Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.128
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(9): 2412-2429.e16, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33852913

RESUMEN

Cellular versatility depends on accurate trafficking of diverse proteins to their organellar destinations. For the secretory pathway (followed by approximately 30% of all proteins), the physical nature of the vessel conducting the first portage (endoplasmic reticulum [ER] to Golgi apparatus) is unclear. We provide a dynamic 3D view of early secretory compartments in mammalian cells with isotropic resolution and precise protein localization using whole-cell, focused ion beam scanning electron microscopy with cryo-structured illumination microscopy and live-cell synchronized cargo release approaches. Rather than vesicles alone, the ER spawns an elaborate, interwoven tubular network of contiguous lipid bilayers (ER exit site) for protein export. This receptacle is capable of extending microns along microtubules while still connected to the ER by a thin neck. COPII localizes to this neck region and dynamically regulates cargo entry from the ER, while COPI acts more distally, escorting the detached, accelerating tubular entity on its way to joining the Golgi apparatus through microtubule-directed movement.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Microtúbulos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Transporte Biológico Activo , Células HeLa , Humanos , Transporte de Proteínas
2.
Proc Natl Acad Sci U S A ; 120(22): e2302624120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37205712

RESUMEN

Human islet primary cilia are vital glucose-regulating organelles whose structure remains uncharacterized. Scanning electron microscopy (SEM) is a useful technique for studying the surface morphology of membrane projections like cilia, but conventional sample preparation does not reveal the submembrane axonemal structure, which holds key implications for ciliary function. To overcome this challenge, we combined SEM with membrane-extraction techniques to examine primary cilia in native human islets. Our data show well-preserved cilia subdomains which demonstrate both expected and unexpected ultrastructural motifs. Morphometric features were quantified when possible, including axonemal length and diameter, microtubule conformations, and chirality. We further describe a ciliary ring, a structure that may be a specialization in human islets. Key findings are correlated with fluorescence microscopy and interpreted in the context of cilia function as a cellular sensor and communications locus in pancreatic islets.


Asunto(s)
Cilios , Islotes Pancreáticos , Humanos , Microscopía Electrónica de Rastreo , Cilios/fisiología , Microscopía Fluorescente , Microtúbulos
3.
Plant J ; 117(2): 332-341, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37985241

RESUMEN

Leaf plastids harbor a plethora of biochemical reactions including photosynthesis, one of the most important metabolic pathways on Earth. Scientists are eager to unveil the physiological processes within the organelle but also their interconnection with the rest of the plant cell. An increasingly important feature of this venture is to use experimental data in the design of metabolic models. A remaining obstacle has been the limited in situ volume information of plastids and other cell organelles. To fill this gap for chloroplasts, we established three microscopy protocols delivering in situ volumes based on: (i) chlorophyll fluorescence emerging from the thylakoid membrane, (ii) a CFP marker embedded in the envelope, and (iii) calculations from serial block-face scanning electron microscopy (SBFSEM). The obtained data were corroborated by comparing wild-type data with two mutant lines affected in the plastid division machinery known to produce small and large mesophyll chloroplasts, respectively. Furthermore, we also determined the volume of the much smaller guard cell plastids. Interestingly, their volume is not governed by the same components of the division machinery which defines mesophyll plastid size. Based on our three approaches, the average volume of a mature Col-0 wild-type mesophyll chloroplasts is 93 µm3 . Wild-type guard cell plastids are approximately 18 µm3 . Lastly, our comparative analysis shows that the chlorophyll fluorescence analysis can accurately determine chloroplast volumes, providing an important tool to research groups without access to transgenic marker lines expressing genetically encoded fluorescence proteins or costly SBFSEM equipment.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Microscopía Electrónica de Rastreo , Plastidios/metabolismo , Cloroplastos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Clorofila/metabolismo , Microscopía Confocal
4.
J Cell Sci ; 136(15)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37455654

RESUMEN

Photosynthetic microalgae are responsible for an important fraction of CO2 fixation and O2 production on Earth. Three-dimensional (3D) ultrastructural characterization of these organisms in their natural environment can contribute to a deeper understanding of their cell biology. However, the low throughput of volume electron microscopy (vEM) methods along with the complexity and heterogeneity of environmental samples pose great technical challenges. In the present study, we used a workflow based on a specific electron microscopy sample preparation method compatible with both light and vEM imaging in order to target one cell among a complex natural community. This method revealed the 3D subcellular landscape of a photosynthetic dinoflagellate, which we identified as Ensiculifera tyrrhenica, with quantitative characterization of multiple organelles. We show that this cell contains a single convoluted chloroplast and show the arrangement of the flagellar apparatus with its associated photosensitive elements. Moreover, we observed partial chromatin unfolding, potentially associated with transcription activity in these organisms, in which chromosomes are permanently condensed. Together with providing insights in dinoflagellate biology, this proof-of-principle study illustrates an efficient tool for the targeted ultrastructural analysis of environmental microorganisms in heterogeneous mixes.


Asunto(s)
Imagenología Tridimensional , Microscopía Electrónica de Rastreo , Imagenología Tridimensional/métodos
5.
J Struct Biol ; 216(1): 108066, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38350555

RESUMEN

Coccolithophores are marine phytoplankton that produce calcite mineral scales called coccoliths. Many stages in the synthesis of these structures are still unresolved, making it difficult to accurately quantify the energetic costs involved in calcification, required to determine the response coccolith mineralization will have to rising ocean acidification and temperature created by an increase in global CO2 concentrations. To clarify this, an improved understanding of how coccolithophores control the fundamental processes of crystallization, including nucleation, growth, and morphology, is needed. Here, we study how crystal growth and morphology is controlled in the coccolithophore Gephyrocapsa oceanica by imaging coccoliths at various stages of maturity using cryo-transmission electron microscopy (cryoTEM), scanning electron microscopy (SEM) and focused ion beam SEM (FIB-SEM). We reveal that coccolith units tightly interlock with each other due to the non-vertical alignment of the two-layered tube element, causing these mineral units to extend over the adjacent crystals. In specific directions, the growth of the coccolith tube seems to be impacted by the physical constraint created by the close association of neighbouring units around the ring, influencing the overall morphology and organization of the crystals that develop. Our findings contribute to the overall understanding of how biological systems can manipulate crystallization to produce functional mineralized tissues.


Asunto(s)
Haptophyta , Agua de Mar , Cristalización , Concentración de Iones de Hidrógeno , Agua de Mar/química , Carbonato de Calcio/química
6.
Mol Plant Microbe Interact ; 37(4): 396-406, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38148303

RESUMEN

We used serial block-face scanning electron microscopy (SBF-SEM) to study the host-pathogen interface between Arabidopsis cotyledons and the hemibiotrophic fungus Colletotrichum higginsianum. By combining high-pressure freezing and freeze-substitution with SBF-SEM, followed by segmentation and reconstruction of the imaging volume using the freely accessible software IMOD, we created 3D models of the series of cytological events that occur during the Colletotrichum-Arabidopsis susceptible interaction. We found that the host cell membranes underwent massive expansion to accommodate the rapidly growing intracellular hypha. As the fungal infection proceeded from the biotrophic to the necrotrophic stage, the host cell membranes went through increasing levels of disintegration culminating in host cell death. Intriguingly, we documented autophagosomes in proximity to biotrophic hyphae using transmission electron microscopy (TEM) and a concurrent increase in autophagic flux between early to mid/late biotrophic phase of the infection process. Occasionally, we observed osmiophilic bodies in the vicinity of biotrophic hyphae using TEM only and near necrotrophic hyphae under both TEM and SBF-SEM. Overall, we established a method for obtaining serial SBF-SEM images, each with a lateral (x-y) pixel resolution of 10 nm and an axial (z) resolution of 40 nm, that can be reconstructed into interactive 3D models using the IMOD. Application of this method to the Colletotrichum-Arabidopsis pathosystem allowed us to more fully understand the spatial arrangement and morphological architecture of the fungal hyphae after they penetrate epidermal cells of Arabidopsis cotyledons and the cytological changes the host cell undergoes as the infection progresses toward necrotrophy. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Arabidopsis , Colletotrichum , Cotiledón , Microscopía Electrónica de Rastreo , Enfermedades de las Plantas , Colletotrichum/fisiología , Colletotrichum/ultraestructura , Colletotrichum/patogenicidad , Arabidopsis/microbiología , Arabidopsis/ultraestructura , Cotiledón/microbiología , Cotiledón/ultraestructura , Enfermedades de las Plantas/microbiología , Interacciones Huésped-Patógeno , Hifa/ultraestructura , Imagenología Tridimensional , Microscopía Electrónica de Transmisión
7.
Emerg Infect Dis ; 30(4): 766-769, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38526207

RESUMEN

We describe a classic case of nasal rhinosporidiosis in a woman who resided in Johannesburg, South Africa, but originated from a rural area in Eastern Cape Province. We confirmed histologic diagnosis using PCR testing and compared details with those from records on 17 other cases from South Africa.


Asunto(s)
Rinosporidiosis , Femenino , Humanos , Sudáfrica/epidemiología , Rinosporidiosis/diagnóstico , Nariz
8.
Prostate ; 84(9): 866-876, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38590054

RESUMEN

BACKGROUND: A few studies have examined the ultrastructure of prostatic neuroendocrine cells (NECs), and no study has focused on their ultrastructure in three dimensions. In this study, three-dimensional ultrastructural analysis of mouse prostatic NECs was performed to clarify their anatomical characteristics. METHODS: Three 13-week-old male C57BL/6 mice were deeply anesthetized, perfused with physiological saline and 2% paraformaldehyde, and then placed in 2.5% glutaraldehyde in 0.1 M cacodylate (pH 7.3) buffer for electron microscopy. After perfusion, the lower urinary tract, which included the bladder, prostate, coagulation gland, seminal vesicle, upper vas deferens, and urethra, was removed, and the specimen was cut into small cubes and subjected to postfixation and en bloc staining. Three-dimensional ultrastructural analysis was performed on NECs, the surrounding cells, tissues, and nerves using focused ion beam/scanning electron microscope tomography. RESULTS: Twenty-seven serial sections were used in the present study, and 32 mouse prostatic NECs were analyzed. Morphologically, the NECs could be classified into three types: flask, flat, and closed. Closed-shaped NECs were always adjacent to flask-shaped cells. The flask-shaped and flat NECs were in direct contact with the ductal lumen and always had microvilli at their contact points. Many of the NECs had accompanying nerves, some of which terminated on the surface in contact with the NEC. CONCLUSIONS: Three-dimensional ultrastructural analysis of mouse prostatic NECs was performed. These cells can be classified into three types based on shape. Novel findings include the presence of microvilli at their points of contact with the ductal lumen and the presence of accompanying nerves.


Asunto(s)
Ratones Endogámicos C57BL , Células Neuroendocrinas , Próstata , Animales , Masculino , Próstata/ultraestructura , Próstata/inervación , Ratones , Células Neuroendocrinas/ultraestructura , Imagenología Tridimensional , Microscopía Electrónica de Rastreo
9.
Plant Cell Physiol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757823

RESUMEN

The cuticle is a hydrophobic coating of most aerial plant surfaces crucial for limiting non-stomatal water loss. Plant cuticles consist of the lipid polyester cutin and associated waxes with compositions varying widely between plant species and organs. Here, we aimed to provide a comparative analysis of the dark-glossy adaxial and pale-glaucous abaxial sides of Drimys winteri (Winteraceae) leaves. Scanning electron microscopy showed nanotubular wax crystals lining the entire abaxial side of the leaf (including stomatal pores), while the adaxial side had patches of mixed platelet/tubule crystals and smooth areas between them. Consecutive treatments for wax removal and cutin depolymerization revealed that the waxes were deposited on a cutin network with micron-scale cavities across the entire abaxial surface including the stomata pores, and on a microscopically smooth cutin surface on the adaxial side of the leaf. Gas chromatography coupled to mass spectrometry and flame ionization detection showed that the wax mixtures on both sides of the leaf were complex mixtures of very-long-chain compounds dominated by the secondary alcohol nonacosan-10-ol and alkanediols with one hydroxyl on C-10. It is therefore very likely that the tubular wax crystals characteristic of both leaf sides are formed by these alcohols and diols. Further secondary alcohols and alkanediols, as well as ketols and alkanetriols with one functional group on C-10 were identified based on mass spectral fragmentation patterns. The similarities between all these mid-chain functionalized compounds suggest that they are derived from nonacosan-10-ol via regio-specific hydroxylation reactions, likely catalyzed by three P450-dependent monooxygenases with different regio-specificities.

10.
J Gene Med ; 26(1): e3583, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37640479

RESUMEN

BACKGROUND: Although defects in sperm morphology and physiology lead to male infertility, in many instances, the exact disruption of molecular pathways in a given patient is often unknown. The glycolytic pathway is an essential process to supply energy in sperm cell motility. Enolase 4 (ENO4) is crucial for the glycolytic process, which provides the energy for sperm cells in motility. ENO4 is located in the sperm principal piece and is essential for the motility and organization of the sperm flagellum. In the present study, we characterized a family with asthenozoospermia and abnormal sperm morphology as a result of a variant in the enolase 4 (ENO4) gene. METHODS: Computer-assisted semen analysis, papanicolaou smear staining and scanning electron microscopy were used to examine sperm motility and morphology for semen analysis in patients. For genetic analysis, whole-exome sequencing followed by Sanger sequencing was performed. RESULTS: Two brothers in a consanguineous family were being clinically investigated for sperm motility and morphology issues. Genetic analysis by whole-exome sequencing revealed a homozygous variant [c.293A>G, p.(Lys98Arg)] in the ENO4 gene that segregated with infertility in the family, shared by affected but not controls. CONCLUSIONS: In view of the association of asthenozoospermia and abnormal sperm morphology in Eno4 knockout mice, we consider this to be the first report describing the involvement of ENO4 gene in human male infertility. We also explore the possible involvement of another variant in explaining other phenotypic features in this family.


Asunto(s)
Astenozoospermia , Infertilidad Masculina , Ratones , Animales , Humanos , Masculino , Astenozoospermia/genética , Astenozoospermia/metabolismo , Semen/metabolismo , Motilidad Espermática/genética , Espermatozoides/fisiología , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Ratones Noqueados , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo
11.
Cell Tissue Res ; 396(2): 245-253, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38485763

RESUMEN

We previously clarified the histological characteristics of macrophages in the rat small intestine using serial block-face scanning electron microscopy (SBF-SEM). However, the regional differences in the characteristics of macrophages throughout the large intestine remain unknown. Here, we performed a pilot study to explore the regional differences in the ultrastructure of mucosal macrophages in the large intestine by using SBF-SEM analysis. SBF-SEM analysis conducted on the luminal side of the cecum and descending colon revealed macrophages as amorphous cells possessing abundant lysosomes and vacuoles. Macrophages in the cecum exhibited a higher abundance of lysosomes and a lower abundance of vacuoles than those in the descending colon. Macrophages with many intraepithelial cellular processes were observed beneath the intestinal superficial epithelium in the descending colon. Moreover, macrophages in contact with nerve fibers were more prevalent in the cecum than in the descending colon, and a subset of them surrounded a nerve bundle only in the cecum. In conclusion, the present pilot study suggested that the quantity of some organelles (lysosomes and vacuoles) in macrophages differed between the cecum and the descending colon and that there were some region-specific subsets of macrophages like nerve-associated macrophages in the cecum.


Asunto(s)
Mucosa Intestinal , Macrófagos , Animales , Macrófagos/ultraestructura , Masculino , Mucosa Intestinal/ultraestructura , Ratas , Ratas Wistar , Intestino Grueso/ultraestructura , Intestino Grueso/inervación , Microscopía Electrónica de Rastreo , Lisosomas/ultraestructura , Lisosomas/metabolismo , Ciego/ultraestructura , Vacuolas/ultraestructura
12.
J Anat ; 245(1): 58-69, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38481117

RESUMEN

Bone microdamage is common at subchondral bone (SCB) sites subjected to repeated high rate and magnitude of loading in the limbs of athletic animals and humans. Microdamage can affect the biomechanical behaviour of bone under physiological loading conditions. To understand the effects of microdamage on the mechanical properties of SCB, it is important to be able to quantify it. The extent of SCB microdamage had been previously estimated qualitatively using plain microcomputed tomography (µCT) and a radiocontrast quantification method has been used for trabecular bone but this method may not be directly applicable to SCB due to differences in bone structure. In the current study, SCB microdamage detection using lead uranyl acetate (LUA) and quantification by contrast-enhanced µCT and backscattered scanning electron microscopy (SEM) imaging techniques were assessed to determine the specificity of the labels to microdamage and the accuracy of damaged bone volume metrices. SCB specimens from the metacarpus of racehorses, with the hyaline articular cartilage (HAC) removed, were grouped into two with one group subjected to ex vivo uniaxial compression loading to create experimental bone damage. The other group was not loaded to preserve the pre-existing in vivo propagated bone microdamage. A subset of each group was stained with LUA using an established or a modified protocol to determine label penetration into SCB. The µCT and SEM images of stained specimens showed that penetration of LUA into the SCB was better using the modified protocol, and this protocol was repeated in SCB specimens with intact hyaline articular cartilage. The percentage of total label localised to bone microdamage was determined on SEM images, and the estimated labelled bone volume determined by µCT in SCB groups was compared. Label was present around diffuse and linear microdamage as well as oblique linear microcracks present at the articular surface, except in microcracks with high-density mineral infills. Bone surfaces lining pores with recent mineralisation were also labelled. Labelled bone volume fraction (LV/BV) estimated by µCT was higher in the absence of HAC. At least 50% of total labels were localised to bone microdamage when the bone area fraction (B.Ar/T.Ar) of the SCB was greater than 0.85 but less than 30% when B.Ar/T.Ar of the SCB was less than 0.85. To adjust for LUA labels on bone surfaces, a measure of the LV/BV corrected for bone surface area (LV/BV BS-1) was used to quantify damaged SCB. In conclusion, removal of HAC and using a modified labelling protocol effectively stained damaged SCB of the metacarpus of racehorses and represents a technique useful for quantifying microdamage in SCB. This method can facilitate future investigations of the effects of microdamage on joint physiology.


Asunto(s)
Microtomografía por Rayos X , Animales , Microtomografía por Rayos X/métodos , Caballos , Microscopía Electrónica de Rastreo , Medios de Contraste , Huesos/diagnóstico por imagen , Huesos/patología
13.
J Vasc Surg ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38608967

RESUMEN

OBJECTIVE: Vascular graft and endograft infections (VGEIs) are complicated by high morbidity, mortality, and recurrence rates, notably due to biofilm formation on the graft surface, hardly dislodgeable by the sole anti-infectious treatment. The characteristics of this biofilm are still poorly documented. The aim of this study was to evaluate ex vivo biofilm on removed infected vascular grafts and endografts (VGEs). METHODS: Explanted VGEs were prospectively collected from 2019 to 2022 at Bordeaux University Hospital, France. Two samples per graft were used for scanning electron microscopy imaging; one was sonicated, and both grafts' sides were imaged. RESULTS: A total of 26 patients were included, 18 with VGEI, eight without any infection (endoleak and/or thrombosis), and 29 VGEs were collected. Microbial documentation was obtained in 83% of VGEIs. A thick layer of fibrin was visible on almost all grafts, mixed with a dense biofilm matrix on infected grafts visible as early as 1 month after the onset of infection. Bacteria were not always visualized on infected grafts' surface (80% on outer side and 85% on luminal side) but were surprisingly present on one-third of non-infected grafts. There was no significant difference between biofilm, fibrin, and microorganisms' distribution between the two grafts' sides. However, there were clear differences between infected and non-infected grafts, since immune cells, bacteria and biofilm were more frequently visualized on both sides of infected grafts (P < .05). Bacteria and immune cells although still visible, were significantly less present after sonication; the number of other elements including biofilm was not significantly different. CONCLUSIONS: The persistence of a thick layer of fibrin and biofilm embedding microorganisms on both sides of infected VGE even after 1 month of infection could be the explanation for the low success rates of conservative management and the usual need for graft removal to treat VGEIs.

14.
Microb Pathog ; 189: 106595, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387848

RESUMEN

Cymodocea serrulata mediated titanium dioxide nanoparticles (TiO2 NPs) were successfully synthesized. The XRD pattern and FTIR spectra demonstrated the crystalline structure of TiO2 NPs and the presence of phenols, flavonoids and alkaloids in the extract. Further SEM revealed that TiO2 NPs has uniform structure and spherical in shape with their size ranged from 58 to 117 nm. Antibacterial activity of TiO2 NPs against methicillin-resistant Staphylococcus aureus (MRSA) and Vibrio cholerae (V. cholerae), provided the zone of inhibition of 33.9 ± 1.7 and 36.3 ± 1.9 mm, respectively at 100 µg/mL concentration. MIC of TiO2 NPs against MRSA and V. cholerae showed 84% and 87% inhibition at 180 µg/mL and 160 µg/mL respectively. Subsequently, the sub-MIC of V. cholerae demonstrated minimal or no impact on bacterial growth at concentration of 42.5 µg/mL concentration. In addition, TiO2 NPs exhibited their ability to inhibit the biofilm forming V. cholerae which caused distinct morphological and intercellular damages analysed using CLSM and TEM. The antioxidant properties of TiO2 NPs were demonstrated through TAA and DPPH assays and exposed its scavenging activity with IC50 value of 36.42 and 68.85 µg/mL which denotes its valuable antioxidant properties with potential health benefits. Importantly, the brine shrimp based lethality experiment yielded a low cytotoxic effect with 13% mortality at 100 µg/mL. In conclusion, the multifaceted attributes of C. serrulata mediated TiO2 NPs encompassed the antibacterial, antioxidant and anti-biofilm inhibition effects with low cytotoxicity in nature were highlighted in this study and proved the bioderived TiO2 NPs could be used as a promising agent for biomedical applications.


Asunto(s)
Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Nanopartículas , Titanio , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas/química , Biopelículas , Nanopartículas del Metal/química
15.
Microvasc Res ; 151: 104596, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37625620

RESUMEN

In the later stages of angiogenesis, the vascular sprout transitions into a functional vessel by fusing with a target vessel. Although this process appears to routinely occur in embryonic tissue, the biologic rules for sprout fusion and lumenization in adult regenerating tissue are unknown. To investigate this process, we grafted portions of the regenerating post-pneumonectomy lung onto the chick chorioallantoic membrane (CAM). Grafts from all 4 lobes of the post-pneumonectomy right lung demonstrated peri-graft angiogenesis as reflected by fluorescent plasma markers; however, fluorescent microsphere perfusion primarily occurred in the lobe of the lung that is the dominant site of post-pneumonectomy angiogenesis-namely, the cardiac lobe. Vascularization of the cardiac lobe grafts was confirmed by active tissue growth (p < .05). Functional vascular connections between the cardiac lobe and the CAM vascular network were demonstrated by confocal fluorescence microscopy as well as corrosion casting and scanning electron microscopy (SEM). Bulk transcriptional profiling of the cardiac lobe demonstrated the enhanced expression of many genes relative to alveolar epithelial cell (CD11b-/CD31-) control cells, but only the upregulation of Ereg and Fgf6 compared to the less well-vascularized right upper lobe. The growth of actively regenerating non-neoplastic adult tissue on the CAM demonstrates that functional lumenization can occur between species (mouse and chick) and across the developmental spectrum (adult and embryo).


Asunto(s)
Membrana Corioalantoides , Neovascularización Fisiológica , Ratones , Animales , Membrana Corioalantoides/irrigación sanguínea , Pollos , Neovascularización Patológica , Pulmón
16.
Arch Microbiol ; 206(4): 188, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519709

RESUMEN

Biodegradation is an eco-friendly measure to address plastic pollution. This study screened four bacterial isolates that were capable of degrading recalcitrant polymers, i.e., low-density polyethylene, polyethylene terephthalate, and polystyrene. The unique bacterial isolates were obtained from plastic polluted environment. Dermacoccus sp. MR5 (accession no. OP592184) and Corynebacterium sp. MR10 (accession no. OP536169) from Malaysian mangroves and Bacillus sp. BS5 (accession no. OP536168) and Priestia sp. TL1 (accession no. OP536170) from a sanitary landfill. The four isolates showed a gradual increase in the microbial count and the production of laccase and esterase enzymes after 4 weeks of incubation with the polymers (independent experiment set). Bacillus sp. BS5 produced the highest laccase 15.35 ± 0.19 U/mL and showed the highest weight loss i.e., 4.84 ± 0.6% for PS. Fourier transform infrared spectroscopy analysis confirmed the formation of carbonyl and hydroxyl groups as a result of oxidation reactions by enzymes. Liquid chromatography-mass spectrometry analysis showed the oxidation of the polymers to small molecules (alcohol, ethers, and acids) assimilated by the microbes during the degradation. Field emission scanning electron microscopy showed bacterial colonization, biofilm formation, and surface erosion on the polymer surface. The result provided significant insight into enzyme activities and the potential of isolates to target more than one type of polymer for degradation.


Asunto(s)
Bacillus , Poliestirenos , Poliestirenos/metabolismo , Polietileno/metabolismo , Tereftalatos Polietilenos , Lacasa , Bacillus/metabolismo , Biodegradación Ambiental
17.
J Microsc ; 293(1): 59-68, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38098170

RESUMEN

Pseudomonas aeruginosa is a pathogen that forms robust biofilms which are commonly associated with chronic infections and cannot be successfully cleared by the immune system. Neutrophils, the most common white blood cells, target infections with pathogen-killing mechanisms that are rendered largely ineffective by the protective physicochemical structure of a biofilm. Visualisation of the complex interactions between immune cells and biofilms will advance understanding of how biofilms evade the immune system and could aid in developing treatment methods that promote immune clearance with minimal harm to the host. Scanning electron microscopy (SEM) distinguishes itself as a powerful, high-resolution tool for obtaining strikingly clear and detailed topographical images. However, taking full advantage of SEM's potential for high-resolution imaging requires that the fixation process simultaneously preserve both intricate biofilm architecture and the morphologies and structural signatures characterising neutrophils responses at an infection site. Standard aldehyde-based fixation techniques result in significant loss of biofilm matrix material and morphologies of responding immune cells, thereby obscuring the details of immune interactions with the biofilm matrix. Here we show an improved fixation technique using the cationic dye alcian blue to preserve and visualise neutrophil interactions with the three-dimensional architecture of P. aeruginosa biofilms. We also demonstrate that this technique better preserves structures of biofilms grown from two other bacterial species, Klebsiella pneumoniae and Burkholderia thailandensis.


Asunto(s)
Biopelículas , Neutrófilos , Microscopía Electrónica de Rastreo
18.
J Microsc ; 294(2): 203-214, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38511469

RESUMEN

Low-vacuum scanning electron microscopy (low-vacuum SEM) is widely used for different applications, such as the investigation of noncoated specimen or the observation of biological materials, which are not stable to high vacuum. In this study, the combination of mineral building materials (concrete or clay plaster) with a biological composite (fungal mycelium composite) by using low-vacuum SEM was investigated. Fungal biotechnology is increasingly gaining prominence in addressing the challenges of sustainability transformation. The construction industry is one of the biggest contributors to the climate crises and, therefore, can highly profit from applications based on regenerative fungal materials. In this work, a fungal mycelium composite is used as alternative to conventional insulating materials like Styrofoam. However, to adapt bio-based products to the construction industry, investigations, optimisations and adaptations to existing solutions are needed. This paper examines the compatibility between fungal mycelium materials with mineral-based materials to demonstrate basic feasibility. For this purpose, fresh and hardened concrete specimens as well as clay plaster samples are combined with growing mycelium from the tinder fungus Fomes fomentarius. The contact zone between the mycelium composite and the mineral building materials is examined by scanning electron microscopy (SEM). The combination of these materials proves to be feasible in general. The use of hardened concrete or clay with living mycelium composite appears to be the favoured variant, as the hyphae can grow into the surface of the building material and thus a layered structure with a stable connection is formed. In order to work with the combination of low-density organic materials and higher-density inorganic materials simultaneously, low-vacuum SEM offers a suitable method to deliver results with reduced effort in preparation while maintaining high capture and magnification quality. Not only are image recordings possible with SE and BSE, but EDX measurements can also be carried out quickly without the influence of a coating. Depending on the signal used, as well as the magnification, image-recording strategies must be adapted. Especially when using SE, an image-integration method was used to reduce the build-up of point charges from the electron beam, which damages the mycelial hyphae. Additionally using different signals during image capture is recommended to confirm acquired information, avoiding misinterpretations.


Asunto(s)
Minerales , Micelio , Microscopía Electrónica de Rastreo , Vacio , Arcilla , Micelio/química , Minerales/análisis , Materiales de Construcción
19.
J Microsc ; 293(3): 160-168, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38234217

RESUMEN

We calculate a universal shift in work function of 59.4 meV per decade of dopant concentration change that applies to all doped semiconductors and from this use Monte Carlo simulations to simulate the resulting change in secondary electron yield for doped GaAs. We then compare experimental images of doped GaAs layers from scanning electron microscopy and conductive atomic force microscopy. Kelvin probe force microscopy allows to directly measure and map local work function changes, but values measured are often smaller, typically only around half, of what theory predicts for perfectly clean surfaces.

20.
Ann Bot ; 133(2): 305-320, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38041589

RESUMEN

BACKGROUND AND AIMS: Given the lack of specific studies on floral development in melon (Cucumis melo L.), we carried out an extensive study involving morphological and transcriptomic analyses to characterize floral development in this species. METHODS: Using an andromonoecious line, we analysed the development of floral buds in male and hermaphrodite flowers with both light microscopy and scanning electron microscopy. Based on flower lengths, we established a correlation between the developmental stages and four main episodes of floral development and conducted an extensive RNA sequencing analysis of these episodes. KEY RESULTS: We identified 12 stages of floral development, from the appearance of the floral meristems to anthesis. The main structural differences between male and hermaphrodite flowers appeared between stages 6 and 7; later stages of development leading to the formation of organs and structures in both types of flowers were also described. We analysed the gene expression patterns of the four episodes in flower development to find the genes that were specific to each given episode. Among others, we identified genes that defined the passage from one episode to the next according to the ABCDE model of floral development. CONCLUSIONS: This work combines a detailed morphological analysis and a comprehensive transcriptomic study to enable characterization of the structural and molecular mechanisms that determine the floral development of an andromonoecious genotype in melon. Taken together, our results provide a first insight into gene regulation networks in melon floral development that are crucial for flowering and pollen formation, highlighting potential targets for genetic manipulation to improve crop yield of melon in the future.


Asunto(s)
Cucurbitaceae , Cucurbitaceae/genética , Perfilación de la Expresión Génica/métodos , Flores , Reproducción , Genes Reguladores , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA