidation processes, which are crucial for low-temperature NH3-SCR. This work provides a deeper understanding and fresh perspectives on the water promotion mechanism in low-temperature NOx elimination.

9.
Environ Sci Technol ; 58(2): 1378-1389, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38179651

RESUMEN

It has been reported that tripolyphosphate (TPP) can enhance the oxygenation of natural Fe(II)-containing minerals to produce reactive oxygen species (ROS). However, the molecular structure of the TPP-Fe(II) mineral surface complex and the role of this complex in the generation and transformation of ROS have not been fully characterized. In the present study, a heterogeneous magnetite (Fe3O4)/O2/TPP system was developed for the degradation of p-nitrophenol (PNP). The results showed that the addition of TPP significantly accelerated the removal of PNP in the Fe3O4/O2 system and extended the range of effective pH to neutral. Experiments combined with density functional theory calculations revealed that the activation of O2 mainly occurs on the surface of Fe3O4 induced by a structural Fe(II)-TPP complex, where the generated O2•- (intermediate active species) can be rapidly converted into H2O2, and then the •OH generated by the Fenton reaction is released into the solution. This increases the concentration of •OH produced and the efficiency of •OH produced relative to Fe(II) consumed, compared with the homogeneous system. Furthermore, the binding of TPP to the surface of Fe3O4 led to stretching and even cleavage of the Fe-O bonds. Consequently, more Fe(II)/(III) atoms are exposed to the solvation environment and are available for the binding of active O2 and O2•-. This study demonstrates how common iron minerals and O2 in the natural environment can be combined to yield a green remediation technology.


Asunto(s)
Peróxido de Hidrógeno , Hierro , Polifosfatos , Especies Reactivas de Oxígeno , Hierro/química , Peróxido de Hidrógeno/química , Oxidación-Reducción , Minerales , Compuestos Ferrosos , Oxígeno
10.
Environ Sci Technol ; 58(41): 18414-18425, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39359071

RESUMEN

Catalytic purification of industrial oxygenated volatile organic compounds (OVOCs) is hindered by the presence of water vapor that attacks the active sites of conventional noble metal-based catalysts and the insufficient mineralization that leads to the generation of hazardous intermediates. Developing catalysts simultaneously with excellent water resistance and a high intermediate suppression ability is still a great challenge. Herein, we proposed a simple strategy to synthesize a Pd/CoOOH catalyst that contains abundant hydroxyl groups and lattice oxygen species, over which a negligible effect was observed on CH3OH conversion with 3 vol % water vapor, while a remarkable conversion reduction of 24% was observed over Pd/Co3O4. Moreover, the low-temperature CO2 selectivity over Pd/CoOOH is significantly enhanced in comparison with Pd/Co(OH)2. The high concentration of surface hydroxyl groups on Pd/CoOOH enhances the water resistance owing to the accelerated activation of H2O to generate Co-OH, which replaces the consumed hydroxyl and facilitates the quick dissociation of surface H2O through timely desorption. Additionally, the presence of Pd-Olatt-Co promotes electron transport from Co to Pd, leading to improved metal-support interactions and weakened metal-O bonds. This in turn enhances the catalyst's capacity to efficaciously convert intermediates. This study sheds new insights into designing multifunctional catalytic platforms for efficient industrial OVOC purification as well as other heterogeneous oxidation reactions.


Asunto(s)
Dióxido de Carbono , Oxidación-Reducción , Dióxido de Carbono/química , Catálisis , Metanol/química , Paladio/química , Agua/química , Compuestos Orgánicos Volátiles/química
11.
Environ Res ; 249: 118497, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38365054

RESUMEN

Developing a photoelectric cathode capable of efficiently activating molecular oxygen to degrade pollutants is a coveted yet challenging goal. In pursuit of this, we synthesize a Fe doped porous carbon nitride catalyst (Fe-CN) using an ionothermal strategy and subsequently loaded it on the hydrophobic carbon felt (CF) to fabricate the Fe-CN/CF photoelectric cathode. This cathode benefits from the synergistic effects between the porous CN support and the highly dispersed Fe species, which enhance O2 absorption and activation. Additionally, the hydrophobic CF serves as a gas diffusion layer, accelerating O2 mass transfer. These features enable the Fe-CN/CF cathode to demonstrate notable photoelectrocatalytic (PEC) degradation efficiency. Specifically, under optimal conditions (cathodic bias of -0.3 VAg/AgCl, pH 7, and a catalyst loading of 3 mg/cm2), the system achieves a 76.4% removal rate of tetracycline (TC) within 60 min. The general application potential of this system is further underscored by its ability to remove approximately 98% of 4-chlorophenol (4-CP) and phenol under identical conditions. Subsequent investigations into the active species and degradation pathways reveal that 1O2 and h+ play dominant role during the PEC degradation process, leading to gradually breakdown of TC into less toxicity, smaller molecular intermediates. This work presents a straightforward yet effective strategy for constructing efficient PEC systems that leverage molecular oxygen activation to degrade pollutants.


Asunto(s)
Carbono , Hierro , Nitrilos , Oxígeno , Nitrilos/química , Oxígeno/química , Carbono/química , Hierro/química , Catálisis , Contaminantes Químicos del Agua/química , Porosidad , Interacciones Hidrofóbicas e Hidrofílicas , Electrodos , Técnicas Electroquímicas/métodos
12.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33876764

RESUMEN

The pterin-dependent nonheme iron enzymes hydroxylate aromatic amino acids to perform the biosynthesis of neurotransmitters to maintain proper brain function. These enzymes activate oxygen using a pterin cofactor and an aromatic amino acid substrate bound to the FeII active site to form a highly reactive FeIV = O species that initiates substrate oxidation. In this study, using tryptophan hydroxylase, we have kinetically generated a pre-FeIV = O intermediate and characterized its structure as a FeII-peroxy-pterin species using absorption, Mössbauer, resonance Raman, and nuclear resonance vibrational spectroscopies. From parallel characterization of the pterin cofactor and tryptophan substrate-bound ternary FeII active site before the O2 reaction (including magnetic circular dichroism spectroscopy), these studies both experimentally define the mechanism of FeIV = O formation and demonstrate that the carbonyl functional group on the pterin is directly coordinated to the FeII site in both the ternary complex and the peroxo intermediate. Reaction coordinate calculations predict a 14 kcal/mol reduction in the oxygen activation barrier due to the direct binding of the pterin carbonyl to the FeII site, as this interaction provides an orbital pathway for efficient electron transfer from the pterin cofactor to the iron center. This direct coordination of the pterin cofactor enables the biological function of the pterin-dependent hydroxylases and demonstrates a unified mechanism for oxygen activation by the cofactor-dependent nonheme iron enzymes.


Asunto(s)
Hierro/metabolismo , Neurotransmisores/biosíntesis , Proteínas Nucleares/metabolismo , Pterinas/química , Proteína Gli2 con Dedos de Zinc/metabolismo , Humanos , Hierro/química , Proteínas Nucleares/química , Oxígeno/metabolismo , Pterinas/metabolismo , Triptófano/química , Triptófano/metabolismo , Proteína Gli2 con Dedos de Zinc/química
13.
Inorganica Chim Acta ; 5712024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39399531

RESUMEN

The O2-dependent carbon-carbon (C-C) bond cleavage reactions of the mononuclear Cu(II) chlorodiketonate complexes [(6-Ph2TPA)Cu(PhC(O)CClC(O)Ph)]ClO4 (1-ClO 4 ) and [(bpy)Cu(PhC(O)CClC(O)Ph)(ClO4)] (3-ClO 4 ) have been further examined in terms of their anion and water dependence. The bpy-ligated Cu(II) chlorodiketonate complex 3-ClO 4 is inherently more reactive with O2 than the 6-Ph2TPA-ligated analog 1-ClO 4 . Added chloride is needed to facilitate O2 reactivity for 1-ClO 4 but not for 3-ClO 4 at 25(1) °C. Evaluation of k obs for the reaction of 1-ClO 4 with O2 under pseudo first-order conditions as a function of the amount of added chloride ion produced saturation type behavior. The bpy-ligated 3-ClO 4 exhibits different behavior, with rate enhancement resulting from both the addition of chloride ion and water. Computational studies indicate that the presence of water lowers the barrier for O2 activation for 3-ClO 4 by ~12 kcal/mol whereas changing the anion from perchlorate to chloride has a smaller effect (lowering of the barrier by ~3 kcal/mol). Notably, the effect of water for 3-ClO 4 is of similar magnitude to the barrier-lowering chloride effect found in the O2 activation pathway for 1-ClO 4 . Thus, both systems involve lower energy O2 activation pathways available, albeit resulting from different ligand effects. Probing the effect of added benzoate anion, it was found that the chloro substituent in the diketonate moiety of 1-ClO 4 and 3-ClO 4 will undergo displacement upon treatment of each complex with tetrabutyl ammonium benzoate to give Cu(II) benzoyloxydiketonate complexes (4 and 5). Complexes 4 and 5 exhibit slow O2-dependent C-C cleavage in the presence of added chloride ion. These results are discussed in the context of the chemistry identified for various divalent metal chlorodiketonate complexes, which have relevance to catalytic systems and metalloenzymes that mediate O2-dependent C-C cleavage within diketonate substrates.

14.
Nano Lett ; 23(4): 1244-1251, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36757119

RESUMEN

Oxygen vacancies (OVs) on specific sites/facets can strengthen the interaction between reactants and oxide surfaces, facilitating interfacial charge transfer. However, precise monitoring of the spatial distribution of OVs remains a grand challenge. We report here that a single-particle spectroscopy technique addresses this challenge by establishing a positive correlation relationship between defects and bound exciton luminescence across different facets. Taking monoclinic BiVO4 as an example, on the basis of theoretical guidance, by in situ tracking the PL lifetimes and PL spectra of different facets on single particles before and after hydrogen treatment, we provide evidence that the PL emission originates from the OV state and determine that OVs is more inclined to be generated at the {010} facets. This anisotropic defect engineering significantly prolongs the lifetime of carriers and accelerates the activation of molecular oxygen. These findings not only verify preference rules of OVs in metal oxides but also provide a time-space-resolved monitoring method.

15.
Molecules ; 29(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38611924

RESUMEN

Decades of research have illuminated the significant roles of gold/gold oxide clusters in small molecule catalytic oxidation. However, many fundamental questions, such as the actual sites to adsorb and activate O2 and the impact of charge, remain unanswered. Here, we have utilized an improved genetic algorithm program coupled with the DFT method to systematically search for the structures of Au1-5Ox-/+/0 (x = 1-4) and calculated binding interactions between Au1-5Ox-/+/0 (x = 1-2) and O2, aiming to determine the active sites and to elucidate the impact of different charge states in gold oxide systems. The results revealed that the reactivity of all three kinds of small gold oxide clusters toward O2 is strongly site-dependent, with clusters featuring an -O-Au site exhibiting a preference for adsorption. The charges on small gold oxide clusters significantly impact the interaction strength and the activation degree of adsorbed O2: in the case of anionic cluster, the interaction between O2 and the -O-Au sites leads to a chemical reaction involving electron transfer, thereby significantly activating O2; in neutral and cationic clusters, the adsorption of O2 on their -O-Au sites can be viewed as an electrostatic interaction. Pointedly, for cationic clusters, the highly concentrated positive charge on the Au atom of the -O-Au sites can strongly adsorb but hardly activate the adsorbed O2. These results have certain reference points for understanding the gold oxide interfaces and the improved catalytic oxidation performance of gold-based systems in the presence of atomic oxygen species.

16.
Angew Chem Int Ed Engl ; 63(27): e202400160, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38523066

RESUMEN

Achieving active site engineering at the atomic level poses a significant challenge in the design and optimization of catalysts for energy-efficient catalytic processes, especially for a reaction with two reactants competitively absorbed on catalytic active sites. Herein, we show an example that tailoring the local environment of cobalt sites in a robust metal-organic framework through substituting the bridging atom from -Cl to -OH group leads to a highly active catalyst for oxygen activation in an oxidation reaction. Comprehensive characterizations reveal that this variation imparts drastic changes on the electronic structure of metal centers, the competitive reactant adsorption behavior, and the intermediate formation. As a result, exceptional low-temperature CO oxidation performance was achieved with T25(Temperature for 25 % conversion)=35 °C and T100 (Temperature for 100 % conversion)=150 °C, which stands out from existing MOF-based catalysts and even rivals many noble metal catalysts. This work provides a guidance for the rational design of catalysts for efficient oxygen activation for an oxidation reaction.

17.
Angew Chem Int Ed Engl ; : e202411558, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39024117

RESUMEN

Helicenes represent a class of fascinating π compounds with fused yet folded backbones. Despite their broad structural diversity, harnessing helicenes to develop well-defined materials is still a formidable challenge. Here we report the synthesis of crystalline porous helicene materials by exploring helicenes to synthesize covalent 2D lattices and layered π frameworks. Topology-directed polymerization of [6]helicenes and porphyrin creates 2D covalent networks with alternate helicene-porphyrin alignment along the x and y directions at a 1.5-nm interval and develops [6]helicene frameworks through reversed anti-AA stack along the z direction to form segregated [6]helicene and porphyrin columnar π arrays. Notably, this π configuration enables the frameworks to be highly red luminescent with benchmark quantum yields. The [6]helicene frameworks trigger effieicnt intra-framework singlet-to-singlet state energy transfer from [6]helicene to porphyrin and facilitate intermolecular triplet-to-triplet state energy transfer from frameworks to molecular oxygen to produce reactive oxygen species, harvesting a wide range of photons from ultraviolet to near-infrared regions for light emitting and photo-to-chemical conversion. This study introduces a new family of extended frameworks, laying the groundwork for exploring well-defined helicene materials with unprecedented structures and functions.

18.
Angew Chem Int Ed Engl ; 63(14): e202318629, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38299700

RESUMEN

Flavoenzymes can mediate a large variety of oxidation reactions through the activation of oxygen. However, the O2 activation chemistry of flavin enzymes is not yet fully exploited. Normally, the O2 activation occurs at the C4a site of the flavin cofactor, yielding the flavin C4a-(hydro)hydroperoxyl species in monooxygenases or oxidases. Using extensive MD simulations, QM/MM calculations and QM calculations, our studies reveal the formation of the common nucleophilic species, Flavin-N5OOH, in two distinct flavoenzymes (RutA and EncM). Our studies show that Flavin-N5OOH acts as a powerful nucleophile that promotes C-N cleavage of uracil in RutA, and a powerful base in the deprotonation of substrates in EncM. We reason that Flavin-N5OOH can be a common reactive species in the superfamily of flavoenzymes, which accomplish generally selective general base catalysis and C-X (X=N, S, Cl, O) cleavage reactions that are otherwise challenging with solvated hydroxide ion base. These results expand our understanding of the chemistry and catalysis of flavoenzymes.


Asunto(s)
Flavinas , Oxigenasas de Función Mixta , Flavinas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oxidación-Reducción , Oxidorreductasas , Compuestos Orgánicos
19.
Angew Chem Int Ed Engl ; 63(19): e202318682, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38407535

RESUMEN

Gaining mechanistic understanding of oxygen activation on metal surfaces is a topical area of research in surface science. However, direct investigation of on-surface oxidation processes at the nanoscale and the empirical validation of oxygen activation pathways remain challenging for the conventional analytical tools. In this study, we applied tip-enhanced Raman spectroscopy (TERS) to gain mechanistic insights into oxygen activation on bulk Au(111) surface. Specifically, oxidation of 4-aminothiophenol (4-ATP) to 4-nitrothiophenol (4-NTP) on Au(111) surface was investigated using hyperspectral TERS imaging. Nanoscale TERS images revealed a markedly higher oxidation efficiency in disordered 4-ATP adlayers compared to the ordered adlayers signifying that the oxidation of 4-ATP molecules proceeds via interaction with the on-surface oxidative species. These results were further validated via direct oxidation of the 4-ATP adlayers with H2O2 solution. Finally, TERS measurements of oxidized 4-ATP adlayers in the presence of H2O18 provided the first empirical evidence for the generation of oxidative species on bulk Au(111) surface via water-mediated activation of molecular oxygen. This study expands our mechanistic understanding of oxidation chemistry on bulk Au surface by elucidating the oxygen activation pathway.

20.
Angew Chem Int Ed Engl ; : e202417703, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39380426

RESUMEN

Direct photocatalytic conversion of benzene to phenol with O2 is a green alternative to the traditional synthesis. The key is to find an effective photocatalyst to do the trick. Defect engineering of semiconductors with oxygen vacancies (OVs) is an emerging strategy for catalyst fabrication. OVs can trap electrons to promote charge separation and serving as adsorption sites for O2 activation. However, randomly distribution of OVs on the semiconductor surface often results in mismatching the charge carrier dynamics under irradiation, thus failing to fulfill the unique advantages of OVs for photoredox functions. Herein, we demonstrate that abundant OVs can be facilely generated and precisely located adjacent to the reductive sites on reducible oxide semiconductors such as tungsten oxide (WO3) via a simple photochemistry strategy. Such photoinduced OVs are well suited for photocatalytic benzene oxidation with O2 as they readily capture photogenerated electrons from the reductive sites of WO3 to activate adsorbed O2. 18O-labeling experiments further confirm that the OVs also facilitate the integration of oxygen atoms from O2 into phenol, revealing in detail the pathway for photocatalytic benzene hydroxylation. This study demonstrates that the photochemistry approach is an appealing strategy for the synthesis of high-performance OVs-rich photocatalysts for solar-induced chemical conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA