Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Molecules ; 29(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38398518

RESUMEN

To develop an orthopedic scaffold that could overcome the limitations of implants used in clinics, we designed poly(ester-urethane) foams and compared their properties with those of a commercial gold standard. A degradable poly(ester-urethane) was synthetized by polyaddition between a diisocyanate poly(ε-caprolactone) prepolymer (PCL di-NCO, Mn = 2400 g·mol-1) and poly(lactic-co-glycolic acid) diol (PLGA, Mn = 2200 g·mol-1) acting as a chain extender. The resulting high-molecular-weight poly(ester-urethane) (PEU, Mn = 87,000 g·mol-1) was obtained and thoroughly characterized by NMR, FTIR and SEC-MALS. The porous scaffolds were then processed using the solvent casting (SC)/particle leaching (PL) method with different NaCl crystal concentrations. The morphology, pore size and porosity of the foams were evaluated using SEM, showing interconnected pores with a uniform size of around 150 µm. The mechanical properties of the scaffolds are close to those of the human meniscus (Ey = 0.5~1 MPa). Their degradation under accelerated conditions confirms that incorporating PLGA into the scaffolds greatly accelerates their degradation rate compared to the gold-standard implant. Finally, a cytotoxicity study confirmed the absence of the cytotoxicity of the PEU, with a 90% viability of the L929 cells. These results suggest that degradable porous PLGA/PCL poly(ester-urethane) has potential in the development of meniscal implants.


Asunto(s)
Materiales Biocompatibles , Caproatos , Lactonas , Poliuretanos , Humanos , Poliuretanos/química , Materiales Biocompatibles/química , Poliglactina 910 , Porosidad , Poliésteres/química , Ésteres , Andamios del Tejido/química , Ingeniería de Tejidos/métodos
2.
Exp Cell Res ; 347(1): 143-152, 2016 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-27481582

RESUMEN

Electrospun microfiber meshes have been shown to support the proliferation and differentiation of many types of stem cells, but the phenotypic fate of c-kit(+) human cardiac stem cells (hCSCs) have not been explored. To this end, we utilized thin (~5µm) elastomeric meshes consisting of aligned 1.7µm diameter poly (ester-urethane urea) microfibers as substrates to examine their effect on hCSC viability, morphology, proliferation, and differentiation relative to cells cultured on tissue culture polystyrene (TCPS). The results showed that cells on microfiber meshes displayed an elongated morphology aligned in the direction of fiber orientation, lower proliferation rates, but increased expressions of genes and proteins majorly associated with cardiomyocyte phenotype. The early (NK2 homeobox 5, Nkx2.5) and late (cardiac troponin I, cTnI) cardiomyocyte genes were significantly increased on meshes (Nkx=2.5 56.2±13.0, cTnl=2.9±0.56,) over TCPS (Nkx2.5=4.2±0.9, cTnl=1.6±0.5, n=9, p<0.05 for both groups) after differentiation. In contrast, expressions of smooth muscle markers, Gata6 and myosin heavy chain (SM-MHC), were decreased on meshes. Immunocytochemical analysis with cardiac antibody exhibited the similar pattern of above cardiac differentiation. We conclude that aligned microfiber meshes are suitable for guiding cardiac differentiation of hCSCs and may facilitate stem cell-based therapies for treatment of cardiac diseases.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Miocardio/citología , Poliésteres/farmacología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Células Madre/citología , Andamios del Tejido/química , Biomarcadores/metabolismo , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Microambiente Celular/efectos de los fármacos , Humanos , Inmunohistoquímica , Células Madre/efectos de los fármacos , Células Madre/metabolismo
3.
Int J Biol Macromol ; 256(Pt 1): 128441, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38013081

RESUMEN

This study focused on the development of cross-linked poly(ester urethane)/starch (PEUST) composites containing 50 wt% starch content for food-packaging materials. The NCO-terminated poly(caprolactone-urethane) prepolymer (PCUP) was first synthesized through bulk condensation. Then, low-moisture starch (0.21 wt%) and PCUP-based PEUST films were fabricated through an intensive extrusion process, followed by thermo-compression molding. The chemical structure of PCUP and PEUST was confirmed using Fourier transform infrared spectroscopy. Moreover, a comprehensive evaluation was conducted to assess the influence of cross-link density on the physicochemical properties of the composite films. The results showed that an increase in the cross-link density within the composites improved component compatibility and tensile strength but reduced crystallinity, water sensitivity, hydrolytic degradability, and water vapor permeability (WVP) of the films. In addition, the cytotoxicity tests were conducted to evaluate the safety of the composite films, and the high cell viability demonstrated non-toxicity for food application. The PEUST-II films with moderate cross-link density exhibited a suitable degradation rate (27.7 % weight loss at degradation for 140 d), optimal tensile properties (tensile strength at break: 12.4 MPa; elongation at break: 352 %), and low WVP (68.4 g/(m2⋅24h) at 30 % relative humidity). These characteristics make them highly promising as fresh-keeping food packaging.


Asunto(s)
Embalaje de Alimentos , Poliésteres , Almidón , Almidón/química , Ésteres , Poliuretanos/química , Permeabilidad
4.
Macromol Biosci ; : e2400014, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39072995

RESUMEN

Previously, a new biodegradable poly(ester urethane urea) was synthesized based on polycaprolactone-diol and fish gelatin (PU-Gel). In this work, the potential of this new material for neural tissue engineering is evaluated. Membranes with randomly oriented fibers and with aligned fibers are produced using electrospinning and characterized regarding their mechanical behavior under both dry and wet conditions. Wet samples exhibit a lower Young's modulus than dry ones and aligned membranes are stiffer and more brittle than those randomly oriented. Cyclic tensile tests are conducted and high values for recovery ratio and resilience are obtained. Both membranes exhibited a hydrophobic surface, measured by the water contact angle (WCA). Human mesenchymal stem cells from umbilical cord tissue (UC-MSCs) and human neural stem cells (NSCs) are seeded on both types of membranes, which support their adhesion and proliferation. Cells stained for the cytoskeleton and nucleus in membranes with aligned fibers display an elongated morphology following the alignment direction. As the culture time increased, higher cell viability is obtained on randomfibers for UC-MSCs while no differences are observed for NSCs. The membranes support neuronal differentiation of NSCs, as evidenced by markers for a neuronal filament protein (NF70) and for a microtubule-associated protein (MAP2).

5.
J Biomater Sci Polym Ed ; 35(8): 1157-1176, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38386369

RESUMEN

Nitric oxide (NO) plays an important role as a signalling molecule in the biological system. Organoselenium-coated or grafted biomaterials have the potential to achieve controlled NO release as they can catalyse decomposition of endogenous S-nitrosothiols to NO. However, such biomaterials are often challenged by the loss of the catalytic sites, which can affect the stability in tissue repair applications. In this work, we prepare a diselenide-containing poly(ester urethane)urea (SePEUU) polymer with Se-Se in the backbone, which is further electrospun into fibrous membranes by blending with poly(ester urethane)urea (PEUU) without diselenide bonds. The presence of catalytic sites in the main chain demonstrates stable and long-lasting NO catalytic activity, while the porous structure of the fibrous membranes ensures uniform distribution of the catalytic sites and better contact with the donor-containing solution. PEUU/SePEUU50 in 50/50 mass ratio has a physiologically adapted rate of NO release, with a sustained generation of NO after exposure to PBS at 37 °C for 30 d. PEUU/SePEUU50 has a low hemolysis and protein adsorption, with mechanical properties in the wet state matching those of natural vascular tissues. It can promote the adhesion and proliferation of human umbilical vein endothelial cells in vitro and control the proliferation of vascular smooth muscle cells in the presence of NO generation. This study exhibits the electrospun fibrous membranes have potential for utilizing as hemocompatible biomaterials for regeneration of blood-contacting tissues.


Asunto(s)
Materiales Biocompatibles , Óxido Nítrico , Poliésteres , Poliuretanos , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Humanos , Poliuretanos/química , Poliésteres/química , Catálisis , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Células Endoteliales de la Vena Umbilical Humana , Hemólisis/efectos de los fármacos , Membranas Artificiales , Proliferación Celular/efectos de los fármacos , Adsorción
6.
J Biomater Sci Polym Ed ; 34(9): 1171-1194, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36541432

RESUMEN

Oxidative stress caused by the harsh microenvironment after implantation of an artificial graft with mismatching mechanical properties usually triggers inflammation responses, which have adverse impacts on tissue regeneration. For coping with these problems, in this work, bioactive fibrous scaffolds were developed from specially synthesized carboxylated poly(ester urethane)urea (PEUU) and gelatin (Gel) by encapsulating pterostilbene (Pte) for the first time. The prepared electrospun membranes exhibited self-adaptable mechanical properties with high elasticity owing to the bonded electrospun fibers, cross-linking network between PEUU and Gel, and the inherent flexibility of the PEUU polymer in the fibrous matrix. The PEUU/Gel/Pte electrospun membrane containing 7% Pte could promote in vitro proliferation of human umbilical vein endothelial cells, and regulate vascular smooth muscle cells with excellent antioxidant properties via free radical scavenging. In vivo results in a rat subcutaneous implantation model further demonstrated the positive effect of the specially prepared PEUU/Gel/Pte scaffold on both normal cell growth and anti-inflammatory by promoting cellularization and polarizing macrophages toward the M2 phenotype. These PEUU/Gel/Pte electrospun membranes with adaptability benefit to tissue regeneration by modulating inflammation responses, especially applications in vascular regeneration.


Asunto(s)
Andamios del Tejido , Uretano , Ratas , Humanos , Animales , Antioxidantes/farmacología , Gelatina , Urea , Ésteres , Poliésteres , Células Endoteliales de la Vena Umbilical Humana , Inflamación , Ingeniería de Tejidos/métodos
7.
Macromol Biosci ; 22(4): e2100427, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35007398

RESUMEN

Development of fiber-spinning technologies and materials with proper mechanical properties is highly important for the manufacturing of aligned fibrous scaffolds mimicking structure of the muscle tissues. Here, the authors report touch spinning of a thermoplastic poly(1,4-butylene adipate)-based polyurethane elastomer, obtained via solvent-free polymerization. This polymer possesses a combination of important advantages such as 1) low elastic modulus in the range of a few MPa, 2) good recovery ratio and 3) resilience, 4) processability, 5) nontoxicity, 6) biocompatibility, and 7) biodegradability that makes it suitable for fabrication of structures mimicking extracellular matrix of muscle tissue. Touch spinning allows fast and precise deposition of highly aligned micro- and nano-fibers without use of high voltage. C2C12 myoblasts readily align along soft polymer fibers and demonstrate high viability as well as proliferation that make proposed combination of polymer and fabrication method highly suitable for engineering skeletal muscles.


Asunto(s)
Elastómeros , Ingeniería de Tejidos , Materiales Biocompatibles/química , Elastómeros/química , Ésteres , Músculo Esquelético , Polímeros/química , Poliuretanos/química , Andamios del Tejido/química
8.
Polymers (Basel) ; 14(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35566844

RESUMEN

The article below describes a simple methodology to prepare cost-effective biodegradable poly(ester urethane)s (PEUs) with ordered hard segments (OHS) for medical application as long-term implants. A low-cost diurethane diol (1,4-butanediol-hexanediisocyanate-1,4-butanediol, BHB) was first designed and synthesized. Consequently, the BHB was employed as a chain extender to react with NCO-terminated poly(ε-caprolactone) to obtain PEUs. The molecular structural formats for BHB and PEUs were defined through NMR, FT-IR, and MS together with GPC, while the influence of OHS content on physical/chemical features for casted PEU films was investigated. The introduction of OHS could contribute to forming denser hydrogen-bonds, and consequently produce a compact network structure, resulting in great tensile capacity, low water absorption, and slow hydrolytic degradation rate by PEU films. PEU-2.0 films, which possessed the highest OHS content within PEUs, exhibited 40.6 MPa tensile strength together with 477% elongation at break, 4.3 wt % equilibrium water absorption and only 29.5% weight loss post-12 months' degradation. In addition, cytotoxicity analysis of film extracts indicated that the cell viability of all PEUs containing OHS exceeded 75%, indicating good cytocompatibility. Due to outstanding tensile features, high biostability, nontoxic and absorbable degradation products and acceptable cytocompatibility, the cost-effective materials exhibited promising applications in the field of long-term implants.

9.
ACS Appl Bio Mater ; 5(11): 5432-5444, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36318654

RESUMEN

Exploiting aromatic π-interaction for the stabilization of polyaromatic anticancer drugs at the core of the polymer nanoassemblies is an elegant approach for drug delivery in cancer research. To demonstrate this concept, here we report one of the first attempts on enzyme-responsive polymers from aryl-unit containing amino acid bioresources such as l-tyrosine and 3,4-dihydroxy-l-phenylalanine (l-DOPA). A silyl ether protection strategy was adopted to make melt polymerizable monomers, which were subjected to solvent free melt polycondensation to produce silyl-protected poly(ester-urethane)s. Postpolymerization deprotection yielded phenol- and catechol-functionalized poly(ester-urethane)s with appropriate amphiphilicity and produced 100 ± 10 nm size nanoparticles in an aqueous solution. The aromatic π-core in the nanoparticle turns out to be the main driving force for the successful encapsulation of anticancer drugs such as doxorubicin (DOX) and topotecan (TPT). The electron-rich catechol aromatic unit in l-DOPA was found to be unique in stabilizing the DOX and TPT, whereas its l-tyrosine counterpart was found to exhibit limited success. Aromatic π-interactions between l-DOPA and anticancer drug molecules were established by probing the fluorescence characteristics of the drug-polymer chain interactions. Lysosomal enzymatic biodegradation of the poly(ester-urethane) backbone disassembled the nanoparticles and released the loaded drugs at the cellular level. The nascent polymer was nontoxic in breast cancer (MCF7) and WT-MEF cell lines, whereas its DOX and TPT loaded nanoparticles showed remarkable cell growth inhibition. A LysoTracker-assisted confocal microscopic imaging study directly evidenced the polymer nanoparticles' biodegradation at the intracellular level. The present investigation gives an opportunity to design aromatic π-interaction driven drug stabilization in l-amino acid based polymer nanocarriers for drug delivery applications.


Asunto(s)
Antineoplásicos , Neoplasias , Portadores de Fármacos/química , Uretano/uso terapéutico , Aminoácidos/uso terapéutico , Ésteres/uso terapéutico , Fenol/uso terapéutico , Levodopa/uso terapéutico , Doxorrubicina/química , Polímeros/química , Antineoplásicos/farmacología , Fenoles/uso terapéutico , Catecoles/uso terapéutico , Neoplasias/tratamiento farmacológico
10.
Int J Mol Sci ; 12(9): 5490-507, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22016604

RESUMEN

Novel poly(ester-urethane)s were prepared by a synthetic route using a lipase that avoids the use of hazardous diisocyanate. The urethane linkage was formed by the reaction of phenyl carbonate with amino acids and amino alcohols that produced urethane-containing diacids and hydroxy acids, respectively. The urethane diacid underwent polymerization with polyethylene glycol and α,ω-alkanediols and also the urethane-containing hydroxy acid monomer was polymerized by the lipase to produce high-molecular-weight poly(ester-urethane)s. The periodic introduction of ester linkages into the polyurethane chain by the lipase-catalyzed polymerization afforded chemically recyclable points. They were readily depolymerized in the presence of lipase into cyclic oligomers, which were readily repolymerized in the presence of the same enzyme. Due to the symmetrical structure of the polymers, poly(ester-urethane)s synthesized in this study showed higher T(m), Young's modulus and tensile strength values.


Asunto(s)
Lipasa/metabolismo , Poliésteres/síntesis química , Polímeros/síntesis química , Poliuretanos/síntesis química , Ésteres/química , Ésteres/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Químicos , Estructura Molecular , Poliésteres/química , Poliésteres/metabolismo , Polietilenglicoles/química , Polimerizacion , Polímeros/química , Polímeros/metabolismo , Poliuretanos/química , Poliuretanos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Temperatura , Uretano/química , Uretano/metabolismo
11.
Membranes (Basel) ; 11(1)2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33406798

RESUMEN

In the paper, the chitooligosaccharide (CHO) was surface-grafted on the medical segmented poly(ester-urethane) (SPU) film by a facile two-step procedure to improve the surface biocompatibility. By chemical treatment of SPU film with hexamethylene diisocyanate under mild reaction condition, free -NCO groups were first introduced on the surface with high grafting density, which were then coupled with -NH2 groups of CHO to immobilize CHO on the SPU surface (SPU-CHO). The CHO-covered surface was characterized by FT-IR and water contact angle test. Due to the hydrophilicity of CHO, the SPU-CHO possessed higher surface hydrophilicity and faster hydrolytic degradation rate than blank SPU. The almost overlapping stress-strain curves of SPU and SPU-CHO films demonstrated that the chemical treatments had little destruction on the intrinsic properties of the substrate. In addition, the significant inhibition of platelet adhesion and protein adsorption on CHO-covered surface endowed SPU-CHO an outstanding surface biocompatibility (especially blood compatibility). These results indicated that the CHO-grafted SPU was a promising candidate as blood-contacting biomaterial for biomedical applications.

12.
Polymers (Basel) ; 13(2)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430243

RESUMEN

The aim of this study consists of monitoring the effect of thermal aging on the physico-chemical and optical properties of poly(ester urethane) elastomers designed as damping materials for railways. The materials were obtained by polyaddition in two stages in melt, resulting in regular structures. The structural modifications during the thermal aging of the samples were monitored using FTIR, color changes, TGA in non-isothermal and isothermal conditions, DSC and physico-mechanical measurements. The structural regularity of the rigid and flexible segments maintained the good mechanical properties of the structures up to 200 h of thermal aging at the elevated temperatures of 40 °C, 70 °C, 100 °C and 130 °C. It was observed that at 40 °C and low exposure times, changes occur mainly to the carbonyl groups of the soft segments. At higher temperatures and longer exposure times urethane groups were affected. Extended thermal aging led to significant changes in thermo-mechanical and optical properties.

13.
JACC Basic Transl Sci ; 6(5): 447-463, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34095634

RESUMEN

A biohybrid patch without cellular components was implanted over large infarcted areas in severely dilated hearts. Nonpatched animals were assigned to control or losartan therapy. Patch-implanted animals responded with better morphological and functional echocardiographic endpoints, which were more evident in a subgroup of animals with very low pre-treatment ejection fraction (<35%). Patched animals also had smaller infarcts than both nonpatched groups. This simple approach could hold promise for clinical translation and be applied using minimally invasive procedures over the epicardium in a large set of patients to induce better ventricular remodeling, especially among those who are especially frail.

14.
Acta Biomater ; 102: 192-204, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31778830

RESUMEN

Although a growing knowledge on the field of tissue engineering of articular cartilage exists, reconstruction or in-vitro growth of functional hyaline tissue still represents an unmet challenge. Despite the simplicity of the tissue in terms of cell population and absence of innervation and vascularization, the outstanding mechanical properties of articular cartilage, which are the result of the specificity of its extra cellular matrix (ECM), are difficult to mimic. Most importantly, controlling the differentiation state or phenotype of chondrocytes, which are responsible of the deposition of this specialized ECM, represents a milestone in the regeneration of native articular cartilage. In this study, we fabricated fused deposition modelled (FDM) scaffolds with different pore sizes and architectures from an elastic and biodegradable poly(ester)urethane (PEU) with mechanical properties that can be modulated by design, and that ranged the elasticity of articular cartilage. Cell culture in additive manufactured 3D scaffolds exceeded the chondrogenic potential of the gold-standard pellet culture. In-vitro cell culture studies demonstrated the intrinsic potential of elastic (PEU) to drive the re-differentiation of de-differentiated chondrocytes when cultured in-vitro, in differentiation or basal media, better than pellet cultures. The formation of neo-tissue was assessed as a high deposition of GAGs and fibrillar collagen II, and a high expression of typical chondrogenic markers. Moreover, the collagen II / collagen I ratio commonly used to evaluate the differentiation state of chondrocytes (ratio > 1 being chondrocytes and, ratio < 0 being de-differentiated chondrocytes) was higher than 5. STATEMENT OF SIGNIFICANCE: Tissue engineering of articular cartilage requires material scaffolds capable of driving the deposition of a coherent and specific ECM representative of articular cartilage. Materials explored so far account for low mechanical properties (hydrogels), or are too stiff to mimic the elasticity of the native tissue (traditional polyesters). Here, we fabricated 3D fibrous scaffolds via FDM with a biodegradable poly(ester)urethane. The compressive Young`s modulus and elastic limit of the scaffolds can be tuned by designed, mimicking those of the native tissue. The designed scaffolds showed an intrinsic potential to drive the formation of a GAG and collagen II rich ECM, and to drive a stable chondrogenic cell phenotype.


Asunto(s)
Cartílago Articular/metabolismo , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Cartílago Articular/citología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Condrocitos/metabolismo , Colágeno Tipo II/metabolismo , Módulo de Elasticidad , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Ratones , Poliésteres/química , Poliuretanos/química , Porosidad
15.
Mater Sci Eng C Mater Biol Appl ; 109: 110571, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32228944

RESUMEN

In order to improve the hemocompatibility of durable medical-grade polyurethane, a novel series of segmented poly(ester-urethane)s containing uniformly sized hard segments and phosphorylcholine (PC) groups on the side chains (SPU-PCs) was prepared by a facile method. The 2-methacryloyloxyethyl phosphorylcholine (MPC) was first reacted with α-thioglycerol by Michael addition to give a diol compound (MPC-diol), then the SPU-PCs with various PC content were prepared by a one-step chain extension of the mixture of MPC-diol and poly(ε-caprolactone) diol (PCL-diol) with aliphatic diurethane diisocyanates (HBH). The chemical structures of MPC-diol and SPU-PCs were confirmed by 1H NMR and FT-IR, and the influences of PC content on the physicochemical properties of the SPU-PC films were studied. The introduction of PC groups enhanced the degree of micro-phase separation and improved the hydrolytic degradation of the films. Due to the denser hydrogen bonds formed in the uniformly sized hard segments, the films exhibited favorable tensile properties and a slow hydrolytic degradation rate. The results of water contact angle and XPS analysis indicated that the PC groups on the flexible side chains were concentrated on the surface after contact with water. The surface hemocompatibility of the films was evaluated by testing the protein adsorption and platelet adhesion, and the results revealed that the films surfaces could dramatically suppress the protein adsorption and platelet adhesion. The PC-containing polyurethane films possessed outstanding tensile properties, low degradation rate and good surface hemocompatibility, implying their great potential for use as long-term implant or blood-contacting devices.


Asunto(s)
Plaquetas/metabolismo , Ensayo de Materiales , Fosforilcolina , Adhesividad Plaquetaria , Poliésteres , Poliuretanos , Plaquetas/citología , Humanos , Fosforilcolina/química , Fosforilcolina/farmacología , Poliésteres/síntesis química , Poliésteres/química , Poliésteres/farmacología , Poliuretanos/síntesis química , Poliuretanos/química , Poliuretanos/farmacología
16.
J Biomater Sci Polym Ed ; 30(13): 1212-1226, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31140366

RESUMEN

In this article, a series of medical poly(ester-urethane)s (PEUs) with varying uniform-size hard segment content were prepared via one-step chain extension of poly(ε-caprolactone)s with aliphatic urethane diisocyanate, and the corresponding films were obtained by solvent evaporation technique. The chemical structures of polymers were confirmed by 1H NMR, FT-IR and GPC. The effect of uniform-size hard segment content on the physicochemical properties of PEU films, including thermal properties, mechanical properties, crystallization behavior, water-swelling behavior and in vitro degradability, was extensively researched. The PEU films exhibiting similar thermal transition and thermal stability indicated that the uniform-size hard segment content had little effect on the thermal properties. Two obvious glass transition temperatures observed in DSC curves manifested a microphase separation structure, which endowed the PEU films excellent mechanical properties with ultimate stress of 34.6-51.2 MPa and strain at break of 898-1485%. And with the increase of uniform-size hard segment content, the initial modulus and ultimate stress increased, while the strain at break decreased. Due to the compact physical-linking network structure formed by the denser hydrogen bonds, the PEU films exhibited low water-swellability of less than 1.5 wt% and low degradation rate in vitro. The weight loss of the PEU films in degradation test was less than 1 wt% at the first four months and the time of films becoming fragments was more than 15 months. Cytotoxicity test of film extracts was conducted with L929 mouse fibroblasts, and the relative growth rate approached or exceeded 75%, indicating an acceptable cytocompatibility. For the excellent mechanical properties, slow biodegradability, non-toxic degradation products and adequate cytocompatibility, the PEUs containing uniform-size hard segments possess a high potential to be applied as long-term implant biomaterials.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Metacrilatos/química , Poliésteres/química , Poliuretanos/química , Uretano/análogos & derivados , Espectroscopía de Resonancia Magnética , Ensayo de Materiales , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Uretano/química
17.
Mater Sci Eng C Mater Biol Appl ; 104: 109952, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31499985

RESUMEN

The aim of this work is to provide a new kind of polyurethane with improved surface blood compatibility for long-term blood-contacting biomaterials. In the study, an aliphatic poly(ester-urethane) (H-PEU) with uniform-size hard segments was synthesized by one-step chain extension of poly(ε-caprolactone) (PCL) with diurethane diisocyanate (HBH), and biomimetic phosphorylcholine (PC) groups were immobilized onto the film surface with high grafting efficiency by three-step chemical treatments under mild reaction conditions. The H-PEU film was firstly treated with 1,6-hexanediisocyanate (HDI) to introduce -NCO groups on the surface (H-PEU-NCO) through an allophanate reaction; the -NCO groups were then coupled via a condensation reaction with one of -NH2 groups of tris(2-aminoethyl)amine (TAEA) to immobilize -NH2 on the surface (H-PEU-NH2); finally, the double bond of 2-methacryloyloxyethyl phosphorylcholine (MPC) reacted with -NH2 by Michael addition reaction to obtain MPC-grafted H-PEU (H-PEU-MPC). The modified surfaces were characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The results verified that MPC was successfully grafted onto H-PEU surface with high grafting density. The blank and modified films showed similar crystallization behaviors, thermal stabilities and mechanical properties, indicating that the chemical treatments had minimum influence on the physicochemical properties of the substrate. The H-PEU-MPC displaying a much lower water contact angle (~15.2°) than H-PEU (80.3°) meant that the hydrophilic PC functional groups improved the surface hydrophilicity significantly. The surface blood compatibility was examined by bovine serum albumin adsorption and platelet adhesion tests, and the results revealed that H-PEU-MPC had improved resistance to protein adsorption and platelet adhesion capacity. The MPC-grafted H-PEU film possessed outstanding mechanical properties (ultimate stress: 36.1 MPa; strain at break: 883%), low protein adsorption quantity (1.33 µg/cm2) and good anti-platelet adhesion capacity (582 ±â€¯16 per mm2), implying its high potential to be applied as biomaterials for vascular grafts, subcutaneously implanted devices or other blood-contacting devices.


Asunto(s)
Materiales Biocompatibles/química , Metacrilatos/química , Fosforilcolina/análogos & derivados , Poliésteres/química , Poliuretanos/química , Adsorción/efectos de los fármacos , Animales , Caproatos/química , Isocianatos/química , Lactonas/química , Fosforilcolina/química , Adhesividad Plaquetaria/efectos de los fármacos , Conejos , Albúmina Sérica Bovina/química , Propiedades de Superficie
18.
J Biomater Appl ; 32(10): 1329-1342, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29547018

RESUMEN

The purpose of this study is to offer a novel kind of polyurethane with improved surface blood compatibility for long-term implant biomaterials. In this work, the aliphatic poly(ester-urethane) (PEU) with uniform-size hard segments was prepared and the PEU surface was grafted with hydrophilic poly(ethylene glycol) (PEG). The PEU was obtained by chain-extension of poly(ɛ-caprolactone) (PCL) with isocyanate-terminated urethane triblock. Free amino groups were introduced onto the surface of PEU film via aminolysis with hexamethylenediamine, and then the NH2-grafted PEU surfaces (PEU-NH2) were reacted with isocyanate-terminated monomethoxyl PEG (MPEG-NCO) to obtain the PEG-grafted PEU surfaces (PEU-PEG). Analysis by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and gel permeation chromatography were performed to confirm the chemical structures of the chain extender, PCL, PEU, and PEU-PEG. Additionally, the influence of aminolysis on the physical-mechanical properties of PEU films was investigated. Two glass transition temperatures and a broad endothermic peak were observed in the differential scanning calorimetry curves of PEU, which demonstrated a microphase-separated and semicrystalline structure, respectively. The PEU-PEG film exhibited excellent mechanical properties with an ultimate stress of ∼39 MPa and an elongation at break of ∼1190%, which was slightly lower than that of PEU, indicating that the aminolysis has little influence on the tensile properties. Evaluation of the blood compatibility of the films by bovine serum albumin adsorption and the platelet adhesion test revealed that the PEG-grafted surface had improved resistance to protein adsorption and excellent resistance to platelet adhesion. In vitro degradation tests showed that the PEU-PEG film could maintain its mechanical properties for more than six months and only lost ∼25% weight after 18 months. Due to the excellent mechanical properties, good blood compatibility and slow degradability, this novel kind of polyurethane hold significant promise for long-term implant biomaterials, especially soft tissue augmentation and regeneration.


Asunto(s)
Materiales Biocompatibles/química , Isocianatos/química , Polietilenglicoles/química , Poliuretanos/química , Adsorción , Animales , Materiales Biocompatibles/síntesis química , Bovinos , Interacciones Hidrofóbicas e Hidrofílicas , Isocianatos/síntesis química , Ensayo de Materiales , Adhesividad Plaquetaria , Polietilenglicoles/síntesis química , Poliuretanos/síntesis química , Conejos , Albúmina Sérica Bovina/química , Propiedades de Superficie , Resistencia a la Tracción
19.
Polymers (Basel) ; 10(10)2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30961050

RESUMEN

In the paper, poly(ethylene glycol) (PEG) was grafted on the surface of poly(ester-urethane) (SPEU) film with high grafting density for biomedical purposes. The PEG-surface-grafted SPEU (SPEU-PEG) was prepared by a three-step chemical treatment under mild-reaction conditions. Firstly, the SPEU film surface was treated with 1,6-hexanediisocyanate to introduce -NCO groups on the surface with high density (5.28 × 10-7 mol/cm²) by allophanate reaction; subsequently, the -NCO groups attached to SPEU surface were coupled with one of -NH2 groups of tris(2-aminoethyl)amine via condensation reaction to immobilize -NH2 on the surface; finally, PEG with different molecular weight was grafted on the SPEU surface through Michael addition between terminal C = C bond of monoallyloxy PEG and -NH2 group on the film surface. The chemical structure and modified surface were characterized by FT-IR, ¹H NMR, X-ray photoelectron spectroscopy (XPS), and water contact angle. The SPEU-PEGs displaying much lower water contact angles (23.9⁻21.8°) than SPEU (80.5°) indicated that the hydrophilic PEG chains improved the surface hydrophilicity significantly. The SPEU-PEG films possessed outstanding mechanical properties with strain at break of 866⁻884% and ultimate stress of 35.5⁻36.4 MPa, which were slightly lower than those of parent film, verifying that the chemical treatments had minimum deterioration on the mechanical properties of the substrate. The bovine serum albumin adsorption and platelet adhesion tests revealed that SPEU-PEGs had improved resistance to protein adsorption (3.02⁻2.78 µg/cm²) and possessed good resistance to platelet adhesion (781⁻697 per mm²), indicating good surface hemocompatibility. In addition, due to the high grafting density, the molecular weight of surface-grafted PEG had marginal effect on the surface hydrophilicity and hemocompatibility.

20.
ACS Appl Mater Interfaces ; 10(29): 24829-24839, 2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-29972638

RESUMEN

Thermoplastic segmented polyurethanes (PUs) can exhibit shape memory behavior, if they feature multiple kinds of physical cross-links that can be dissociated at different temperatures. This is the case if the hydrogen-bonded hard phase is joined with soft segments that can partially crystallize, so that the melting transition acts as the memory switch. For applications in the biomedical field, it is important that the fixation and recovery temperatures can be minutely controlled. We show here that this tailoring can be easily achieved by formulating a commercial PU featuring poly(1,4-butylene adipate) (PBA) as a crystallizable segment (PBA-PU) with either PBA or poly(ε-caprolactone) (PCL) of moderate molecular weight. We show that the nature of the end groups and the processing conditions dictate if there is any reaction between the components or if the product is merely a blend. Interestingly, in either case, the addition of PBA or PCL causes nucleation and thereby a noteworthy increase of the crystallization temperature of the switching element from below to above ambient temperature, so that excellent shape fixity (∼98%) can be achieved at 37 °C. The melting temperature is maintained above 50 °C and significant increases in strength and modulus are achieved. The new materials platform is well suited for applications in which a shape is to be fixed at physiological temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA