Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 563
Filtrar
1.
Gastroenterology ; 166(6): 1156-1165.e4, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38428619

RESUMEN

BACKGROUND & AIMS: Conflicting data exist on the impact of alcohol use on risk of liver disease progression in patients with steatotic liver disease. We aimed to evaluate the effect of longitudinal alcohol use on risk of cirrhosis among veterans with steatotic liver disease. METHODS: US veterans with steatotic liver disease were identified from January 2010 through December 2022. Alcohol use was assessed using documented Alcohol Use Disorders Identification Test-Concise (AUDIT-C) scores and categorized as no alcohol (AUDIT-C = 0), low-risk alcohol use (AUDIT-C 1-2 for women and 1-3 for men), and high-risk alcohol (AUDIT-C ≥ 3 for women and ≥ 4 for men). Incidence of cirrhosis was evaluated with competing risks Nelson-Aalen methods. Adjusted multivariable regression models evaluated risks of cirrhosis associated with baseline alcohol use and changes in alcohol use during follow-up. RESULTS: There were 1,156,189 veterans with steatotic liver disease identified (54.2% no alcohol, 34.6% low-risk alcohol, and 11.2% high-risk alcohol). Veterans with steatotic liver disease and high-risk alcohol have a 43% higher incidence of cirrhosis compared with patients reporting no alcohol use. Compared with patients with baseline high-risk alcohol who reported no change in alcohol use, those who decreased their alcohol use during follow-up experienced a 39% reduction in long-term risk of cirrhosis (hazard ratio, 0.61; 95% CI, 0.45-0.83; P < .01). CONCLUSIONS: One in 9 veterans with steatotic liver disease report concurrent high-risk alcohol use, which is associated with 43% greater risk of cirrhosis compared with no alcohol use. However, reducing alcohol use lowers risk of cirrhosis, emphasizing the importance of timely alcohol use assessment and early interventions to address high-risk alcohol use in steatotic liver disease.


Asunto(s)
Consumo de Bebidas Alcohólicas , Cirrosis Hepática , Humanos , Femenino , Masculino , Persona de Mediana Edad , Estados Unidos/epidemiología , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/epidemiología , Incidencia , Factores de Riesgo , Cirrosis Hepática/epidemiología , Cirrosis Hepática/diagnóstico , Anciano , Progresión de la Enfermedad , Veteranos/estadística & datos numéricos , Medición de Riesgo , Hígado Graso/epidemiología , Hígado Graso/diagnóstico , Estudios Longitudinales , Factores de Tiempo , Adulto , Estudios Retrospectivos
2.
Gastroenterology ; 167(2): 357-367.e9, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38513745

RESUMEN

BACKGROUND & AIMS: There is an unmet need for noninvasive tests to improve case-finding and aid primary care professionals in referring patients at high risk of liver disease. METHODS: A metabolic dysfunction-associated fibrosis (MAF-5) score was developed and externally validated in a total of 21,797 individuals with metabolic dysfunction in population-based (National Health and Nutrition Examination Survey 2017-2020, National Health and Nutrition Examination Survey III, and Rotterdam Study) and hospital-based (from Antwerp and Bogota) cohorts. Fibrosis was defined as liver stiffness ≥8.0 kPa. Diagnostic accuracy was compared with FIB-4, nonalcoholic fatty liver disease fibrosis score (NFS), LiverRisk score and steatosis-associated fibrosis estimator (SAFE). MAF-5 was externally validated with liver stiffness measurement ≥8.0 kPa, with shear-wave elastography ≥7.5 kPa, and biopsy-proven steatotic liver disease according to Metavir and Nonalcoholic Steatohepatitis Clinical Research Network scores, and was tested for prognostic performance (all-cause mortality). RESULTS: The MAF-5 score comprised waist circumference, body mass index (calculated as kg / m2), diabetes, aspartate aminotransferase, and platelets. With this score, 60.9% was predicted at low, 14.1% at intermediate, and 24.9% at high risk of fibrosis. The observed prevalence was 3.3%, 7.9%, and 28.1%, respectively. The area under the receiver operator curve of MAF-5 (0.81) was significantly higher than FIB-4 (0.61), and outperformed the FIB-4 among young people (negative predictive value [NPV], 99%; area under the curve [AUC], 0.86 vs NPV, 94%; AUC, 0.51) and older adults (NPV, 94%; AUC, 0.75 vs NPV, 88%; AUC, 0.55). MAF-5 showed excellent performance to detect liver stiffness measurement ≥12 kPa (AUC, 0.86 training; AUC, 0.85 validation) and good performance in detecting liver stiffness and biopsy-proven liver fibrosis among the external validation cohorts. MAF-5 score >1 was associated with increased risk of all-cause mortality in (un)adjusted models (adjusted hazard ratio, 1.59; 95% CI, 1.47-1.73). CONCLUSIONS: The MAF-5 score is a validated, age-independent, inexpensive referral tool to identify individuals at high risk of liver fibrosis and all-cause mortality in primary care populations, using simple variables.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Cirrosis Hepática , Valor Predictivo de las Pruebas , Humanos , Masculino , Femenino , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/epidemiología , Cirrosis Hepática/patología , Cirrosis Hepática/etiología , Persona de Mediana Edad , Medición de Riesgo , Anciano , Pronóstico , Índice de Masa Corporal , Factores de Riesgo , Circunferencia de la Cintura , Encuestas Nutricionales , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/patología , Adulto , Aspartato Aminotransferasas/sangre , Recuento de Plaquetas , Hígado/patología , Hígado/diagnóstico por imagen , Países Bajos/epidemiología , Biopsia , Curva ROC , Reproducibilidad de los Resultados
3.
FASEB J ; 38(13): e23766, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38967214

RESUMEN

Dysbiosis of gut microbiota may account for pathobiology in simple fatty liver (SFL), metabolic dysfunction-associated steatohepatitis (MASH), fibrotic progression, and transformation to MASH-associated hepatocellular carcinoma (MASH-HCC). The aim of the present study is to investigate gut dysbiosis in this progression. Fecal microbial rRNA-16S sequencing, absolute quantification, histopathologic, and biochemical tests were performed in mice fed high fat/calorie diet plus high fructose and glucose in drinking water (HFCD-HF/G) or control diet (CD) for 2, 16 weeks, or 14 months. Histopathologic examination verified an early stage of SFL, MASH, fibrotic, or MASH-HCC progression with disturbance of lipid metabolism, liver injury, and impaired gut mucosal barrier as indicated by loss of occludin in ileum mucosa. Gut dysbiosis occurred as early as 2 weeks with reduced α diversity, expansion of Kineothrix, Lactococcus, Akkermansia; and shrinkage in Bifidobacterium, Lactobacillus, etc., at a genus level. Dysbiosis was found as early as MAHS initiation, and was much more profound through the MASH-fibrotic and oncogenic progression. Moreover, the expansion of specific species, such as Lactobacillus johnsonii and Kineothrix alysoides, was confirmed by an optimized method for absolute quantification. Dynamic alterations of gut microbiota were characterized in three stages of early SFL, MASH, and its HCC transformation. The findings suggest that the extent of dysbiosis was accompanied with MASH progression and its transformation to HCC, and the shrinking or emerging of specific microbial species may account at least in part for pathologic, metabolic, and immunologic alterations in fibrogenic progression and malignant transition in the liver.


Asunto(s)
Carcinoma Hepatocelular , Disbiosis , Microbioma Gastrointestinal , Neoplasias Hepáticas , Ratones Endogámicos C57BL , Animales , Ratones , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/microbiología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/etiología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/microbiología , Neoplasias Hepáticas/etiología , Disbiosis/microbiología , Masculino , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado Graso/microbiología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Metabolismo de los Lípidos , Hígado/metabolismo , Hígado/patología
4.
J Pathol ; 264(1): 101-111, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39022853

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver condition that often progresses to more advanced stages, such as metabolic dysfunction-associated steatohepatitis (MASH). MASH is characterized by inflammation and hepatocellular ballooning, in addition to hepatic steatosis. Despite the relatively high incidence of MASH in the population and its potential detrimental effects on human health, this liver disease is still not fully understood from a pathophysiological perspective. Deregulation of polyamine levels has been detected in various pathological conditions, including neurodegenerative diseases, inflammation, and cancer. However, the role of the polyamine pathway in chronic liver disorders such as MASLD has not been explored. In this study, we measured the expression of liver ornithine decarboxylase (ODC1), the rate-limiting enzyme responsible for the production of putrescine, and the hepatic levels of putrescine, in a preclinical model of MASH as well as in liver biopsies of patients with obesity undergoing bariatric surgery. Our findings reveal that expression of ODC1 and the levels of putrescine, but not spermidine nor spermine, are elevated in hepatic tissue of both diet-induced MASH mice and patients with biopsy-proven MASH compared with control mice and patients without MASH, respectively. Furthermore, we found that the levels of putrescine were positively associated with higher aspartate aminotransferase concentrations in serum and an increased SAF score (steatosis, activity, fibrosis). Additionally, in in vitro assays using human HepG2 cells, we demonstrate that elevated levels of putrescine exacerbate the cellular response to palmitic acid, leading to decreased cell viability and increased release of CK-18. Our results support an association between the expression of ODC1 and the progression of MASLD, which could have translational relevance in understanding the onset of this disease. © 2024 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Progresión de la Enfermedad , Hígado , Ornitina Descarboxilasa , Putrescina , Animales , Humanos , Putrescina/metabolismo , Ornitina Descarboxilasa/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Hígado Graso/metabolismo , Hígado Graso/patología , Ratones , Modelos Animales de Enfermedad , Femenino , Persona de Mediana Edad , Obesidad/metabolismo , Obesidad/complicaciones , Células Hep G2 , Adulto
5.
Cell Mol Life Sci ; 81(1): 34, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214802

RESUMEN

This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxidative stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for targeted therapeutics.


Asunto(s)
Enfermedades Gastrointestinales , Hepatopatías Alcohólicas , Enfermedades Mitocondriales , Humanos , Hígado/metabolismo , Etanol/farmacología , Apoptosis , Estrés Oxidativo , Inflamación/patología , Enfermedades Gastrointestinales/metabolismo , Hepatocitos/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Mitocondriales/metabolismo , Enfermedades Mitocondriales/metabolismo
6.
Med Res Rev ; 44(2): 568-586, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37899676

RESUMEN

Nonalcoholic fatty liver disease, also called metabolic dysfunction-associated steatotic liver disease, is the most common liver disease worldwide and has no approved pharmacotherapy. Due to its beneficial effects on metabolic regulation, inflammation suppression, cell death prevention, and fibrogenesis inhibition, farnesoid X receptor (FXR) is widely accepted as a promising therapeutic target for nonalcoholic steatosis (NASH) or called metabolic dysfunction-associated steatohepatitis (MASH). Many FXR agonists have been developed for NASH/MASH therapy. Obeticholic acid (OCA) is the pioneering frontrunner FXR agonist and the first demonstrating success in clinical trials. Unfortunately, OCA did not receive regulatory approval as a NASH pharmacotherapy because its moderate benefits did not outweigh its safety risks, which may cast a shadow over FXR-based drug development for NASH/MASH. This review summarizes the milestones in the development of OCA for NASH/MASH and discuss its limitations, including moderate hepatoprotection and the undesirable side effects of dyslipidemia, pruritus, cholelithiasis, and liver toxicity risk, in depth. More importantly, we provide perspectives on FXR-based therapy for NASH/MASH, hoping to support a successful bench-to-clinic transition.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Ácido Quenodesoxicólico/farmacología , Ácido Quenodesoxicólico/uso terapéutico
7.
Am J Physiol Cell Physiol ; 326(3): C880-C892, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38223924

RESUMEN

17-ß-hydroxysteroid dehydrogenase 13 (HSD17B13), a lipid droplet-associated enzyme, is primarily expressed in the liver and plays an important role in lipid metabolism. Targeted inhibition of enzymatic function is a potential therapeutic strategy for treating steatotic liver disease (SLD). The present study is aimed at investigating the effects of the first selective HSD17B13 inhibitor, BI-3231, in a model of hepatocellular lipotoxicity using human cell lines and primary mouse hepatocytes in vitro. Lipotoxicity was induced with palmitic acid in HepG2 cells and freshly isolated mouse hepatocytes and the cells were coincubated with BI-3231 to assess the protective effects. Under lipotoxic stress, triglyceride (TG) accumulation was significantly decreased in the BI-3231-treated cells compared with that of the control untreated human and mouse hepatocytes. In addition, treatment with BI-3231 led to considerable improvement in hepatocyte proliferation, cell differentiation, and lipid homeostasis. Mechanistically, BI-3231 increased the mitochondrial respiratory function without affecting ß-oxidation. BI-3231 inhibited the lipotoxic effects of palmitic acid in hepatocytes, highlighting the potential of targeting HSD17B13 as a specific therapeutic approach in steatotic liver disease.NEW & NOTEWORTHY 17-ß-Hydroxysteroid dehydrogenase 13 (HSD17B13) is a lipid droplet protein primarily expressed in the liver hepatocytes. HSD17B13 is associated with the clinical outcome of chronic liver diseases and is therefore a target for the development of drugs. Here, we demonstrate the promising therapeutic effect of BI-3231 as a potent inhibitor of HSD17B13 based on its ability to inhibit triglyceride accumulation in lipid droplets (LDs), restore lipid metabolism and homeostasis, and increase mitochondrial activity in vitro.


Asunto(s)
Hígado Graso , Ácido Palmítico , Humanos , Animales , Ratones , Ácido Palmítico/toxicidad , Inhibidores Enzimáticos/farmacología , Hepatocitos , Triglicéridos
8.
J Lipid Res ; 65(9): 100599, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032559

RESUMEN

Alteration in lipid metabolism plays a pivotal role in developing metabolic dysfunction-associated steatohepatitis (MASH). However, our understanding of alteration in lipid metabolism across liver zonation in MASH remains limited. Within this study, we investigated MASH-associated zone-specific lipid metabolism in a diet and chemical-induced MASH mouse model. Spatial lipidomics using mass spectrometry imaging in a MASH mouse model revealed 130 lipids from various classes altered across liver zonation and exhibited zone-specific lipid signatures in MASH. Triacylglycerols, diacylglycerols, sphingolipids and ceramides showed distinct zone-specific changes and re-distribution from pericentral to periportal localization in MASH. Saturated and monounsaturated fatty acids (FA) were the primary FA composition of increased lipids in MASH, while polyunsaturated FAs were the major FA composition of decreased lipids. We observed elevated fibrosis in the periportal region, which could be the result of observed metabolic alteration across zonation. Our study provides valuable insights into zone-specific hepatic lipid metabolism and demonstrates the significance of spatial lipidomics in understanding liver lipid metabolism. Identifying unique lipid distribution patterns may offer valuable insights into the pathophysiology of MASH and facilitate the discovery of diagnostic markers associated with liver zonation.

9.
J Lipid Res ; 65(6): 100558, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729350

RESUMEN

Metabolic dysfunction-associated steatotic liver disease is the most common form of liver disease and poses significant health risks to patients who progress to metabolic dysfunction-associated steatohepatitis. Fatty acid overload alters endoplasmic reticulum (ER) calcium stores and induces mitochondrial oxidative stress in hepatocytes, leading to hepatocellular inflammation and apoptosis. Obese mice have impaired liver sarco/ER Ca2+-ATPase (SERCA) function, which normally maintains intracellular calcium homeostasis by transporting Ca2+ ions from the cytoplasm to the ER. We hypothesized that restoration of SERCA activity would improve diet-induced steatohepatitis in mice by limiting ER stress and mitochondrial dysfunction. WT and melanocortin-4 receptor KO (Mc4r-/-) mice were placed on either chow or Western diet (WD) for 8 weeks. Half of the WD-fed mice were administered CDN1163 to activate SERCA, which reduced liver fibrosis and inflammation. SERCA activation also restored glucose tolerance and insulin sensitivity, improved histological markers of metabolic dysfunction-associated steatohepatitis, increased expression of antioxidant enzymes, and decreased expression of oxidative stress and ER stress genes. CDN1163 decreased hepatic citric acid cycle flux and liver pyruvate cycling, enhanced expression of mitochondrial respiratory genes, and shifted hepatocellular [NADH]/[NAD+] and [NADPH]/[NADP+] ratios to a less oxidized state, which was associated with elevated PUFA content of liver lipids. In sum, the data demonstrate that pharmacological SERCA activation limits metabolic dysfunction-associated steatotic liver disease progression and prevents metabolic dysfunction induced by WD feeding in mice.


Asunto(s)
Hígado , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Animales , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Ratones , Hígado/metabolismo , Hígado/patología , Masculino , Hígado Graso/metabolismo , Hígado Graso/patología , Estrés del Retículo Endoplásmico , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Dieta Occidental/efectos adversos , Ratones Noqueados
10.
Int J Cancer ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016032

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease globally, and can lead to hepatocellular carcinoma (HCC), a leading cause of cancer-related death. We aimed to determine the extent to which MASLD is an increasing cause of HCC in Sweden and to determine clinical characteristics associated with underlying MASLD. Using the Swedish quality registry for liver cancer (SweLiv), we identified all adults with a diagnosis of HCC in Sweden between 2012 and 2018. Baseline data were retrieved from SweLiv and other nationwide registers. Totally, 3494 patients with HCC were identified. Of them, 757 patients (22%) had MASLD-HCC. The proportion with MASLD-HCC increased from 19% in 2012 to 25% in 2018 (ptrend = 0.012), and MASLD was since 2017 the leading cause of HCC, surpassing hepatitis C. MASLD was the fastest growing cause of HCC with a 33% increment during the study period. Compared to other patients with HCC, those with MASLD-HCC were older (75 vs. 67 years, p < .001), less commonly had cirrhosis (61% vs. 82%, p < .001), had larger tumours (median 5.5 vs. 4.3 cm, p < .001), and more often extrahepatic metastasis (22% vs. 16%, p < .001). Patients with HCC caused by MASLD or by other causes were equally likely to be diagnosed in an early stage (Barcelona Clinic Liver Cancer 0-A, 27% vs. 30%, p = .129). MASLD is now the leading cause of HCC in Sweden.

11.
Curr Issues Mol Biol ; 46(6): 6112-6120, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38921036

RESUMEN

Wilson's disease (WD) is a biallelic disease-causing variant in the ATP7B gene on chromosome 13q14.3 that results in copper accumulation in many organs, particularly the liver and brain. The phenotypic spectrum is wide and symptoms at onset can be heterogeneous. We describe two Sicilian siblings, a young man and his elder sister, both compound heterozygous for the variants c.1286-2A>G and c.2668G>A (p.Val890Met) in the ATB7B gene. The male patient presented with liver cirrhosis, which quickly progressed to end-stage liver disease (Child-Pugh score = C10), while his sister had moderate steatotic liver disease (SLD). Our findings highlight that SLD may not always be related to obesity in overweight patients, especially when there are other potential risk factors such as a family history of chronic liver disease, or the persistence of high transaminase despite the adoption of adequate dietary and pharmacological intervention. Screening for conditions such as WD could identify patients at risk of developing SLD and avoid delays in diagnosis. Phenotypic variability in WD is considerable; therefore, further studies are needed to identify which WD patients have a greater risk of developing SLD and determine factors that can predict the severity of the disease.

12.
Curr Issues Mol Biol ; 46(7): 6690-6709, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39057041

RESUMEN

Currently, steatohepatitis has been designated as metabolic dysfunction-associated steatohepatitis (MASLD). MASLD risk factors mainly include metabolic disorders but can also include genetic, epigenetic, and environmental factors. Disease entities such as obesity, diabetes, cardiovascular disease, and MASLD share similar pathomechanisms and risk factors. Moreover, a bidirectional relationship is observed between the occurrence of certain chronic diseases and MASLD. These conditions represent a global public health problem that is responsible for poor quality of life and high mortality. It seems that paying holistic attention to these problems will not only help increase the chances of reducing the incidence of these diseases but also assist in the prevention, treatment, and support of patients.

13.
Curr Issues Mol Biol ; 46(6): 5965-5983, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38921027

RESUMEN

Hepatocellular carcinoma (HCC) represents a significant burden on global healthcare systems due to its considerable incidence and mortality rates. Recent trends indicate an increase in the worldwide incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) and a shift in the etiology of HCC, with MASLD replacing the hepatitis B virus as the primary contributor to new cases of HCC. MASLD-related HCC exhibits distinct characteristics compared to viral HCC, including unique immune cell profiles resulting in an overall more immunosuppressive or exhausted tumor microenvironment. Furthermore, MASLD-related HCC is frequently identified in older age groups and among individuals with cardiometabolic comorbidities. Additionally, a greater percentage of MASLD-related HCC cases occur in noncirrhotic patients compared to those with viral etiologies, hindering early detection. However, the current clinical practice guidelines lack specific recommendations for the screening of HCC in MASLD patients. The evolving landscape of HCC management offers a spectrum of therapeutic options, ranging from surgical interventions and locoregional therapies to systemic treatments, for patients across various stages of the disease. Despite ongoing debates, the current evidence does not support differences in optimal treatment modalities based on etiology. In this study, we aimed to provide a comprehensive overview of the current literature on the trends, characteristics, clinical implications, and treatment modalities for MASLD-related HCC.

14.
Cancer ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39238423

RESUMEN

BACKGROUND: Steatotic liver disease (SLD) is an emerging liver disease that has been associated with an increased risk for hepatocellular carcinoma (HCC). The impact of concurrent SLD on the prognosis of HCC remains unknown. This study investigates how concurrent SLD affects the outcomes of patients with HCC undergoing curative radiofrequency ablation (RFA) therapy. METHODS: A retrospective analysis of patients with early-stage HCC receiving curative RFA at a tertiary medical center was conducted. Laboratory data and HCC characteristics were recorded and analyzed by a Cox proportional hazards regression model to predict recurrence and all-cause mortality after RFA. RESULTS: A total of 598 patients with HCC were included between 2005 and 2015, with 139 and 459 classified in SLD and non-SLD groups, respectively. The SLD group exhibited a significantly better liver reserve and a lower cumulative incidence of HCC recurrence and liver-related and all-cause mortality after a median follow-up of 51 months. After adjusting for metabolic dysfunction, liver reserve, and HCC characteristics, the presence of SLD reduced all-cause mortality (adjusted hazard ratio [aHR], 0.67; 95% confidence interval [CI], 0.45-0.996; p = .048), which was supported by inverse probability weighting analysis (aHR, 0.65; 95% CI, 0.42-1.00; p = .049). Poor liver functional reserve (high albumin-bilirubin grades) increased all-cause mortality dose dependently. Barcelona Clinic Liver Cancer staging and a higher Fibrosis-4 index were predictors for HCC recurrence, whereas SLD was not. CONCLUSIONS: Among patients with HCC undergoing curative RFA, those with concurrent SLD had a lower risk of all-cause mortality compared to those with poor liver functional reserve. PLAIN LANGUAGE SUMMARY: The present research demonstrated that patients with both liver cancer and steatotic liver disease who received curative radiofrequency ablation for liver cancer survived longer compared to those without steatotic liver disease. Maintaining good liver function is an important prognostic factor for survival.

15.
J Hepatol ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38879175

RESUMEN

BACKGROUND & AIMS: Non-invasive tests (NITs) for liver fibrosis have been recognized for their clinical utility in metabolic dysfunction-associated steatotic liver disease (MASLD). However, their diagnostic efficacy in detecting liver fibrosis is notably reduced in patients with alcohol-related liver disease. Therefore, ascertaining the reliability of NITs in patients with MASLD with moderate alcohol intake (MetALD) is essential. METHODS: In this cross-sectional study, we reviewed data from 7,918 health check-up participants who underwent both magnetic resonance elastography (MRE) and ultrasound for the diagnosis of hepatic steatosis. The participants were categorized into MASLD and MetALD groups, and the performance of fibrosis-4 index (FIB-4) and NAFLD fibrosis score (NFS) were assessed. Advanced hepatic fibrosis (F3) was defined as MRE ≥3.6 kPa. RESULTS: The prevalence of MetALD was 5.8% in this health check-up cohort, and 1.5% of these patients exhibited advanced hepatic fibrosis. Both MetALD and MASLD displayed similar metabolic profiles and hepatic fibrosis burdens. The diagnostic performance of FIB-4 and NFS for MRE ≥3.6 kPa showed no noticeable differences in the area under the receiver-operating characteristic values between the two groups (0.85 vs. 0.80 in FIB-4). Moreover, the sensitivity (71.4%), specificity (77.3%), and both positive (4.6%) and negative (99.4%) predictive values of NITs for MetALD closely mirrored those observed for MASLD. CONCLUSION: FIB-4 performed well for the initial screening of advanced hepatic fibrosis in MetALD, demonstrating reasonable sensitivity and negative predictive values. IMPACT AND IMPLICATIONS: In this cross-sectional study, data from 7,918 participants who underwent MRE were analyzed to assess the performance of fibrosis-4 (FIB-4) and non-alcoholic fatty liver disease fibrosis scores in metabolic dysfunction-associated steatotic liver disease (MASLD) and MASLD with moderate alcohol intake (MetALD). We found that FIB-4 had high diagnostic accuracy in the newly identified MetALD group, similar to that in the MASLD population. These results highlight the potential of FIB-4 as a reliable screening tool for MetALD, even when specific subgroups are considered. Therefore, FIB-4 is a valuable screening tool for identifying advanced fibrosis in the MetALD population.

16.
J Hepatol ; 80(6): 834-845, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38331323

RESUMEN

BACKGROUND & AIMS: Accumulating evidence has indicated the presence of mature microRNAs (miR) in the nucleus, but their effects on steatohepatitis remain elusive. We have previously demonstrated that the intranuclear miR-204-3p in macrophages protects against atherosclerosis, which shares multiple risk factors with metabolic dysfunction-associated steatotic liver disease (MASLD). Herein, we aimed to explore the functional significance of miR-204-3p in steatohepatitis. METHODS: miR-204-3p levels and subcellular localization were assessed in the livers and peripheral blood mononuclear cells of patients with MASLD. Wild-type mice fed high-fat or methionine- and choline-deficient diets were injected with an adeno-associated virus system containing miR-204-3p to determine the effect of miR-204-3p on steatohepatitis. Co-culture systems were applied to investigate the crosstalk between macrophages and hepatocytes or hepatic stellate cells (HSCs). Multiple high-throughput epigenomic sequencings were performed to explore miR-204-3p targets. RESULTS: miR-204-3p expression decreased in livers and macrophages in mice and patients with fatty liver. In patients with MASLD, miR-204-3p levels in peripheral blood mononuclear cells were inversely related to the severity of hepatic inflammation and damage. Macrophage-specific miR-204-3p overexpression reduced steatohepatitis in high-fat or methionine- and choline-deficient diet-fed mice. miR-204-3p-overexpressing macrophages inhibited TLR4/JNK signaling and pro-inflammatory cytokine release, thereby limiting fat deposition and inflammation in hepatocytes and fibrogenic activation in HSCs. Epigenomic profiling identified miR-204-3p as a specific regulator of ULK1 expression. ULK1 transcription and VPS34 complex activation by intranuclear miR-204-3p improved autophagic flux, promoting the anti-inflammatory effects of miR-204-3p in macrophages. CONCLUSIONS: miR-204-3p inhibits macrophage inflammation, coordinating macrophage actions on hepatocytes and HSCs to ameliorate steatohepatitis. Macrophage miR-204-3p may be a therapeutic target for MASLD. IMPACT AND IMPLICATIONS: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic inflammatory disease ranging from simple steatosis to steatohepatitis. However, the molecular mechanisms underlying the progression of MASLD remain incompletely understood. Here, we demonstrate that miR-204-3p levels in circulating peripheral blood mononuclear cells are negatively correlated with disease severity in patients with MASLD. Nuclear miR-204-3p activates ULK1 transcription and improves autophagic flux, limiting macrophage activation and hepatic steatosis. Our study provides a novel understanding of the mechanism of macrophage autophagy and inflammation in steatohepatitis and suggests that miR-204-3p may act as a potential therapeutic target for MASLD.


Asunto(s)
Hígado Graso , MicroARNs , Animales , Ratones , Homólogo de la Proteína 1 Relacionada con la Autofagia , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado Graso/etiología , Hepatocitos/metabolismo , Hígado/metabolismo , Hígado/patología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética
17.
J Hepatol ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971533

RESUMEN

BACKGROUND & AIMS: Both metabolic dysfunction and alcohol consumption cause steatotic liver disease (SLD). New nomenclature and distinction of metabolic dysfunction-associated SLD (MASLD) and MetALD categories is based on arbitrary thresholds of alcohol intake. We assessed the impact of different levels of alcohol consumption on SLD severity and its interaction with metabolic comorbidities. METHODS: Population-based study with transient elastography (FibroScan®) data from participants in Spain (derivation) and U.S. (validation) cohorts. Controlled attenuation parameter (CAP≥275 dB/m) identified SLD. At least one cardiometabolic risk factor was required to define MASLD. Among MASLD patients, low alcohol consumption was defined as an average of 5-9 drinks/week, moderate consumption as 10-13 drinks/week for females and 10-20 drinks/week for males, and increased alcohol intake (MetALD) as 14-35 drinks/week for females and 21-42 drinks/week for males. Significant fibrosis was defined as LSM≥8 kPa and at-risk MASH as FAST score≥0.35. RESULTS: The derivation cohort included 2,227 subjects with MASLD (9% reported low, 14% moderate alcohol consumption), and 76 cases with MetALD. Overall prevalence of significant fibrosis and at-risk MASH were 7.6% and 14.8%, respectively. In the multivariable analysis, alcohol consumption was independently associated with significant fibrosis and at-risk MASH. A dose-dependent increase in the prevalence of significant fibrosis and at-risk MASH was observed between the number of drinks/week and the number of cardiometabolic factors. The validation cohort included 1,732 participants with MASLD, of whom 17% had significant fibrosis and 13% at-risk MASH. This cohort validated the association between moderate intake and MASLD at risk of progression (OR=1.69 [95%CI 1.06-2.71]). CONCLUSIONS: Moderate alcohol intake is commonly seen in MASLD and increases the risk of advanced disease, in a similar magnitude to MetALD spectrum. IMPACT AND IMPLICATIONS: Metabolic risk factors such as overweight, diabetes or dyslipidemia, and alcohol consumption can cause liver disease. These factors frequently co-exist, but their joint effects on liver fibrosis remain uncertain. This study analyzes subjects form the general population with metabolic dysfunction-associated steatotic liver disease (MASLD) enrolled in Spain and U.S. We show that moderate alcohol consumption has a supra-additive effect with metabolic risk factors, exponentially increasing the risk of liver fibrosis. These results suggest that patients with unhealthy metabolic status and MASLD have no safe limits of daily alcohol intake.

18.
J Hepatol ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002641

RESUMEN

BACKGROUND & AIMS: This was a randomized, double-blind, placebo-controlled study to assess the effects of pemvidutide, a glucagon-like peptide-1 (GLP-1)/glucagon dual receptor agonist, on liver fat content (LFC) in subjects with metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS: Subjects with a BMI ≥28.0 kg/m2 and LFC ≥10% by magnetic resonance imaging-proton density fat fraction were randomized 1:1:1:1 to pemvidutide at 1.2 mg, 1.8 mg, or 2.4 mg, or placebo administered subcutaneously once weekly for 12 weeks. Participants were stratified according to a diagnosis of type 2 diabetes mellitus (T2DM). The primary efficacy endpoint was relative reduction (%) from baseline in LFC after 12 weeks of treatment. RESULTS: 94 subjects were randomized and dosed. Median baseline BMI and LFC across the study population were 36.2 kg/m2 and 20.6%; 29% of subjects had T2DM. At Week 12, relative reductions in LFC from baseline were (1.2 mg) 46.6% [95% CI -63.7 to -29.6], (1.8 mg) 68.5% [95% CI -84.4 to -52.5], and (2.4 mg) 57.1% [95% CI -76.1 to -38.1] versus 4.4% [95% CI -20.2 to 11.3] in placebo subjects (p <0.001 vs. placebo, all treatment groups), with 94.4% and 72.2% of subjects achieving 30% and 50% reductions in LFC and 55.6% achieving normalization (≤5% LFC) at the 1.8 mg dose. Maximal responses for weight loss (-4.3%; p <0.001), alanine aminotransferase (-13.8 IU/L; p = 0.029), and corrected cT1 (-75.9 ms; p = 0.002) were all observed at the 1.8 mg dose. Pemvidutide was well-tolerated at all doses with no severe or serious adverse events. CONCLUSIONS: In subjects with MASLD, weekly pemvidutide treatment yielded significant reductions in LFC, markers of hepatic inflammation, and body weight compared to placebo. IMPACT AND IMPLICATIONS: MASLD, and MASH, are strongly associated with overweight and obesity and it is believed that the excess liver fat associated with obesity is an important driver of these diseases. Glucagon-like peptide-1 receptor (GLP-1R) agonists elicit weight loss through centrally and peripherally mediated effects on appetite. Unlike GLP-1R agonists, glucagon receptor (GCGR) agonists act directly on the liver to stimulate fatty acid oxidation and inhibit lipogenesis, potentially providing a more potent mechanism for liver fat content (LFC) reduction than weight loss alone. This study demonstrated the ability of once-weekly treatment with pemvidutide, a dual GLP-1R/GCGR agonist, to significantly reduce LFC, hepatic inflammatory activity, and body weight, suggesting that pemvidutide may be an effective treatment for both MASH and obesity. CLINICAL TRIAL NUMBER: NCT05006885.

19.
J Hepatol ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218228

RESUMEN

BACKGROUND & AIMS: Frailty is associated with multiple morbidities. However, its effect on chronic liver diseases remains largely unexplored. This study evaluated the association of frailty with the risk of incident metabolic dysfunction-associated steatotic liver disease (MASLD), cirrhosis, liver cancer, and liver-related mortality. METHODS: A total of 339,298 participants without prior liver diseases from the UK Biobank were included. Baseline frailty was assessed by using physical frailty and the frailty index, categorizing participants as nonfrail, prefrail, or frail. The primary outcome was MASLD, with secondary outcomes, including cirrhosis, liver cancer, and liver-related mortality, confirmed through hospital admission records and death registries. RESULTS: During a median follow-up of 11.6 years, 4,667 MASLD, 1,636 cirrhosis, 257 liver cancer, and 646 liver-related mortality cases were identified. After multivariable adjustment, the risk of MASLD was found to be higher in participants with prefrailty (physical frailty: HR = 1.66, 95% CI = 1.40-1.97; frailty index: HR = 2.01, 95% CI = 1.67-2.42) and frailty (physical frailty: HR = 3.32, 95% CI = 2.54-4.34; frailty index: HR = 4.54, 95% CI = 3.65-5.66) than in those with nonfrailty. Similar results were also observed for cirrhosis, liver cancer, and liver-related mortality. Additionally, the frail groups had a higher risk of MASLD, which was defined as magnetic resonance imaging-derived liver proton density fat fraction > 5%, than the nonfrail group (physical frailty: OR = 1.64, 95% CI = 1.32-2.04; frailty index: OR = 1.48, 95% CI = 1.30-1.68). CONCLUSIONS: Frailty was associated with an increased risk of chronic liver diseases. Public health strategies should target reducing chronic liver disease risk in frail individuals. IMPACT AND IMPLICATIONS: While frailty is common and associated with a poor prognosis in people with MASLD and advanced chronic liver diseases, its impact on the subsequent risk of these outcomes remains largely unexplored. Our study showed that frailty was associated with the increased risks of MASLD, cirrhosis, liver cancer, and liver-related mortality. This finding suggests that assessing frailty may help identify a high-risk population vulnerable to developing chronic liver diseases. Implementing strategies that target frailty could have major public health benefits for liver-related disease prevention.

20.
J Hepatol ; 80(5): 764-777, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38181823

RESUMEN

BACKGROUND & AIMS: Clinical evidence substantiates a link between inflammatory bowel disease, particularly Crohn's disease (CD), and metabolic dysfunction-associated steatotic liver disease (MASLD). This study aims to explore the underlying molecular mechanisms responsible for this association. METHODS: MASLD was induced by administering high-fat and western diets, while inflammatory bowel disease was induced using DSS (dextran sulfate sodium) and the Il10 knockout (KO) mouse model. The investigation into the role of secondary bile acids (SBAs) in ileitis involved employing metagenomic sequencing, conducting metabolomics detection, performing fecal microbiota transplantation, and constructing CD8+ T cell-specific gene knockout mice. RESULTS: In MASLD+DSS and Il10 KO MASLD mice, we observed ileitis characterized by T-cell infiltration and activation in the terminal ileum. This condition resulted in decreased bile acid levels in the portal vein and liver, inhibited hepatic farnesoid X receptor (FXR) activation, and exacerbated MASLD. Metagenomic and metabolomic analysis of ileal contents revealed increased Clostridium proliferation and elevated SBA levels in MASLD-associated ileitis. Experiments using germ-free mice and fecal microbiota transplantation suggested an association between SBA and MASLD-related ileitis. In vitro, SBAs promoted CD8+ T-cell activation via the TGR5, mTOR, and oxidative phosphorylation pathways. In vivo, TGR5 KO in CD8+ T cells effectively alleviated ileitis and reversed the MASLD phenotype. Clinical data further supported these findings, demonstrating a positive correlation between ileitis and MASLD. CONCLUSION: MASLD-induced changes in intestinal flora result in elevated levels of SBAs in the ileum. In the presence of a compromised intestinal barrier, this leads to severe CD8+ T cell-mediated ileitis through the TGR5/mTOR/oxidative phosphorylation signaling pathway. Ileitis-induced tissue damage impairs enterohepatic circulation, inhibits hepatic FXR activation, and exacerbates the MASLD phenotype. IMPACT AND IMPLICATIONS: Our study provides a comprehensive investigation of the interplay and underlying mechanisms connecting ileitis and metabolic dysfunction-associated steatotic liver disease (MASLD). Secondary bile acids produced by intestinal bacteria act as the critical link between MASLD and ileitis. Secondary bile acids exert their influence by disrupting liver lipid metabolism through the promotion of CD8+ T cell-mediated ileitis. In future endeavors to prevent and treat MASLD, it is essential to thoroughly account for the impact of the intestinal tract, especially the ileum, on liver function via the enterohepatic circulation.


Asunto(s)
Enfermedad de Crohn , Hígado Graso , Ileítis , Ratones , Animales , Ácidos y Sales Biliares , Interleucina-10 , Linfocitos T CD8-positivos , Transducción de Señal/genética , Íleon , Ratones Noqueados , Serina-Treonina Quinasas TOR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA