Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
New Phytol ; 242(2): 744-759, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38264772

RESUMEN

Angiosperms, which inhabit diverse environments across all continents, exhibit significant variation in genome sizes, making them an excellent model system for examining hypotheses about the global distribution of genome size. These include the previously proposed large genome constraint, mutational hazard, polyploidy-mediated, and climate-mediated hypotheses. We compiled the largest genome size dataset to date, encompassing 16 017 (> 5% of known) angiosperm species, and analyzed genome size distribution using a comprehensive geographic distribution dataset for all angiosperms. We observed that angiosperms with large range sizes generally had small genomes, supporting the large genome constraint hypothesis. Climate was shown to exert a strong influence on genome size distribution along the global latitudinal gradient, while the frequency of polyploidy and the type of growth form had negligible effects. In contrast to the unimodal patterns along the global latitudinal gradient shown by plant size traits and polyploid proportions, the increase in angiosperm genome size from the equator to 40-50°N/S is probably mediated by different (mostly climatic) mechanisms than the decrease in genome sizes observed from 40 to 50°N northward. Our analysis suggests that the global distribution of genome sizes in angiosperms is mainly shaped by climatically mediated purifying selection, genetic drift, relaxed selection, and environmental filtering.


Asunto(s)
Magnoliopsida , Magnoliopsida/genética , Tamaño del Genoma , Genoma de Planta , Poliploidía , Plantas/genética , Filogenia
2.
Glob Chang Biol ; 30(1): e16981, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37888836

RESUMEN

Indigenous Peoples are long-term custodians of their lands, but only recently are their contributions to conservation starting to be recognized in biodiversity policy and practice. Tropical forest loss and degradation are lower in Indigenous lands than unprotected areas, yet the role of Indigenous Peoples' Lands (IPL) in biodiversity conservation has not been properly assessed from regional to global scales. Using species distribution ranges of 11,872 tropical forest-dependent vertebrates to create area of habitat maps, we identified the overlap of these species ranges with IPL and then compared values inside and outside of IPL for species richness, extinction vulnerability, and range-size rarity. Of assessed vertebrates, at least 76.8% had range overlaps with IPL, on average overlapping ~25% of their ranges; at least 120 species were found only within IPL. Species richness within IPL was highest in South America, while IPL in Southeast Asia had highest extinction vulnerability, and IPL in Dominica and New Caledonia were important for range-size rarity. Most countries in the Americas had higher species richness within IPL than outside, whereas most countries in Asia had lower extinction vulnerability scores inside IPL and more countries in Africa and Asia had slightly higher range-size rarity in IPL. Our findings suggest that IPL provide critical support for tropical forest-dependent vertebrates, highlighting the need for greater inclusion of Indigenous Peoples in conservation target-setting and program implementation, and stronger upholding of Indigenous Peoples' rights in conservation policy.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Humanos , Animales , Vertebrados , Biodiversidad , Pueblos Indígenas
3.
J Evol Biol ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291872

RESUMEN

One of the most evident sources of phenotypic diversity within a population is colouration, as exemplified by colour polymorphism. This is relevant to a greater extent in animals with visually-biased sensory systems. There is substantial evidence suggesting that different colour morphs can access a broader range of habitats or niches, leading to larger geographic range sizes. However, this hypothesis has been tested in few lineages, comprising species where colour is likely to be involved in sexual selection. Furthermore, some available evidence considers geographical variation as polymorphism, thus limiting our comprehension of how sympatric colour polymorphism can influence a species' geographic range. Through an extensive systematic literature review and a comparative analysis, we examined the relationship between colour polymorphism and range size or niche breadth in web-building spiders. We identified 140 colour polymorphic spider species, belonging mainly to the families Araneidae and Theridiidae. We found no evidence that colour polymorphic species differ significantly from non-polymorphic species in terms of range size and niche breadth, after accounting for phylogenetic relationships and other covariates. However, we did observe that colour polymorphic species were more likely to be found on islands compared to non-polymorphic species. Overall, our results indicate that the association between colour polymorphism and geographic range size may not exist among web-building spiders, or be as pronounced as in other lineages. This suggests that the strength of the association between colour polymorphism and ecological success might depend on the ecological role that colouration plays in each clade.

4.
J Anim Ecol ; 93(8): 1108-1122, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38877691

RESUMEN

Recent evidence suggests that individuals differ in foraging tactics and this variation is often linked to an individual's behavioural type (BT). Yet, while foraging typically comprises a series of search and handling steps, empirical investigations have rarely considered BT-dependent effects across multiple stages of the foraging process, particularly in natural settings. In our long-term sleepy lizard (Tiliqua rugosa) study system, individuals exhibit behavioural consistency in boldness (measured as an individual's willingness to approach a novel food item in the presence of a threat) and aggressiveness (measured as an individual's response to an 'attack' by a conspecific dummy). These BTs are only weakly correlated and have previously been shown to have interactive effects on lizard space use and movement, suggesting that they could also affect lizard foraging performance, particularly in their search behaviour for food. To investigate how lizards' BTs affect their foraging process in the wild, we supplemented food in 123 patches across a 120-ha study site with three food abundance treatments (high, low and no-food controls). Patches were replenished twice a week over the species' entire spring activity season and feeding behaviours were quantified with camera traps at these patches. We tracked lizards using GPS to determine their home range (HR) size and repeatedly assayed their aggressiveness and boldness in designated assays. We hypothesised that bolder lizards would be more efficient foragers while aggressive ones would be less attentive to the quality of foraging patches. We found an interactive BT effect on overall foraging performance. Individuals that were both bold and aggressive ate the highest number of food items from the foraging array. Further dissection of the foraging process showed that aggressive lizards in general ate the fewest food items in part because they visited foraging patches less regularly, and because they discriminated less between high and low-quality patches when revisiting them. Bolder lizards, in contrast, ate more tomatoes because they visited foraging patches more regularly, and ate a higher proportion of the available tomatoes at patches during visits. Our study demonstrates that BTs can interact to affect different search and handling components of the foraging process, leading to within-population variation in foraging success. Given that individual differences in foraging and movement will influence social and ecological interactions, our results highlight the potential role of BT's in shaping individual fitness strategies and population dynamics.


Asunto(s)
Conducta Alimentaria , Lagartos , Animales , Lagartos/fisiología , Fenotipo , Masculino , Femenino , Fenómenos de Retorno al Lugar Habitual , Agresión
5.
Ecol Lett ; 26(7): 1145-1156, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37127410

RESUMEN

Although social species as diverse as humans and ants are among the most abundant organisms on Earth, animals cooperate and form groups for many reasons. How these different reasons for grouping affect a species' ecological dominance remains unknown. Here we use a theoretical model to demonstrate that the different fitness benefits that animals receive by forming groups depend on the quality of their environment, which in turn impacts their ecological dominance and resilience to global change. We then test the model's key predictions using phylogenetic comparative analysis of >6500 bird species. As predicted, we find that cooperative breeders occurring in harsh and fluctuating environments have larger ranges and greater abundances than non-cooperative breeders, but cooperative breeders occurring in benign and stable environments do not. Using our model, we further show that social species living in harsh and fluctuating environments will be less vulnerable to climate change than non-social species.


Asunto(s)
Hormigas , Conducta Social , Animales , Humanos , Filogenia , Reproducción , Aves , Conducta Cooperativa
6.
Proc Biol Sci ; 290(2006): 20231083, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37700642

RESUMEN

Mutualism improves organismal fitness, but strong dependence on another species can also limit a species' ability to thrive in a new range if its partner is absent. We assembled a large, global dataset on mutualistic traits and species ranges to investigate how multiple plant-animal and plant-microbe mutualisms affect the spread of legumes and ants to novel ranges. We found that generalized mutualisms increase the likelihood that a species establishes and thrives beyond its native range, whereas specialized mutualisms either do not affect or reduce non-native spread. This pattern held in both legumes and ants, indicating that specificity between mutualistic partners is a key determinant of ecological success in a new habitat. Our global analysis shows that mutualism plays an important, if often overlooked, role in plant and insect invasions.


Asunto(s)
Hormigas , Fabaceae , Animales , Simbiosis , Fenotipo , Probabilidad
7.
Ann Bot ; 131(6): 921-940, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-36757803

RESUMEN

BACKGROUND AND AIMS: The evolution of ecological specialization is favoured under divergent selection imposed by increased environmental heterogeneity, although specialization can limit the geographical range of organisms, thus promoting endemism. The Atlantic Forest (AF) is an ancient montane domain with high plant endemism, containing different environments for plant specialization. Miconia is the most diverse genus of woody flowering plant within the AF domain, including AF-endemic and non-endemic lineages. We hypothesized that Miconia species have faced increased environmental heterogeneity and consequently have been selected towards increased specialization in the AF domain, and this increased specialization has greatly reduced species geographical ranges, ultimately promoting endemism. Hence, we made the following predictions: (1) AF-endemic species should face greater environmental heterogeneity than non-endemic species; (2) AF-endemic species should be more specialized than non-endemic species; (3) specialization should lead to smaller geographical ranges; (4) specialization and small geographical ranges among AF-endemic species should conform to a selection-driven evolutionary scenario rather than to a neutral evolutionary scenario; and (5) small geographical ranges among AF-endemic species should date back to the occupation of the AF domain rather than to more recent time periods. METHODS: We used geographical, environmental and phylogenetic data on a major Miconia clade including AF-endemic and non-endemic species. We calculated Rao's Q to estimate the environmental heterogeneity faced by species. We used georeferenced occurrences to estimate the geographical ranges of species. We applied environmental niche modelling to infer species niche breadth. We inferred the most likely evolutionary scenario for species geographical range and niche breadth via a model-fitting approach. We used ancestral reconstructions to evaluate species geographical range throughout time. KEY RESULTS: Atlantic Forest-endemic species faced 33-60 % more environmental heterogeneity, with the increase being associated with montane landscapes in the AF. The AF-endemic species were 60 % more specialized overall, specifically over highly variable environmental gradients in AF montane landscapes. Specialization strongly predicted small geographical ranges among AF-endemic species and was a major range-limiting factor among endemic lineages. The AF-endemic species have evolved towards specialization and small geographical ranges under a selection-driven regime, probably imposed by the great environmental heterogeneity in AF montane landscapes. The AF-endemic species underwent a major reduction of geographical range immediately after their evolution, indicating a long-standing effect of selective pressures in the AF domain. CONCLUSION: Environmental heterogeneity imposes selective pressures favouring ecological specialization and small geographical ranges among plant lineages in the AF domain. This selection-driven process has probably promoted plant endemism in the AF domain throughout its history.


Asunto(s)
Ecosistema , Bosques , Filogenia , Geografía
8.
Glob Ecol Biogeogr ; 32(9): 1535-1548, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38505836

RESUMEN

Aim: The breadth of ecological niches and dispersal abilities have long been discussed as important determinants of species' range sizes. However, studies directly comparing the relative effects of both factors are rare, taxonomically biased and revealed inconsistent results. Location: Europe. Time Period: Cenozoic. Major Taxa: Butterflies, Lepidoptera. Methods: We relate climate, diet and habitat niche breadth and two indicators of dispersal ability, wingspan and a dispersal tendency index, to the global range size of 369 European-centred butterfly species. The relative effects of these five predictors and their variation across the butterfly phylogeny were assessed by means of phylogenetic generalized least squares models and phylogenetically weighted regressions respectively. Results: Climate niche breadth was the most important single predictor, followed by habitat and diet niche breadth, while dispersal tendency and wingspan showed no relation to species' range size. All predictors together explained 59% of the variation in butterfly range size. However, the effects of each predictor varied considerably across families and genera. Main Conclusions: Range sizes of European-centred butterflies are strongly correlated with ecological niche breadth but apparently independent of dispersal ability. The magnitude of range size-niche breadth relationships is not stationary across the phylogeny and is often negatively correlated across the different dimensions of the ecological niche. This variation limits the generalizability of range size-trait relationships across broad taxonomic groups.

9.
J Anim Ecol ; 92(11): 2126-2137, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37454385

RESUMEN

Bird-plant seed-dispersal networks are structural components of ecosystems. The role of bird species in seed-dispersal networks (from less [peripheral] to more connected [central]), determines the interaction patterns and their ecosystem services. These roles may be driven by morphological and functional traits as well as evolutionary, geographical and environmental properties acting at different spatial extents. It is still unknown if such drivers are equally important in determining species centrality at different network levels, from individual local networks to the global meta-network representing interactions across all local networks. Using 308 networks covering five continents and 11 biogeographical regions, we show that at the global meta-network level species' range size was the most important driver of species centrality, with more central species having larger range sizes, which would facilitate the interaction with a higher number of plants and thus the maintenance of seed-dispersal interactions. At the local network level, body mass was the only driver with a significant effect, implying that local factors related to resource availability are more important at this level of network organisation than those related to broad spatial factors such as range sizes. This could also be related to the mismatch between species-level traits, which do not consider intraspecific variation, and the local networks that can depend on such variation. Taken together, our results show that the drivers determining species centrality are relative to the levels of network organisation, suggesting that prediction of species functional roles in seed-dispersal interactions requires combined local and global approaches.


Las redes de dispersión de semillas entre aves y plantas son componentes estructurales de los ecosistemas. El rol de las especies de aves en estas redes de dispersión de semillas (de menos [periféricas] a más conectadas [centrales]), determina los patrones de interacción y sus servicios ecosistémicos. Estos roles pueden ser impulsados por rasgos morfológicos y funcionales, propiedades evolutivas, geográficas y ambientales que actúan en diferentes extensiones espaciales. Todavía se desconoce si dichos impulsores son igualmente importantes para determinar la centralidad de las especies en diferentes niveles de red, desde redes locales individuales hasta la meta-red global que representa todas las interacciones en las redes locales. Usando 308 redes abarcando cinco continentes y once regiones biogeográficas, mostramos que a nivel de meta-red global, el tamaño de la distribución geográfica de las especies fue el factor más determinante de la centralidad de las especies, con especies más centrales siendo aquellas que tienen distribuciones más grandes, lo que les facilitaría la interacción con un mayor número de plantas y por lo tanto el mantenimiento de las interacciones de dispersión de semillas. A nivel de las redes locales, la masa corporal fue el único impulsor con un efecto significativo, lo que implica que los factores locales relacionados con la disponibilidad de recursos son más importantes en este nivel de organización que los relacionados con factores espaciales amplios, como el tamaño de las distribuciones. Esto también podría estar relacionado con el desajuste entre los rasgos a nivel de especie, que no consideran la variación intraespecífica, y las redes locales que pueden depender de dicha variación. En conjunto, nuestros resultados muestran que los impulsores que determinan la centralidad de las especies en las redes de interacción son relativos a los niveles de organización de la red, lo que sugiere que la predicción de los roles funcionales de las especies en las interacciones de dispersión de semillas requiere enfoques locales y globales combinados.


Asunto(s)
Ecosistema , Dispersión de Semillas , Animales , Aves , Semillas , Plantas
10.
Ecol Lett ; 25(6): 1365-1375, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35343052

RESUMEN

Nests are essential constructions that determine fitness, yet their structure can vary substantially across bird species. While there is evidence supporting a link between nest architecture and the habitat a species occupies, we still ignore what ecological and evolutionary processes are linked to different nest types. Using information on 3175 species of songbirds, we show that-after controlling for latitude and body size-species that build domed nests (i.e. nests with a roof) have smaller ranges, are less likely to colonise urban environments and have potentially higher extinction rates compared to species with open and cavity nests. Domed nests could be a costly specialisation, and we show that these nests take more time to be built, which could restrict breeding opportunities. These diverse strands of evidence suggest that the transition from domed to open nests in passerines could represent an important evolutionary innovation behind the success of the largest bird radiation.


Asunto(s)
Pájaros Cantores , Animales , Evolución Biológica , Tamaño Corporal , Ecosistema , Comportamiento de Nidificación
11.
Ecol Lett ; 25(10): 2303-2323, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36001639

RESUMEN

The drivers of variability in species range sizes remain an outstanding enigma in ecology. The theoretical expectation of a positive dispersal-range size relationship has received mixed empirical support, despite dispersal being one of the most prominent hypothesised predictors of range size. Here, we synthesised results from 86 studies examining the dispersal-range size relationship for plants and animals in marine, terrestrial and freshwater realms. Overall, our meta-analysis showed that dispersal positively affects range size, but its effect is dependent on the clade and dispersal proxy studied. Moreover, despite potential differences in habitat connectivity, we did not find an effect of realm on the dispersal-range size relationship. Finally, the strength of the dispersal-range size relationship was dependent on latitude, range size metric and the taxonomic breadth of the study clade. Our synthesis emphasizes the importance of developing a mechanistic understanding of the trait to dispersal to range size relationship, considering the complexity of dispersal departure, transfer and settlement, as well as evolutionary components such as time for range expansion, speciation and past geological-environmental dynamics. We, therefore, call for a more integrative view of the dispersal process and its causal relationship with range size.


Asunto(s)
Evolución Biológica , Ecosistema , Animales , Ecología , Agua Dulce
12.
Am Nat ; 199(2): E57-E75, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35077279

RESUMEN

AbstractSpecies vary extensively in geographic range size and climatic niche breadth. If range limits are primarily determined by climatic factors, species with broad climatic tolerances and those that track geographically widespread climates should have large ranges. However, large ranges might increase the probability of population fragmentation and adaptive divergence, potentially decoupling climatic niche breadth and range size. Conversely, ecological generalism in large-ranged species might lead to higher gene flow across climatic transitions, increasing species' cohesion and thus decreasing genetic isolation by distance (IBD). Focusing on Australia's iconic Ctenotus lizard radiation, we ask whether species range size scales with climatic niche breadth and the degree of population isolation. To this end, we infer independently evolving operational taxonomic units (OTUs), their geographic and climatic ranges, and the strength of IBD within OTUs based on genome-wide loci from 722 individuals spanning 75 taxa. Large-ranged OTUs were common and had broader climatic niches than small-ranged OTUs; thus, large ranges do not appear to simply result from passive tracking of widespread climatic zones. OTUs with larger ranges and broader climatic niches showed relatively weaker IBD, suggesting that large-ranged species might possess intrinsic attributes that facilitate genetic cohesion across large distances and varied climates. By influencing population divergence and persistence, traits that affect species cohesion may play a central role in large-scale patterns of diversification and species richness.


Asunto(s)
Lagartos , Animales , Australia , Ecosistema , Flujo Génico , Humanos , Lagartos/genética , Filogenia
13.
Proc Biol Sci ; 289(1981): 20221102, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35975440

RESUMEN

The immense concentrations of vertebrate species in tropical mountains remain a prominent but unexplained pattern in biogeography. A long-standing hypothesis suggests that montane biodiversity hotspots result from endemic species aggregating within ecologically stable localities. Here, the persistence of ancient lineages coincides with frequent speciation events, making such areas both 'cradles' (where new species arise) and 'museums' (where old species survive). Although this hypothesis refers to processes operating at the scale of valleys, it remains supported primarily by patterns generated from coarse-scale distribution data. Using high-resolution occurrence and phylogenetic data on Andean hummingbirds, we find that old and young endemic species are not spatially aggregated. The young endemic species tend to have non-overlapping distributions scattered along the Andean treeline, a long and narrow habitat where populations easily become fragmented. By contrast, the old endemic species have more aggregated distributions, but mainly within pockets of cloud forests at lower elevations than the young endemic species. These findings contradict the premise that biogeographical cradles and museums should overlap in valley systems where pockets of stable climate persist through periods of climate change. Instead, Andean biodiversity hotspots may derive from large-scale fluctuating climate complexity in conjunction with local-scale variability in available area and habitat connectivity.


Asunto(s)
Biodiversidad , Museos , Ecosistema , Bosques , Filogenia
14.
Glob Chang Biol ; 28(22): 6541-6555, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36008887

RESUMEN

Despite the fact that cetaceans provide significant ecological contributions to the health and stability of aquatic ecosystems, many are highly endangered with nearly one-third of species assessed as threatened with extinction. Nevertheless, to date, few studies have explicitly examined the patterns and processes of extinction risk and threats for this taxon, and even less between the two subclades (Mysticeti and Odontoceti). To fill this gap, we compiled a dataset of six intrinsic traits (active region, geographic range size, body weight, diving depth, school size, and reproductive cycle), six environmental factors relating to sea surface temperature and chlorophyll concentration, and two human-related threat indices that are commonly recognized for cetaceans. We then employed phylogenetic generalized least squares models and model selection to identify the key predictors of extinction risk in all cetaceans, as well as in the two subclades. We found that geographic range size, sea surface temperature, and human threat index were the most important predictors of extinction risk in all cetaceans and in odontocetes. Interestingly, maximum body weight was positively associated with the extinction risk in mysticetes, but negatively related to that for odontocetes. By linking seven major threat types to extinction risk, we further revealed that fisheries bycatch was the most common threat, yet the impacts of certain threats could be overestimated when considering all species rather than just threatened ones. Overall, we suggest that conservation efforts should focus on small-ranged cetaceans and species living in warmer waters or under strong anthropogenic pressures. Moreover, further studies should consider the threatened status of species when superimposing risk maps and quantifying risk severity. Finally, we emphasize that mysticetes and odontocetes should be conserved with different strategies, because their extinction risk patterns and major threat types are considerably different. For instance, large-bodied mysticetes and small-ranged odontocetes require special conservation priority.


Asunto(s)
Ecosistema , Extinción Biológica , Peso Corporal , Clorofila , Conservación de los Recursos Naturales , Humanos , Filogenia , Temperatura , Agua
15.
Ann Bot ; 130(7): 999-1014, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36342743

RESUMEN

BACKGROUND AND AIMS: While variation in genome size and chromosome numbers and their consequences are often investigated in plants, the biological relevance of variation in chromosome size remains poorly known. Here, we examine genome and mean chromosome size in the cyperid clade (families Cyperaceae, Juncaceae and Thurniaceae), which is the largest vascular plant lineage with predominantly holocentric chromosomes. METHODS: We measured genome size in 436 species of cyperids using flow cytometry, and augment these data with previously published datasets. We then separately compared genome and mean chromosome sizes (2C/2n) amongst the major lineages of cyperids and analysed how these two genomic traits are associated with various environmental factors using phylogenetically informed methods. KEY RESULTS: We show that cyperids have the smallest mean chromosome sizes recorded in seed plants, with a large divergence between the smallest and largest values. We found that cyperid species with smaller chromosomes have larger geographical distributions and that there is a strong inverse association between mean chromosome size and number across this lineage. CONCLUSIONS: The distinct patterns in genome size and mean chromosome size across the cyperids might be explained by holokinetic drive. The numerous small chromosomes might function to increase genetic diversity in this lineage where crossovers are limited during meiosis.


Asunto(s)
Cromosomas de las Plantas , Evolución Molecular , Filogenia , Cromosomas de las Plantas/genética , Tamaño del Genoma , Genoma de Planta/genética
16.
Ecol Appl ; 32(3): e2534, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35044023

RESUMEN

Continental- and regional-scale assessments of gaps in protected area networks typically use relatively coarse range maps for well documented species groups, creating uncertainty about the fate of unexamined biodiversity and providing insufficient guidance for land managers. By building habitat suitability models for a taxonomically diverse group of 2216 imperiled plants and animals, we revealed comprehensive and detailed protection opportunities in the conterminous United States. Summing protection-weighted range-size rarity (PWRSR, the product of the percent of modeled habitat outside of protected areas and the inverse of modeled habitat extent) uncovered novel patterns of biodiversity importance. Concentrations of unprotected imperiled species in places such as the northern Sierra Nevada, central and northern Arizona, the Rocky Mountains of Utah and Colorado, southeastern Texas, southwestern Arkansas, and Florida's Lake Wales Ridge have rarely if ever been featured in continental- and regional-scale analyses. Inclusion of diverse taxa (vertebrates, freshwater mussels, crayfishes, bumble bees, butterflies, skippers, and vascular plants) partially drove these new patterns. When analyses were restricted to groups typically included in previous studies (birds, mammals, and amphibians), up to 53% of imperiled species in other groups were left out. The finer resolution of modeled inputs (990 m) also resulted in a more geographically dispersed pattern. For example, 90% of the human population of the conterminous United States lives within 50 km of modeled habitat for one or more species with high PWRSR scores. Over one-half of the habitat for 818 species occurs within federally lands managed for biodiversity protection; an additional 360 species have over one-half of their modeled habitat on federal multiple use land. Freshwater animals occur in places with poorer landscape condition but with less exposure to climate change than other groups, suggesting that habitat restoration is an important conservation strategy for these species. The results provide fine-scale, taxonomically diverse inputs for local and regional priority-setting and show that although protection efforts are still widely needed on private lands, notable gains can be achieved by increasing protection status on selected federal lands.


Asunto(s)
Mariposas Diurnas , Conservación de los Recursos Naturales , Animales , Biodiversidad , Aves , Ecosistema , Mamíferos
17.
Am J Bot ; 109(6): 922-938, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35446437

RESUMEN

PREMISE: Biodiversity results from origination and extinction, justifying interest in identifying traits that influence this balance. Traits implicated in the success or failure of lineages include dispersal, colonization ability, and geographic range size. We investigated the impact of dispersal and range size on contemporary diversity in the Rosales. METHODS: We used the multiple-state speciation and extinction (MuSSE) method to explore the effects on genus-level diversification of two genus-level traits (geographic range size and within-genus proclivity to speciate) and two species traits (seed dispersal and growth habit) and the multiple hidden-state speciation and extinction (MuHiSSE) method for species-level associations. Finally, we conducted a PGLS (phylogenetic least-squares) analysis to distinguish between speciation within genera versus origination of new genera. RESULTS: At the species level, animal dispersal enhances diversification rate in both woody and herbaceous lineages, while woody lineages without animal dispersal have higher extinction rates than speciation rates. At the genus level, herbaceous taxa have positive diversification rates regardless of other character states. Diversification rate variation is also explained by two interactions: (1) a three-way interaction between large geographic range, animal-mediated dispersal, and high within-genus species richness, whereby genera possessing all three traits have high diversification rates, and (2) a four-way interaction by which the three-way interaction is stronger in woody genera than in herbaceous genera. CONCLUSIONS: Colonization ability may underlie the relationship between dispersal type and range size and may influence past diversification rates by decreasing extinction rates during late Cenozoic climate volatility. Thus, colonization ability could be used to predict future extinction risk to aid conservation.


Asunto(s)
Rosales , Dispersión de Semillas , Biodiversidad , Clima , Especiación Genética , Filogenia
18.
Conserv Biol ; 36(6): e13964, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35674098

RESUMEN

In China, as elsewhere, amphibians are highly endangered. Anthropogenic environmental change has affected the distribution and population dynamics of species, and species distributions at a broad scale are strongly driven by climate and species' ability to disperse. Yet, current knowledge remains limited on how widespread human activity affects the distribution patterns of amphibians in China and whether this effect extends beyond climate. We compiled a relatively comprehensive database on the distribution of 196 amphibian species in China from the literature, public databases, and field data. We obtained 25,826 records on almost 50% of known species in China. To test how environmental factors and human activities influence the current distribution of amphibians (1960-1990), we used range filling, which is species realized ranges relative to their potential climate distribution. We used all species occurrence records to represent realized range and niche models to predict potential distribution range. To reduce uncertainty, we used 3 regression methods (beta regression, generalized boosted regression models, and random forest) to test the associations of species range filling with human activity, climate, topography, and range size. The results of the 3 approaches were consistent. At the species level, mean annual precipitation (climate) had the most effect on spatial distribution pattern of amphibians in China, followed by range size. Human activity ranked last. At the spatial level, mean annual precipitation remained the most important factor. Regions in southeastern of China that are currently moist supported the highest amphibian diversity, but were predicted to experience a decline in precipitation under climate change scenarios. Consequently, the distributions of amphibians will likely shift to the northwest in the future, which could affect future conservation efforts.


En China, como en todos lados, los anfibios están gravemente en peligro. El cambio ambiental antropogénico ha afectado la distribución y dinámica poblacional de especies, y la distribución de especies a gran escala están muy influidas por el clima y la habilidad de dispersión de las especies. Sin embargo, el conocimiento actual sigue siendo limitado sobre cómo la actividad humana generalizada afecta a los patrones de distribución de anfibios en China y si este efecto se extiende más allá del clima. A partir de literatura, bases de datos públicas y datos de campo, integramos una base datos relativamente completa sobre la distribución de 196 especies de anfibios en China. Obtuvimos 25,826 registros de casi 50% de las especies conocidas en China. Para probar cómo los factores ambientales y las actividades humanas influyen en la distribución actual de anfibios (1960-1990), utilizamos la ocupación de rango, que contrasta los rangos de distribución observada de las especies en relación con su distribución climática potencial. Utilizamos los registros de ocurrencia de todas las especies para representar el rango observado y modelos de nicho para predecir el rango de distribución potencial. Para reducir la incertidumbre, utilizamos 3 métodos de regresión (regresión beta, modelos de regresión acelerada generalizada y bosque aleatorio) para probar las asociaciones de la ocupación de rango de especies con la actividad humana, clima, topografía y extensión de rango. Los resultados de los tres métodos fueron consistentes. A nivel de especie, la precipitación media anual (clima) tuvo el mayor efecto sobre el patrón de distribución de anfibios en China, seguida por la extensión del rango. La actividad humana ocupó el último lugar. A nivel espacial, la precipitación media anual siguió como el factor más importante. Las regiones en el sureste de China que aun son húmedas sostuvieron la mayor diversidad de anfibios, pero se pronosticó que la precipitación declinará bajo escenarios de cambio climático. Consecuentemente, la distribución de anfibios muy probablemente cambiará hacia el noreste, lo cual podría afectar esfuerzos futuros de conservación.


Asunto(s)
Anfibios , Conservación de los Recursos Naturales , Animales , Humanos , Cambio Climático , Actividades Humanas , China , Ecosistema
19.
Am J Primatol ; 84(1): e23347, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34813123

RESUMEN

Many primates exhibit behavioral flexibility which allows them to adapt to environmental change and different habitat types. The golden monkey (Cercopithecus mitis kandti) is a little-studied endangered primate subspecies endemic to the Virunga massif and the Gishwati forest in central Africa. In the Virunga massif, golden monkeys are mainly found in the bamboo forest, while in the Gishwati forest they live in mixed tropical montane forest. Here we describe and compare the diet of golden monkeys in both fragments. Over 24 consecutive months from January 2017 we used scan sampling to record feeding and ranging behavior of two Virunga groups and one Gishwati group totaling ca. 240 individuals. We also examined the phenology of bamboo and fruit trees, key seasonal food plant species for the monkeys. Golden monkeys fed on more than 100 plant species. The Virunga groups were mostly folivorous (between 72.8% and 87.16% of the diet) and fed mostly on young bamboo leaves and bamboo shoots, while 48.69% of the diet of the Gishwati group consisted of fruit from 22 different tree and shrub species. Bamboo shoots and fruit are seasonally available foods and were consumed regularly throughout the period when they were available. Despite being the smallest of the three study groups, the Gishwati group had a larger home range area (150.07 ha) compared to both Virunga groups (25.24 and 91.3 ha), likely driven by the differences in availability and distribution of fruit and bamboo in the habitats. Like other blue monkey subspecies, golden monkeys appear to have a flexible dietary strategy enabling them to adjust diet and ranging behavior to local habitats and available food resources. Additional studies and continuing conservation efforts are needed to better understand how variation in feeding and ranging ecology affects reproduction, population growth, and carrying capacity.


Asunto(s)
Cercopithecus , Conducta Alimentaria , Animales , Dieta/veterinaria , Ecosistema , Rwanda
20.
Proc Natl Acad Sci U S A ; 116(52): 26674-26681, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31843905

RESUMEN

Human activities have shaped large-scale distributions of many species, driving both range contractions and expansions. Species differ naturally in range size, with small-range species concentrated in particular geographic areas and potentially deviating ecologically from widespread species. Hence, species' responses to human activities may be influenced by their geographic range sizes, but if and how this happens are poorly understood. Here, we use a comprehensive distribution database and species distribution modeling to examine if and how human activities have affected the extent to which 9,701 vascular plants fill their climatic potential ranges in China. We find that narrow-ranged species have lower range filling and widespread species have higher range filling in the human-dominated southeastern part of China, compared with their counterparts distributed in the less human-influenced northwestern part. Variations in range filling across species and space are strongly associated with indicators of human activities (human population density, human footprint, and proportion of cropland) even after controlling for alternative drivers. Importantly, narrow-ranged and widespread species show negative and positive range-filling relationships to these human indicators, respectively. Our results illustrate that floras risk biotic homogenization as a consequence of anthropogenic activities, with narrow-ranged species becoming replaced by widespread species. Because narrow-ranged species are more numerous than widespread species in nature, negative impacts of human activities will be prevalent. Our findings highlight the importance of establishing more protected areas and zones of reduced human activities to safeguard the rich flora of China.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA