Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
1.
Cell ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39265577

RESUMEN

DNA repair and autophagy are distinct biological processes vital for cell survival. Although autophagy helps maintain genome stability, there is no evidence of its direct role in the repair of DNA lesions. We discovered that lysosomes process topoisomerase 1 cleavage complexes (TOP1cc) DNA lesions in vertebrates. Selective degradation of TOP1cc by autophagy directs DNA damage repair and cell survival at clinically relevant doses of topoisomerase 1 inhibitors. TOP1cc are exported from the nucleus to lysosomes through a transient alteration of the nuclear envelope and independent of the proteasome. Mechanistically, the autophagy receptor TEX264 acts as a TOP1cc sensor at DNA replication forks, triggering TOP1cc processing by the p97 ATPase and mediating the delivery of TOP1cc to lysosomes in an MRE11-nuclease- and ATR-kinase-dependent manner. We found an evolutionarily conserved role for selective autophagy in DNA repair that enables cell survival, protects genome stability, and is clinically relevant for colorectal cancer patients.

2.
Annu Rev Cell Dev Biol ; 37: 143-169, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34152791

RESUMEN

Selective autophagy is the lysosomal degradation of specific intracellular components sequestered into autophagosomes, late endosomes, or lysosomes through the activity of selective autophagy receptors (SARs). SARs interact with autophagy-related (ATG)8 family proteins via sequence motifs called LC3-interacting region (LIR) motifs in vertebrates and Atg8-interacting motifs (AIMs) in yeast and plants. SARs can be divided into two broad groups: soluble or membrane bound. Cargo or substrate selection may be independent or dependent of ubiquitin labeling of the cargo. In this review, we discuss mechanisms of mammalian selective autophagy with a focus on the unifying principles employed in substrate recognition, interaction with the forming autophagosome via LIR-ATG8 interactions, and the recruitment of core autophagy components for efficient autophagosome formation on the substrate.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Proteínas Asociadas a Microtúbulos , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagosomas/metabolismo , Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Mamíferos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo
3.
Annu Rev Cell Dev Biol ; 35: 453-475, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31283377

RESUMEN

Macroautophagy is an intracellular degradation system that delivers diverse cytoplasmic materials to lysosomes via autophagosomes. Recent advances have enabled identification of several selective autophagy substrates and receptors, greatly expanding our understanding of the cellular functions of autophagy. In this review, we describe the diverse cellular functions of macroautophagy, including its essential contribution to metabolic adaptation and cellular homeostasis. We also discuss emerging findings on the mechanisms and functions of various types of selective autophagy.


Asunto(s)
Autofagosomas/metabolismo , Autofagia/genética , Retículo Endoplásmico/metabolismo , Lisosomas/metabolismo , Mitocondrias/metabolismo , Animales , Autofagosomas/enzimología , Autofagosomas/microbiología , Autofagia/fisiología , Retículo Endoplásmico/fisiología , Homeostasis/genética , Homeostasis/fisiología , Humanos , Lisosomas/patología , Mitocondrias/patología , Nutrientes/deficiencia , Nutrientes/metabolismo , Peroxisomas/metabolismo , Peroxisomas/fisiología
4.
Mol Cell ; 83(10): 1693-1709.e9, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37207627

RESUMEN

Cargo sequestration is a fundamental step of selective autophagy in which cells generate a double-membrane structure termed an "autophagosome" on the surface of cargoes. NDP52, TAX1BP1, and p62 bind FIP200, which recruits the ULK1/2 complex to initiate autophagosome formation on cargoes. How OPTN initiates autophagosome formation during selective autophagy remains unknown despite its importance in neurodegeneration. Here, we uncover an unconventional path of PINK1/Parkin mitophagy initiation by OPTN that does not begin with FIP200 binding or require the ULK1/2 kinases. Using gene-edited cell lines and in vitro reconstitutions, we show that OPTN utilizes the kinase TBK1, which binds directly to the class III phosphatidylinositol 3-kinase complex I to initiate mitophagy. During NDP52 mitophagy initiation, TBK1 is functionally redundant with ULK1/2, classifying TBK1's role as a selective autophagy-initiating kinase. Overall, this work reveals that OPTN mitophagy initiation is mechanistically distinct and highlights the mechanistic plasticity of selective autophagy pathways.


Asunto(s)
Mitofagia , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Autofagosomas/metabolismo , Proteínas Reguladoras de la Apoptosis , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Autofagia
5.
Mol Cell ; 83(19): 3404-3420, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37708893

RESUMEN

Mitochondria are central hubs of cellular metabolism that also play key roles in signaling and disease. It is therefore fundamentally important that mitochondrial quality and activity are tightly regulated. Mitochondrial degradation pathways contribute to quality control of mitochondrial networks and can also regulate the metabolic profile of mitochondria to ensure cellular homeostasis. Here, we cover the many and varied ways in which cells degrade or remove their unwanted mitochondria, ranging from mitophagy to mitochondrial extrusion. The molecular signals driving these varied pathways are discussed, including the cellular and physiological contexts under which the different degradation pathways are engaged.

6.
Mol Cell ; 83(6): 927-941.e8, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36898370

RESUMEN

Mitophagy is a form of selective autophagy that disposes of superfluous and potentially damage-inducing organelles in a tightly controlled manner. While the machinery involved in mitophagy induction is well known, the regulation of the components is less clear. Here, we demonstrate that TNIP1 knockout in HeLa cells accelerates mitophagy rates and that ectopic TNIP1 negatively regulates the rate of mitophagy. These functions of TNIP1 depend on an evolutionarily conserved LIR motif as well as an AHD3 domain, which are required for binding to the LC3/GABARAP family of proteins and the autophagy receptor TAX1BP1, respectively. We further show that phosphorylation appears to regulate its association with the ULK1 complex member FIP200, allowing TNIP1 to compete with autophagy receptors, which provides a molecular rationale for its inhibitory function during mitophagy. Taken together, our findings describe TNIP1 as a negative regulator of mitophagy that acts at the early steps of autophagosome biogenesis.


Asunto(s)
Proteínas Relacionadas con la Autofagia , Autofagia , Mitofagia , Humanos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HeLa , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitofagia/genética , Proteínas de Neoplasias/metabolismo
7.
Mol Cell ; 83(19): 3485-3501.e11, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37802024

RESUMEN

p62 is a well-characterized autophagy receptor that recognizes and sequesters specific cargoes into autophagosomes for degradation. p62 promotes the assembly and removal of ubiquitinated proteins by forming p62-liquid droplets. However, it remains unclear how autophagosomes efficiently sequester p62 droplets. Herein, we report that p62 undergoes reversible S-acylation in multiple human-, rat-, and mouse-derived cell lines, catalyzed by zinc-finger Asp-His-His-Cys S-acyltransferase 19 (ZDHHC19) and deacylated by acyl protein thioesterase 1 (APT1). S-acylation of p62 enhances the affinity of p62 for microtubule-associated protein 1 light chain 3 (LC3)-positive membranes and promotes autophagic membrane localization of p62 droplets, thereby leading to the production of small LC3-positive p62 droplets and efficient autophagic degradation of p62-cargo complexes. Specifically, increasing p62 acylation by upregulating ZDHHC19 or by genetic knockout of APT1 accelerates p62 degradation and p62-mediated autophagic clearance of ubiquitinated proteins. Thus, the protein S-acylation-deacylation cycle regulates p62 droplet recruitment to the autophagic membrane and selective autophagic flux, thereby contributing to the control of selective autophagic clearance of ubiquitinated proteins.


Asunto(s)
Autofagosomas , Proteínas Ubiquitinadas , Ratones , Ratas , Humanos , Animales , Autofagosomas/metabolismo , Proteínas Ubiquitinadas/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Autofagia/genética , Acilación , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mamíferos/metabolismo
8.
Mol Cell ; 82(8): 1501-1513, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35364016

RESUMEN

Selective autophagy specifically eliminates damaged or superfluous organelles, maintaining cellular health. In this process, a double membrane structure termed an autophagosome captures target organelles or proteins and delivers this cargo to the lysosome for degradation. The attachment of the small protein ubiquitin to cargo has emerged as a common mechanism for initiating organelle or protein capture by the autophagy machinery. In this process, a suite of ubiquitin-binding cargo receptors function to initiate autophagosome assembly in situ on the target cargo, thereby providing selectivity in cargo capture. Here, we review recent efforts to understand the biochemical mechanisms and principles by which cargo are marked with ubiquitin and how ubiquitin-binding cargo receptors use conserved structural modules to recruit the autophagosome initiation machinery, with a particular focus on mitochondria and intracellular bacteria as cargo. These emerging mechanisms provide answers to long-standing questions in the field concerning how selectivity in cargo degradation is achieved.


Asunto(s)
Mitofagia , Ubiquitina , Autofagia/fisiología , Bacterias/genética , Bacterias/metabolismo , Mitocondrias/metabolismo , Mitofagia/fisiología , Ubiquitina/metabolismo
9.
Mol Cell ; 81(6): 1337-1354.e8, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33545068

RESUMEN

Autophagy deficiency in fed conditions leads to the formation of protein inclusions highlighting the contribution of this lysosomal delivery route to cellular proteostasis. Selective autophagy pathways exist that clear accumulated and aggregated ubiquitinated proteins. Receptors for this type of autophagy (aggrephagy) include p62, NBR1, TOLLIP, and OPTN, which possess LC3-interacting regions and ubiquitin-binding domains (UBDs), thus working as a bridge between LC3/GABARAP proteins and ubiquitinated substrates. However, the identity of aggrephagy substrates and the redundancy of aggrephagy and related UBD-containing receptors remains elusive. Here, we combined proximity labeling and organelle enrichment with quantitative proteomics to systematically map the autophagic degradome targeted by UBD-containing receptors under basal and proteostasis-challenging conditions in human cell lines. We identified various autophagy substrates, some of which were differentially engulfed by autophagosomal and endosomal membranes via p62 and TOLLIP, respectively. Overall, this resource will allow dissection of the proteostasis contribution of autophagy to numerous individual proteins.


Asunto(s)
Autofagosomas , Autofagia , Mapas de Interacción de Proteínas , Proteolisis , Proteostasis , Ubiquitinación , Autofagosomas/genética , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteómica
10.
EMBO J ; 43(14): 2954-2978, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38822137

RESUMEN

The degradation of organelles by autophagy is essential for cellular homeostasis. The Golgi apparatus has recently been demonstrated to be degraded by autophagy, but little is known about how the Golgi is recognized by the forming autophagosome. Using quantitative proteomic analysis and two novel Golgiphagy reporter systems, we found that the five-pass transmembrane Golgi-resident proteins YIPF3 and YIPF4 constitute a Golgiphagy receptor. The interaction of this complex with LC3B, GABARAP, and GABARAPL1 is dependent on a LIR motif within YIPF3 and putative phosphorylation sites immediately upstream; the stability of the complex is governed by YIPF4. Expression of a YIPF3 protein containing a mutated LIR motif caused an elongated Golgi morphology, indicating the importance of Golgi turnover via selective autophagy. The reporter assays reported here may be readily adapted to different experimental contexts to help deepen our understanding of Golgiphagy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Autofagia , Aparato de Golgi , Proteínas Asociadas a Microtúbulos , Aparato de Golgi/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Células HeLa , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteómica/métodos , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética
11.
EMBO J ; 43(15): 3116-3140, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38755257

RESUMEN

While the molecular mechanism of autophagy is well studied, the cargoes delivered by autophagy remain incompletely characterized. To examine the selectivity of autophagy cargo, we conducted proteomics on isolated yeast autophagic bodies, which are intermediate structures in the autophagy process. We identify a protein, Hab1, that is highly preferentially delivered to vacuoles. The N-terminal 42 amino acid region of Hab1 contains an amphipathic helix and an Atg8-family interacting motif, both of which are necessary and sufficient for the preferential delivery of Hab1 by autophagy. We find that fusion of this region with a cytosolic protein results in preferential delivery of this protein to the vacuole. Furthermore, attachment of this region to an organelle allows for autophagic delivery in a manner independent of canonical autophagy receptor or scaffold proteins. We propose a novel mode of selective autophagy in which a receptor, in this case Hab1, binds directly to forming isolation membranes during bulk autophagy.


Asunto(s)
Autofagia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Vacuolas/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Transporte de Proteínas , Proteómica/métodos
12.
Mol Cell ; 80(5): 779-795.e10, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33207181

RESUMEN

Protein aggregates disrupt cellular homeostasis, causing toxicity linked to neurodegeneration. Selective autophagic elimination of aggregates is critical to protein quality control, but how aggregates are selectively targeted for degradation is unclear. We compared the requirements for autophagy receptor proteins: OPTN, NBR1, p62, NDP52, and TAX1BP1 in clearance of proteotoxic aggregates. Endogenous TAX1BP1 is recruited to and required for the clearance of stress-induced aggregates, whereas ectopic expression of TAX1BP1 increases clearance through autophagy, promoting viability of human induced pluripotent stem cell-derived neurons. In contrast, TAX1BP1 depletion sensitizes cells to several forms of aggregate-induced proteotoxicity. Furthermore, TAX1BP1 is more specifically expressed in the brain compared to other autophagy receptor proteins. In vivo, loss of TAX1BP1 results in accumulation of high molecular weight ubiquitin conjugates and premature lipofuscin accumulation in brains of young TAX1BP1 knockout mice. TAX1BP1 mediates clearance of a broad range of cytotoxic proteins indicating therapeutic potential in neurodegenerative diseases.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/deficiencia , Autofagia , Encéfalo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Proteínas de Neoplasias/deficiencia , Enfermedades Neurodegenerativas/metabolismo , Agregación Patológica de Proteínas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Encéfalo/patología , Femenino , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipofuscina/genética , Lipofuscina/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas de Neoplasias/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/patología , Ratas , Ratas Sprague-Dawley , Ubiquitina/genética , Ubiquitina/metabolismo
13.
Mol Cell ; 77(6): 1163-1175.e9, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31995729

RESUMEN

Clearance of biomolecular condensates by selective autophagy is thought to play a crucial role in cellular homeostasis. However, the mechanism underlying selective autophagy of condensates and whether liquidity determines a condensate's susceptibility to degradation by autophagy remain unknown. Here, we show that the selective autophagic cargo aminopeptidase I (Ape1) undergoes phase separation to form semi-liquid droplets. The Ape1-specific receptor protein Atg19 localizes to the surface of Ape1 droplets both in vitro and in vivo, with the "floatability" of Atg19 preventing its penetration into droplets. In vitro reconstitution experiments reveal that Atg19 and lipidated Atg8 are necessary and sufficient for selective sequestration of Ape1 droplets by membranes. This sequestration is impaired by mutational solidification of Ape1 droplets or diminished ability of Atg19 to float. Taken together, we propose that cargo liquidity and the presence of sufficient amounts of autophagic receptor on cargo are crucial for selective autophagy of biomolecular condensates.


Asunto(s)
Aminopeptidasas/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Receptores de Superficie Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Aminopeptidasas/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Citoplasma/metabolismo , Mutación , Unión Proteica , Transporte de Proteínas , Receptores de Superficie Celular/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Solubilidad , Proteínas de Transporte Vesicular/genética
14.
Mol Cell ; 80(5): 764-778.e7, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33207182

RESUMEN

Autophagy eliminates cytoplasmic content selected by autophagy receptors, which link cargo to the membrane-bound autophagosomal ubiquitin-like protein Atg8/LC3. Here, we report a selective autophagy pathway for protein condensates formed by endocytic proteins in yeast. In this pathway, the endocytic protein Ede1 functions as a selective autophagy receptor. Distinct domains within Ede1 bind Atg8 and mediate phase separation into condensates. Both properties are necessary for an Ede1-dependent autophagy pathway for endocytic proteins, which differs from regular endocytosis and does not involve other known selective autophagy receptors but requires the core autophagy machinery. Cryo-electron tomography of Ede1-containing condensates, at the plasma membrane and in autophagic bodies, shows a phase-separated compartment at the beginning and end of the Ede1-mediated selective autophagy route. Our data suggest a model for autophagic degradation of macromolecular protein complexes by the action of intrinsic autophagy receptors.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia , Autofagia , Endocitosis , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Familia de las Proteínas 8 Relacionadas con la Autofagia/química , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Microscopía por Crioelectrón , Unión Proteica , Proteolisis , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Trends Biochem Sci ; 48(3): 216-228, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36280494

RESUMEN

Aggrephagy describes the selective lysosomal transport and turnover of cytoplasmic protein aggregates by macro-autophagy. In this process, protein aggregates and conglomerates are polyubiquitinated and then sequestered by autophagosomes. Soluble selective autophagy receptors (SARs) are central to aggrephagy and physically bind to both ubiquitin and the autophagy machinery, thus linking the cargo to the forming autophagosomal membrane. Because the accumulation of protein aggregates is associated with cytotoxicity in several diseases, a better molecular understanding of aggrephagy might provide a conceptual framework to develop therapeutic strategies aimed at delaying the onset of these pathologies by preventing the buildup of potentially toxic aggregates. We review recent advances in our knowledge about the mechanism of aggrephagy.


Asunto(s)
Autofagia , Agregado de Proteínas , Proteína Sequestosoma-1/metabolismo , Autofagosomas , Lisosomas/metabolismo
16.
EMBO J ; 42(10): e112053, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36762703

RESUMEN

UFMylation involves the covalent modification of substrate proteins with UFM1 (Ubiquitin-fold modifier 1) and is important for maintaining ER homeostasis. Stalled translation triggers the UFMylation of ER-bound ribosomes and activates C53-mediated autophagy to clear toxic polypeptides. C53 contains noncanonical shuffled ATG8-interacting motifs (sAIMs) that are essential for ATG8 interaction and autophagy initiation. However, the mechanistic basis of sAIM-mediated ATG8 interaction remains unknown. Here, we show that C53 and sAIMs are conserved across eukaryotes but secondarily lost in fungi and various algal lineages. Biochemical assays showed that the unicellular alga Chlamydomonas reinhardtii has a functional UFMylation pathway, refuting the assumption that UFMylation is linked to multicellularity. Comparative structural analyses revealed that both UFM1 and ATG8 bind sAIMs in C53, but in a distinct way. Conversion of sAIMs into canonical AIMs impaired binding of C53 to UFM1, while strengthening ATG8 binding. Increased ATG8 binding led to the autoactivation of the C53 pathway and sensitization of Arabidopsis thaliana to ER stress. Altogether, our findings reveal an ancestral role of sAIMs in UFMylation-dependent fine-tuning of C53-mediated autophagy activation.


Asunto(s)
Péptidos , Proteínas , Proteínas/metabolismo , Ribosomas/metabolismo , Autofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo
17.
Mol Cell ; 74(5): 891-908.e10, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31006537

RESUMEN

Cells respond to nutrient stress by trafficking cytosolic contents to lysosomes for degradation via macroautophagy. The endoplasmic reticulum (ER) serves as an initiation site for autophagosomes and is also remodeled in response to nutrient stress through ER-phagy, a form of selective autophagy. Quantitative proteome analysis during nutrient stress identified an unstudied single-pass transmembrane ER protein, TEX264, as an ER-phagy receptor. TEX264 uses an LC3-interacting region (LIR) to traffic into ATG8-positive puncta that often initiate from three-way ER tubule junctions and subsequently fuse with lysosomes. Interaction and proximity biotinylation proteomics identified a cohort of autophagy regulatory proteins and cargo adaptors located near TEX264 in an LIR-dependent manner. Global proteomics and ER-phagy flux analysis revealed the stabilization of a cohort of ER proteins in TEX264-/- cells during nutrient stress. This work reveals TEX264 as an unrecognized ER-phagy receptor that acts independently of other candidate ER-phagy receptors to remodel the ER during nutrient stress.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Autofagia/genética , Retículo Endoplásmico/genética , Proteínas de la Membrana/metabolismo , Animales , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Células COS , Chlorocebus aethiops , Citosol/metabolismo , Estrés del Retículo Endoplásmico/genética , Células HCT116 , Células HEK293 , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Nutrientes/metabolismo , Transporte de Proteínas/genética , Proteoma/genética
18.
Mol Cell ; 74(5): 909-921.e6, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31006538

RESUMEN

Certain proteins and organelles can be selectively degraded by autophagy. Typical substrates and receptors of selective autophagy have LC3-interacting regions (LIRs) that bind to autophagosomal LC3 and GABARAP family proteins. Here, we performed a differential interactome screen using wild-type LC3B and a LIR recognition-deficient mutant and identified TEX264 as a receptor for autophagic degradation of the endoplasmic reticulum (ER-phagy). TEX264 is an ER protein with a single transmembrane domain and a LIR motif. TEX264 interacts with LC3 and GABARAP family proteins more efficiently and is expressed more ubiquitously than previously known ER-phagy receptors. ER-phagy is profoundly blocked by deletion of TEX264 alone and almost completely by additional deletion of FAM134B and CCPG1. A long intrinsically disordered region of TEX264 is required for its ER-phagy receptor function to bridge the gap between the ER and autophagosomal membranes independently of its amino acid sequence. These results suggest that TEX264 is a major ER-phagy receptor.


Asunto(s)
Proteínas Relacionadas con la Autofagia/genética , Autofagia/genética , Retículo Endoplásmico/genética , Proteínas Intrínsecamente Desordenadas/genética , Secuencia de Aminoácidos/genética , Proteínas Relacionadas con la Autofagia/química , Proteínas de Ciclo Celular/genética , Retículo Endoplásmico/química , Estrés del Retículo Endoplásmico/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas Intrínsecamente Desordenadas/química , Proteínas de la Membrana , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Neoplasias/genética , Proteolisis
19.
Mol Cell ; 74(2): 330-346.e11, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30853400

RESUMEN

The autophagy cargo receptor p62 facilitates the condensation of misfolded, ubiquitin-positive proteins and their degradation by autophagy, but the molecular mechanism of p62 signaling to the core autophagy machinery is unclear. Here, we show that disordered residues 326-380 of p62 directly interact with the C-terminal region (CTR) of FIP200. Crystal structure determination shows that the FIP200 CTR contains a dimeric globular domain that we designated the "Claw" for its shape. The interaction of p62 with FIP200 is mediated by a positively charged pocket in the Claw, enhanced by p62 phosphorylation, mutually exclusive with the binding of p62 to LC3B, and it promotes degradation of ubiquitinated cargo by autophagy. Furthermore, the recruitment of the FIP200 CTR slows the phase separation of ubiquitinated proteins by p62 in a reconstituted system. Our data provide the molecular basis for a crosstalk between cargo condensation and autophagosome formation.


Asunto(s)
Autofagosomas/metabolismo , Conformación Proteica , Proteínas Tirosina Quinasas/química , Proteína Sequestosoma-1/química , Autofagosomas/química , Autofagia/genética , Proteínas Relacionadas con la Autofagia , Cristalografía por Rayos X , Humanos , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Mapas de Interacción de Proteínas/genética , Proteínas Tirosina Quinasas/genética , Proteolisis , Proteína Sequestosoma-1/genética , Transducción de Señal/genética , Ubiquitina/química , Ubiquitina/genética
20.
Mol Cell ; 74(2): 320-329.e6, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30853402

RESUMEN

Xenophagy, a selective autophagy pathway that protects the cytosol against bacterial invasion, relies on cargo receptors that juxtapose bacteria and phagophore membranes. Whether phagophores are recruited from a constitutive pool or are generated de novo at prospective cargo remains unknown. Phagophore formation in situ would require recruitment of the upstream autophagy machinery to prospective cargo. Here, we show that, essential for anti-bacterial autophagy, the cargo receptor NDP52 forms a trimeric complex with FIP200 and SINTBAD/NAP1, which are subunits of the autophagy-initiating ULK and the TBK1 kinase complex, respectively. FIP200 and SINTBAD/NAP1 are each recruited independently to bacteria via NDP52, as revealed by selective point mutations in their respective binding sites, but only in their combined presence does xenophagy proceed. Such recruitment of the upstream autophagy machinery by NDP52 reveals how detection of cargo-associated "eat me" signals, induction of autophagy, and juxtaposition of cargo and phagophores are integrated in higher eukaryotes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Autofagia/genética , Proteínas Nucleares/genética , Proteínas Tirosina Quinasas/genética , Proteínas Adaptadoras Transductoras de Señales/química , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Proteínas Relacionadas con la Autofagia , Sitios de Unión/genética , Citoplasma/microbiología , Citosol/microbiología , Humanos , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Proteínas Nucleares/química , Mutación Puntual/genética , Unión Proteica/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/química , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA