Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 30(25): e202304228, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38415315

RESUMEN

Colloidal and supported manganese nanoparticles were synthesized following an organometallic approach and applied in the catalytic transfer hydrogenation (CTH) of aldehydes and ketones. Reaction parameters for the preparation of colloidal nanoparticles (NPs) were optimized to yield small (2-2.5 nm) and well-dispersed NPs. Manganese NPs were further immobilized on an imidazolium-based supported ionic phase (SILP) and characterized to evaluate NP size, metal loading, and oxidation states. Oxidation of the Mn NPs by the support was observed resulting in an average formal oxidation state of +2.5. The MnOx@SILP material showed promising performance in the CTH of aldehydes and ketones using 2-propanol as a hydrogen donor, outperforming previously reported Mn NPs-based CTH catalysts in terms of metal loading-normalized turnover numbers. Interestingly, MnOx@SILP were found to lose activity upon air exposure, which correlates with an additional increase in the average oxidation state of Mn as revealed by X-ray absorption spectroscopic studies.

2.
Angew Chem Int Ed Engl ; 59(29): 11977-11983, 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32220119

RESUMEN

Rhodium nanoparticles immobilized on an acid-free triphenylphosphonium-based supported ionic liquid phase (Rh@SILP(Ph3 -P-NTf2 )) enabled the selective hydrogenation and hydrodeoxygenation of aromatic ketones. The flexible molecular approach used to assemble the individual catalyst components (SiO2 , ionic liquid, nanoparticles) led to outstanding catalytic properties. In particular, intimate contact between the nanoparticles and the phosphonium ionic liquid is required for the deoxygenation reactivity. The Rh@SILP(Ph3 -P-NTf2 ) catalyst was active for the hydrodeoxygenation of benzylic ketones under mild conditions, and the product distribution for non-benzylic ketones was controlled with high selectivity between the hydrogenated (alcohol) and hydrodeoxygenated (alkane) products by adjusting the reaction temperature. The versatile Rh@SILP(Ph3 -P-NTf2 ) catalyst opens the way to the production of a wide range of high-value cyclohexane derivatives by the hydrogenation and/or hydrodeoxygenation of Friedel-Crafts acylation products and lignin-derived aromatic ketones.

3.
Angew Chem Int Ed Engl ; 57(39): 12721-12726, 2018 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-30176102

RESUMEN

Bimetallic iron-ruthenium nanoparticles embedded in an acidic supported ionic liquid phase (FeRu@SILP+IL-SO3 H) act as multifunctional catalysts for the selective hydrodeoxygenation of carbonyl groups in aromatic substrates. The catalyst material is assembled systematically from molecular components to combine the acid and metal sites that allow hydrogenolysis of the C=O bonds without hydrogenation of the aromatic ring. The resulting materials possess high activity and stability for the catalytic hydrodeoxygenation of C=O groups to CH2 units in a variety of substituted aromatic ketones and, hence, provide an effective and benign alternative to traditional Clemmensen and Wolff-Kishner reductions, which require stoichiometric reagents. The molecular design of the FeRu@SILP+IL-SO3 H materials opens a general approach to multifunctional catalytic systems (MM'@SILP+IL-func).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA