Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 546
Filtrar
1.
Plant J ; 118(2): 358-372, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38194491

RESUMEN

The natural variation of plant-specialized metabolites represents the evolutionary adaptation of plants to their environments. However, the molecular mechanisms that account for the diversification of the metabolic pathways have not been fully clarified. Rice plants resist attacks from pathogens by accumulating diterpenoid phytoalexins. It has been confirmed that the composition of rice phytoalexins exhibits numerous natural variations. Major rice phytoalexins (momilactones and phytocassanes) are accumulated in most cultivars, although oryzalactone is a cultivar-specific compound. Here, we attempted to reveal the evolutionary trajectory of the diversification of phytoalexins by analyzing the oryzalactone biosynthetic gene in Oryza species. The candidate gene, KSLX-OL, which accounts for oryzalactone biosynthesis, was found around the single-nucleotide polymorphisms specific to the oryzalactone-accumulating cultivars in the long arm of chromosome 11. The metabolite analyses in Nicotiana benthamiana and rice plants overexpressing KSLX-OL indicated that KSLX-OL is responsible for the oryzalactone biosynthesis. KSLX-OL is an allele of KSL8 that is involved in the biosynthesis of another diterpenoid phytoalexin, oryzalexin S and is specifically distributed in the AA genome species. KSLX-NOL and KSLX-bar, which encode similar enzymes but are not involved in oryzalactone biosynthesis, were also found in AA genome species. The phylogenetic analyses of KSLXs, KSL8s, and related pseudogenes (KSL9s) indicated that KSLX-OL was generated from a common ancestor with KSL8 and KSL9 via gene duplication, functional differentiation, and gene fusion. The wide distributions of KSLX-OL and KSL8 in AA genome species demonstrate their long-term coexistence beyond species differentiation, suggesting a balancing selection between the genes.


Asunto(s)
Diterpenos , Oryza , Sesquiterpenos , Oryza/genética , Oryza/metabolismo , Fitoalexinas , Sesquiterpenos/metabolismo , Filogenia , Diterpenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant J ; 117(3): 840-855, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37938788

RESUMEN

Optimal grain-appearance quality is largely determined by grain size. To date, dozens of grain size-related genes have been identified. However, the regulatory mechanism of slender grain formation is not fully clear. We identified the OsSG34 gene by map-based cloning. A 9-bp deletion on 5'-untranslated region of OsSG34, which resulted in the expression difference between the wild-type and sg34 mutant, led to the slender grains and good transparency in sg34 mutant. OsSG34 as an α/ß fold triacylglycerol lipase affected the triglyceride content directly, and the components of cell wall indirectly, especially the lignin between the inner and outer lemmas in rice grains, which could affect the change in grain size by altering cell proliferation and expansion, while the change in starch content and starch granule arrangement in endosperm could affect the grain-appearance quality. Moreover, the OsERF71 was identified to directly bind to cis-element on the mutant site, thereby regulating the OsSG34 expression. Knockout of three OsSG34 homologous genes resulted in slender grains as well. The study demonstrated OsSG34, involved in lipid metabolism, affected grain size and quality. Our findings suggest that the OsSG34 gene could be used in rice breeding for high yield and good grain-appearance quality via marker-assisted selection and gene-editing approaches.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Endospermo/genética , Endospermo/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo , Almidón/metabolismo
3.
Plant J ; 119(2): 861-878, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761097

RESUMEN

Low phytic acid (lpa) crop is considered as an effective strategy to improve crop nutritional quality, but a substantial decrease in phytic acid (PA) usually has negative effect on agronomic performance and its response to environment adversities. Myo-inositol-3-phosphate synthase (MIPS) is the rate-limiting enzyme in PA biosynthesis pathway, and regarded as the prime target for engineering lpa crop. In this paper, the rice MIPS gene (RINO2) knockout mutants and its wild type were performed to investigate the genotype-dependent alteration in the heat injury-induced spikelet fertility and its underlying mechanism for rice plants being imposed to heat stress at anthesis. Results indicated that RINO2 knockout significantly enhanced the susceptibility of rice spikelet fertility to heat injury, due to the severely exacerbated obstacles in pollen germination and pollen tube growth in pistil for RINO2 knockout under high temperature (HT) at anthesis. The loss of RINO2 function caused a marked reduction in inositol and phosphatidylinositol derivative concentrations in the HT-stressed pollen grains, which resulted in the strikingly lower content of phosphatidylinositol 4,5-diphosphate (PI (4,5) P2) in germinating pollen grain and pollen tube. The insufficient supply of PI (4,5) P2 in the HT-stressed pollen grains disrupted normal Ca2+ gradient in the apical region of pollen tubes and actin filament cytoskeleton in growing pollen tubes. The severely repressed biosynthesis of PI (4,5) P2 was among the regulatory switch steps leading to the impaired pollen germination and deformed pollen tube growth for the HT-stressed pollens of RINO2 knockout mutants.


Asunto(s)
Citoesqueleto de Actina , Germinación , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/fisiología , Oryza/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Polen/crecimiento & desarrollo , Polen/genética , Señalización del Calcio , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Tubo Polínico/genética , Calor , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Liasas Intramoleculares/metabolismo , Liasas Intramoleculares/genética , Inositol/metabolismo , Inositol/análogos & derivados
4.
Plant J ; 119(3): 1449-1464, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837713

RESUMEN

The aleurone layer in cereal grains acts as a major reservoir of essential mineral nutrients, significantly influencing seed germination. However, the molecular mechanism underlying the redistribution of nutrients from the aleurone layer in the germinating seed is still not well understood. Here, in rice, we identified a plasma membrane (PM) localized magnesium transporter, MAGNESIUM RELEASE TRANSPORTER 3 (MGR3), is critical for seed germination. OsMGR3 is predominantly expressed in the aleurone layer cells of endosperm, facilitating magnesium remobilization during germination. Non-invasive Micro-test Technology assay data demonstrated that the loss-of-function of OsMGR3 restrained magnesium efflux from the aleurone layer. In the embryo/endosperm grafting experiment, we observed that the mutation of OsMGR3 in the aleurone layer suppressed the growth and differentiation of the embryo during germination. Furthermore, magnesium fluorescence imaging revealed the osmgr3 mutant seeds showed impaired exportation of aleurone layer-stored magnesium to the embryo, consequently delaying germination. Importantly, we discovered that disrupting OsMGR3 could inhibit pre-harvest sprouting without affecting rice yield and quality. Therefore, the magnesium efflux transporter OsMGR3 in the aleurone layer represents a promising genetic target for future agronomic trait improvement.


Asunto(s)
Membrana Celular , Germinación , Magnesio , Oryza , Proteínas de Plantas , Semillas , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Oryza/fisiología , Magnesio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Endospermo/metabolismo , Endospermo/genética , Mutación
5.
Plant J ; 119(3): 1465-1480, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38887937

RESUMEN

Grain weight, grain number per panicle, and the number of panicles are the three factors that determine rice (Oryza sativa L.) yield. Of these, grain weight, which not only directly determines rice yield but also influences appearance and quality, is often considered the most important for rice production. Here, we describe OsNF-YC1, a member of the NF-Y transcription factor family that regulates rice grain size. OsNF-YC1 knockout plants (osnf-yc1), obtained using CRISPR-Cas9 technology, showed reduced grain weight due to reduced width and thickness, with no change in grain length, leading to a slenderer grain shape. Downregulation of OsNF-YC1 using RNA interference resulted in similar grain phenotypes as osnf-yc1. OsNF-YC1 affects grain formation by regulating both cell proliferation and cell expansion. OsNF-YC1 localizes in both the nucleus and cytoplasm, has transcriptional activation activity at both the N-terminus and C-terminus, and is highly expressed in young panicles. OsNF-YC1 interacts with OsMADS1 both in vivo and in vitro. Further analysis showed that the histone-like structural CBFD-NFYB-HMF domain of OsNF-YC1 conserved in the OsNF-YC transcription factor family can directly interact with the MADS-box domain of OsMADS1 to enhance its transcriptional activation activity. This interaction positively regulates the expression of OsMADS55, the direct downstream target of OsMADS1. Therefore, this paper reveals a potential grain size regulation pathway controlled by an OsNF-YC1-OsMADS1-OsMADS55 module in rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Factores de Transcripción , Activación Transcripcional , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Grano Comestible/genética , Grano Comestible/metabolismo , Grano Comestible/crecimiento & desarrollo , Factor de Unión a CCAAT/metabolismo , Factor de Unión a CCAAT/genética , Plantas Modificadas Genéticamente , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo
6.
BMC Genomics ; 25(1): 797, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179980

RESUMEN

BACKGROUND: R2R3-MYB transcription factors belong to one of the largest gene subfamilies in plants, and they are involved in diverse biological processes. However, the role of R2R3-MYB transcription factor subfamily genes in the response of rice (Oryza sativa L.) to salt stress has been rarely reported. RESULTS: In this study, we performed a genome-wide characterization and expression identification of rice R2R3-MYB transcription factor subfamily genes. We identified a total of 117 R2R3-MYB genes in rice and characterized their gene structure, chromosomal location, and cis-regulatory elements. According to the phylogenetic relationships and amino acid sequence homologies, the R2R3-MYB genes were divided into four groups. qRT-PCR of the R2R3-MYB genes showed that the expression levels of 10 genes significantly increased after 3 days of 0.8% NaCl treatment. We selected a high expression gene OsMYB2-115 for further analysis. OsMYB2-115 was highly expressed in the roots, stem, leaf, and leaf sheath. OsMYB2-115 was found to be localized in the nucleus, and the yeast hybrid assay showed that OsMYB2-115 has transcriptional activation activity. CONCLUSION: This result provides important information for the functional analyses of rice R2R3-MYB transcription factor subfamily genes related to the salt stress response and reveals that OsMYB2-115 may be an important gene associated with salt tolerance in rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Filogenia , Proteínas de Plantas , Estrés Salino , Factores de Transcripción , Oryza/genética , Oryza/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Familia de Multigenes , Perfilación de la Expresión Génica , Cromosomas de las Plantas/genética
7.
BMC Plant Biol ; 24(1): 145, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38413866

RESUMEN

BACKGROUND: Alternative polyadenylation (APA) is an important pattern of post-transcriptional regulation of genes widely existing in eukaryotes, involving plant physiological and pathological processes. However, there is a dearth of studies investigating the role of APA profile in rice leaf blight. RESULTS: In this study, we compared the APA profile of leaf blight-susceptible varieties (CT 9737-613P-M) and resistant varieties (NSIC RC154) following bacterial blight infection. Through gene enrichment analysis, we found that the genes of two varieties typically exhibited distal poly(A) (PA) sites that play different roles in two kinds of rice, indicating differential APA regulatory mechanisms. In this process, many disease-resistance genes displayed multiple transcripts via APA. Moreover, we also found five polyadenylation factors of similar expression patterns of rice, highlighting the critical roles of these five factors in rice response to leaf blight about PA locus diversity. CONCLUSION: Notably, the present study provides the first dynamic changes of APA in rice in early response to biotic stresses and proposes a possible functional conjecture of APA in plant immune response, which lays the theoretical foundation for in-depth determination of the role of APA events in plant stress response and other life processes.


Asunto(s)
Oryza , Xanthomonas , RNA-Seq , Oryza/metabolismo , Poliadenilación/genética , Resistencia a la Enfermedad/genética , Estrés Fisiológico , Xanthomonas/fisiología , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas
8.
Planta ; 260(1): 30, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38879830

RESUMEN

MAIN CONCLUSION: Ectopic expression of OsWOX9A induces narrow adaxially rolled rice leaves with larger bulliform cells and fewer large veins, probably through regulating the expression of auxin-related and expansin genes. The WUSCHEL-related homeobox (WOX) family plays a pivotal role in plant development by regulating genes involved in various aspects of growth and differentiation. OsWOX9A (DWT1) has been linked to tiller growth, uniform plant growth, and flower meristem activity. However, its impact on leaf growth and development in rice has not been studied. In this study, we investigated the biological role of OsWOX9A in rice growth and development using transgenic plants. Overexpression of OsWOX9A conferred narrow adaxially rolled rice leaves and altered plant architecture. These plants exhibited larger bulliform cells and fewer larger veins compared to wild-type plants. OsWOX9A overexpression also reduced plant height, tiller number, and seed-setting rate. Comparative transcriptome analysis revealed several differentially expressed auxin-related and expansin genes in OsWOX9A overexpressing plants, consistent with their roles in leaf and plant development. These results indicate that the ectopic expression of OsWOX9A may have multiple effects on the development and growth of rice, providing a more comprehensive picture of how the WOX9 subfamily contributes to leaf development and plant architecture.


Asunto(s)
Expresión Génica Ectópica , Regulación de la Expresión Génica de las Plantas , Oryza , Hojas de la Planta , Proteínas de Plantas , Plantas Modificadas Genéticamente , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/anatomía & histología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Perfilación de la Expresión Génica
9.
Plant Biotechnol J ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38923790

RESUMEN

Soil salinity has negative impacts on food security and sustainable agriculture. Ion homeostasis, osmotic adjustment and reactive oxygen species scavenging are the main approaches utilized by rice to resist salt stress. Breeding rice cultivars with high salt tolerance (ST) and yield is a significant challenge due to the lack of elite alleles conferring ST. Here, we report that the elite allele LEA12OR, which encodes a late embryogenesis abundant (LEA) protein from the wild rice Oryza rufipogon Griff., improves osmotic adjustment and increases yield under salt stress. Mechanistically, LEA12OR, as the early regulator of the LEA12OR-OsSAPK10-OsbZIP86-OsNCED3 functional module, maintains the kinase stability of OsSAPK10 under salt stress, thereby conferring ST by promoting abscisic acid biosynthesis and accumulation in rice. The superior allele LEA12OR provides a new avenue for improving ST and yield via the application of LEA12OR in current rice through molecular breeding and genome editing.

10.
New Phytol ; 241(3): 1250-1265, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38009305

RESUMEN

Sugar transporter proteins (STPs) play critical roles in regulating plant stress tolerance, growth, and development. However, the role of STPs in regulating crop yield is poorly understood. This study elucidates the mechanism by which knockout of the sugar transporter OsSTP15 enhances grain yield via increasing the tiller number in rice. We found that OsSTP15 is specifically expressed in the shoot base and vascular bundle sheath of seedlings and encodes a plasma membrane-localized high-affinity glucose efflux transporter. OsSTP15 knockout enhanced sucrose and trehalose-6-phosphate (Tre6P) synthesis in leaves and improved sucrose transport to the shoot base by inducing the expression of sucrose transporters. Higher glucose, sucrose, and Tre6P contents were observed at the shoot base of stp15 plants. Transcriptome and metabolome analyses of the shoot base demonstrated that OsSTP15 knockout upregulated the expression of cytokinin (CK) synthesis- and signaling pathway-related genes and increased CK levels. These findings suggest that OsSTP15 knockout represses glucose export from the cytoplasm and simultaneously enhances sugar transport from source leaves to the shoot base by promoting the synthesis of sucrose and Tre6P in leaves. Subsequent accumulation of glucose, sucrose, and Tre6P in the shoot base promotes tillering by stimulating the CK signaling pathway.


Asunto(s)
Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Grano Comestible , Glucosa/metabolismo , Sacarosa/metabolismo , Azúcares/metabolismo
11.
Plant Cell Environ ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248638

RESUMEN

Drought is one of the most severe environmental factors limiting plant growth and crop yield, necessitating the identification of genes that enhance drought resistance for crop improvement. Through screening an ethyl methyl sulfonate-mutagenized rice mutant library, we isolated the PEG tolerance mutant 97-1 (ptm97-1), which displays enhanced resistance to osmotic and drought stress, and increased yield under drought conditions. A point mutation in OsMATE6 was identified as being associated with the drought-resistant phenotype of ptm97-1. The role of OsMATE6 in conferring drought resistance was confirmed by additional OsMATE6 knockout mutants. OsMATE6 is expressed in guard cells, shoots and roots and the OsMATE6-GFP fusion protein predominantly localizes to the plasma membrane. Our ABA efflux assays suggest that OsMATE6 functions as an ABA efflux transporter; mutant protoplasts exhibited a slower ABA release rate compared to the wild type. We hypothesize that OsMATE6 regulates ABA levels in guard cells, influencing stomatal closure and enhancing drought resistance. Notably, OsMATE6 knockout mutants demonstrated greater yields under field drought conditions compared to wild-type plants, highlighting OsMATE6 as a promising candidate for improving crop drought resistance.

12.
J Exp Bot ; 75(5): 1580-1600, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38035729

RESUMEN

Spikelet degeneration in rice (Oryza sativa L.) is a serious physiological defect, and can be regulated by soil moisture status and phytohormones. This study investigated the possibility that brassinosteroids (BRs) in collaboration with abscisic acid (ABA) are involved in mediating the effect of soil drying during meiosis on spikelet degeneration in rice. Three rice cultivars were field grown and three irrigation regimes including well watered (WW), moderate soil drying (MD), and severe soil drying (SD) were imposed during meiosis. MD significantly decreased spikelet degeneration in comparison with WW, due mainly to the alleviation in oxidative damage via enhancing ascorbate-glutathione (AsA-GSH) cycle activity in young panicles, and SD exhibited the opposite effects. Enhanced AsA-GSH cycle strength, decreased oxidative stress, and spikelet degeneration rate were closely associated with the synergistically elevated BR and ABA levels in young panicles in MD. In contrast, low BR and excessive ABA levels led to an increase in spikelet degeneration in SD. The three cultivars exhibited the same tendencies. The intrinsic link among AsA-GSH cycle, oxidative stress, spikelet degeneration rate, and BR and ABA levels was further verified by using transgenic rice lines and chemical regulators. BRs or ABA play a unique role in regulating spikelet degeneration. Synergistically increased BR and ABA levels in MD could work together to strengthen AsA-GSH cycle activity, leading to a reduction in oxidative damage and spikelet degeneration. On the other hand, a severe imbalance between low BR and excessive ABA levels may have contributed to the opposite effects in SD.


Asunto(s)
Ácido Abscísico , Oryza , Brasinoesteroides , Oryza/fisiología , Suelo , Meiosis , Agua
13.
J Exp Bot ; 75(18): 5484-5500, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-38894654

RESUMEN

To meet the demands of a rising human population, plant breeders will need to develop improved crop varieties that maximize yield in the face of increasing pressure on crop production. Historically, the optimization of crop root architecture has represented a challenging breeding target due to the inaccessibility of the root systems. Root hairs, single cell projections from the root epidermis, are perhaps the most overlooked component of root architecture traits. Root hairs play a central role in facilitating water, nutrient uptake, and soil cohesion. Current root hair architectures may be suboptimal under future agricultural production regimes, coupled with an increasingly variable climate. Here, we review the genetic control of root hair development in the world's three most important crops-rice, maize, and wheat-and highlight conservation of gene function between monocots and the model dicot species Arabidopsis. Advances in genomic techniques including gene editing combined with traditional plant breeding methods have the potential to overcome many inherent issues associated with the design of improved root hair architectures. Ultimately, this will enable detailed characterization of the effects of contrasting root hair morphology strategies on crop yield and resilience, and the development of new varieties better adapted to deliver future food security.


Asunto(s)
Productos Agrícolas , Grano Comestible , Raíces de Plantas , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/fisiología , Raíces de Plantas/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/genética , Grano Comestible/fisiología , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/genética , Producción de Cultivos/métodos , Fitomejoramiento , Zea mays/crecimiento & desarrollo , Zea mays/genética , Zea mays/fisiología , Triticum/genética , Triticum/crecimiento & desarrollo , Triticum/fisiología , Triticum/metabolismo , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/fisiología , Oryza/metabolismo
14.
Mol Breed ; 44(7): 49, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39007057

RESUMEN

Rice blast, caused by Magnaporthe oryzae (M. oryzae), is one of the most serious diseases worldwide. Developing blast-resistant rice varieties is an effective strategy to control the spread of rice blast and reduce the reliance on chemical pesticides. In this study, 477 sequenced rice germplasms from 48 countries were inoculated and assessed at the booting stage. We found that 23 germplasms exhibited high panicle blast resistance against M. oryzae. Genome-wide association analysis (GWAS) identified 43 quantitative trait loci (QTLs) significantly associated (P < 1.0 × 10-4) with resistance to rice panicle blast. These QTL intervals encompass four genes (OsAKT1, OsRACK1A, Bsr-k1 and Pi25/Pid3) previously reported to contribute to rice blast resistance. We selected QTLs with -Log10 (P-value) greater than 6.0 or those detected in two-year replicates, amounting to 12 QTLs, for further candidate gene analysis. Three blast resistance candidate genes (Os06g0316800, Os06g0320000, Pi25/Pid3) were identified based on significant single nucleotide polymorphisms (SNP) distributions within annotated gene sequences across these 12 QTLs and the differential expression levels among blast-resistant varieties after 72 h of inoculation. Os06g0316800 encodes a glycine-rich protein, OsGrp6, an important component of plant cell walls involved in cellular stress responses and signaling. Os06g0320000 encodes a protein with unknown function (DUF953), part of the thioredoxin-like family, which is crucial for maintaining reactive oxygen species (ROS) homeostasis in vivo, named as OsTrxl1. Lastly, Pi25/Pid3 encodes a disease resistance protein, underscoring its potential importance in plant biology. By analyzing the haplotypes of these three genes, we identified favorable haplotypes for blast resistance, providing valuable genetic resources for future rice blast resistance breeding programs. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01486-5.

15.
Mol Breed ; 44(2): 10, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38298743

RESUMEN

Rice grain size is a key determinant of both grain yield and quality. Identification of favorable alleles for use in rice breeding may help to meet the demand for increased yield. In this study, we developed a set of 210 introgression lines (ILs) by using indica variety Huanghuazhan as the donor parent and erect-panicle japonica rice variety Wuyujing3R as the recurrent parent. A total of 133 ILs were selected for high-throughput sequencing. Using specific-locus amplified fragment (SLAF) sequencing technology, 10,103 high-quality SLAF labels evenly distributed on 12 chromosomes were obtained and selected for subsequent analysis. Using a high-density map, quantitative trait locus (QTL) mapping of grain size-related traits was performed, and a total of 38 QTLs were obtained in two environments. Furthermore, qGW2, a novel QTL that controls grain width on chromosome 2, was validated and delimited to a region of 309 kb via substitution mapping. These findings provide new genetic material and a basis for future fine mapping and cloning of favorable QTLs. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01453-0.

16.
Mol Breed ; 44(5): 33, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38694254

RESUMEN

Hybrid seed production technology (SPT) is achieved through the utilization of a recessive nuclear male-sterile mutant transformed with a transgenic cassette comprising three essential components: the wild-type gene to restore the fertility of the male-sterile mutant, an α-amylase gene to disrupt transgenic pollen grains, and red fluorescence protein gene DsRed to distinguish the transgenic seeds from the nontransgenic male sterile seeds. In rice, we establish the pollen disruption system by introducing an amyloplast targeting signal peptide (ASP) at the N-terminus of maize α-amylase protein ZM-AA1ΔSP (ZM-AA1 with the N-terminal signal peptide removed). The ASP facilitates the transport of ZM-AA1ΔSP protein into amyloplast where it degrades starch, resulting in disruption of the pollen fertility. To obtain such signal peptides for rice, we searched the rice proteins homologous to the defined wheat amyloplast proteins followed by protein-protein interaction network predictions and targeting signal peptides prediction. These analyses enabled the identification of four candidate ASPs in rice, which were designated as ASP1, ASP2, ASP3, and ASP4, respectively. ASP1 and ASP2, when linked with ZM-AA1ΔSP, exhibited the capability to disrupt transgenic pollen grains, whereas ASP3 and ASP4 did not produce this effect. Interestingly, the localization experiments showed that ASP3 and ASP4 were able to target the proteins into chloroplast. The ASP1 and ASP2 sequences provide valuable tools for genetic engineering of the rice male-sterile system, which will contribute to the hybrid rice breeding and production. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01471-y.

17.
J Plant Res ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39327385

RESUMEN

We have previously suggested that in rice (Oryza sativa L.) leaves of different ages and N nutrition statuses, photosystems II and I (PSII and PSI, respectively) are regulated depending on N partitioning to Rubisco, which can determine the magnitude of unutilized light energy. The robustness of this mechanism was tested using Rubisco-antisense transgenic rice plants, in which reduced N partitioning to Rubisco markedly increases unutilized light energy. In wild-type plants, N partitioning to Rubisco tended to be smaller in the leaves at lower positions owing to leaf senescence. In the transgenic plants, N partitioning to Rubisco was generally smaller than in the wild-type plants and was relatively constant among leaf positions. The quantum efficiency of PSII [Y(II)] and quantum yield of non-photochemical quenching [Y(NPQ)] correlated positively and negatively, respectively, with N partitioning to Rubisco irrespective of leaf position or genotype. The oxidation levels of the reaction center chlorophyll of PSI (P700) [Y(ND)] negatively correlated with N partitioning to Rubisco. However, in mature and early senescent leaves of the transgenic plants, Y(ND) was markedly lower than expected from N partitioning to Rubisco. These results suggest that in the transgenic plants, the regulation depending on N partitioning to Rubisco is robust for PSII but fails for PSI in mature and early senescing leaves. In these leaves, the magnitudes of P700 oxidation were found to be less than expected from the Y(II) and Y(NPQ) values. The mechanistic reasons and physiological implications of these phenomena are discussed.

18.
Ecotoxicol Environ Saf ; 281: 116570, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38896902

RESUMEN

Rice is one of the most important staple food crops; however, it is prone to cadmium (Cd) accumulation, which has negative health effects. Therefore, methods to reduce Cd uptake by rice are necessary. At present, there is limited research on the effects of co-application of silicon (Si) and goethite in mitigating Cd stress in rice. Furthermore, the specific mechanisms underlying the effects of their combined application on iron plaque formation in rice roots remain unclear. Therefore, this study analyzed the effects of the combined application of Si and goethite on the biomass, physiological stress indicators, Cd concentration, and iron plaques of rice using hydroponic experiments. The results revealed that co-treatment with both Si and goethite increased the plant height and dry weight, superoxide dismutase and catalase activities, photosynthetic pigment concentration, and root activity. Moreover, this treatment decreased the malondialdehyde concentration, repaired epidermal cells, reduced the Cd concentration in the roots by 57.2 %, and increased the number of iron plaques and Cd concentration by 150.9 % and 266.2 % in the amorphous and crystalline fractions, respectively. The Cd/Fe ratio in amorphous iron plaques also increased. Our findings suggest that goethite serves as a raw material for iron plaque formation, while Si enhances the oxidation capacity of rice roots. The application of a combination of Si and goethite increases the quantity and quality of iron plaques, enhancing its Cd fixation capacity. This study provides theoretical evidence for the effective inhibition of Cd uptake by iron plaques in rice, providing insights into methods for the remediation of Cd contamination.


Asunto(s)
Cadmio , Compuestos de Hierro , Hierro , Minerales , Oryza , Raíces de Plantas , Silicio , Contaminantes del Suelo , Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Cadmio/toxicidad , Silicio/farmacología , Contaminantes del Suelo/toxicidad , Raíces de Plantas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Malondialdehído/metabolismo , Biomasa
19.
Ecotoxicol Environ Saf ; 282: 116745, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39032405

RESUMEN

Nitrogen (N), phosphorus (P) and potassium (K) are three macroelements in agriculture production, but their combined effects on arsenic (As) toxicity and its translocation in rice plants are not clear. In this study, an orthogonal rotation combination based on different N, P and K (NPK) concentration was first designed to examine their combined effect on the As toxicity, its transformation and migration in rice plants based on the hydroponic culture and pot soil culture. The results showed that 2.0 mg/L arsenite (As(III)) had obvious toxicity on the growth of indica LuYouMingZhan (LYMZ) and the optimal NPK concentration was 28.41, 6 and 50 mg/L based on the quadratic regression of the recovery rate of chlorophyll SPAD value of indica LYMZ. The optimal NPK combination significantly alleviated the physiological toxicity of As(III) on indica LYMZ rice seedling and decreased the accumulation of inorganic As in their roots and shoots by 23.8±1.8 % and 33.4±2.4 % respectively; further pot culture from different As(III) polluted soil showed that the optimal NPK combination significantly increased the dry weight of roots, stems, sheaths and leaves of indica LYMZ rice plants as well as yield indicators by 6.4 %-61.7 % and 7.1 %-89.8 % respectively, decreased the accumulation of As(III) and arsenate by 6.25 %-100 % and 12.36 %-100 % respectively in their roots, stems, sheaths, leaves, brans and kernels except As(III) concentration in their sheaths, decreased the accumulation of dimethylarsenate in their sheaths, leaves, brans and kernels, and had the best repair effect on the translocation of As species in 50 mg/kg As(III)-added soil. Our study provided a desirable strategy for alleviating As toxicity in paddy soil and reducing As pollution in rice plants.


Asunto(s)
Arsénico , Nitrógeno , Oryza , Fósforo , Potasio , Contaminantes del Suelo , Suelo , Oryza/crecimiento & desarrollo , Oryza/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Nitrógeno/metabolismo , Arsénico/toxicidad , Potasio/metabolismo , Suelo/química , Clorofila/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Nutrientes , Agricultura/métodos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo
20.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338929

RESUMEN

Moderate control of rice tillering and the development of rice varieties with large panicles are important topics for future high-yield rice breeding. Herein, we found that low-tillering rice varieties stopped tillering earlier and had a larger leaf area of the sixth leaf. Notably, at 28 days after sowing, the rice seedlings of the low-tillering group had an average single-culm above-ground biomass of 0.84 g, significantly higher than that of the multi-tillering group by 56.26%, and their NSC (non-structural carbohydrate) and starch contents in sheaths were increased by 43.34% and 97.75%, respectively. These results indicated that the low-tillering group of rice varieties had a stronger ability to store photosynthetic products in the form of starch in their sheaths, which was thus more beneficial for their large panicle development. The results of carbon and nitrogen metabolism analyses showed that the low-tillering group had a relatively strong carbon metabolism activity, which was more favorable for the accumulation of photosynthesis products and the following development of large panicles, while the multi-tillering group showed relatively strong nitrogen metabolism activity, which was more beneficial for the development and formation of new organs, such as tillers. Accordingly, in the low-tillering rice varieties, the up-regulated genes were enriched in the pathways mainly related to the synthesis of carbohydrates, while the down-regulated genes were mainly enriched in the nitrogen metabolism pathways. This study provides new insights into the mechanism of rice tillering regulation and promotes the development of new varieties with ideal plant types.


Asunto(s)
Oryza , Oryza/metabolismo , Fitomejoramiento , Perfilación de la Expresión Génica , Nitrógeno/metabolismo , Carbono/metabolismo , Almidón/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA