Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nanotechnology ; 35(35)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38768574

RESUMEN

The development of 6 G networks has promoted related research based on terahertz communication. As submillimeter radiation, signal transportation via terahertz waves has several superior properties, including non-ionizing and easy penetration of non-metallic materials. This paper provides an overview of different terahertz detectors based on various mechanisms. Additionally, the detailed fabrication process, structural design, and the improvement strategies are summarized. Following that, it is essential and necessary to prevent the practical signal from noise, and methods such as wavelet transform, UM-MIMO and decoding have been introduced. This paper highlights the detection process of the terahertz wave system and signal processing after the collection of signal data.

2.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446112

RESUMEN

The frequency range of terahertz waves (THz waves) is between 0.1 and 10 THz and they have properties such as low energy, penetration, transients, and spectral fingerprints, which are especially sensitive to water. Terahertz, as a frontier technology, have great potential in interpreting the structure of water molecules and detecting biological water conditions, and the use of terahertz technology for water detection is currently frontier research, which is of great significance. Firstly, this paper introduces the theory of terahertz technology and summarizes the current terahertz systems used for water detection. Secondly, an overview of theoretical approaches, such as the relaxation model and effective medium theory related to water detection, the relationship between water molecular networks and terahertz spectra, and the research progress of the terahertz detection of water content and water distribution visualization, are elaborated. Finally, the challenge and outlook of applications related to the terahertz wave detection of water are discussed. The purpose of this paper is to explore the research domains on water and its related applications using terahertz technology, as well as provide a reference for innovative applications of terahertz technology in moisture detection.


Asunto(s)
Tecnología , Agua , Agua/química
3.
Sensors (Basel) ; 22(17)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36080942

RESUMEN

The paper proposes an ultra-narrow band graphene refractive index sensor, consisting of a patterned graphene layer on the top, a dielectric layer of SiO2 in the middle, and a bottom Au layer. The absorption sensor achieves the absorption efficiency of 99.41% and 99.22% at 5.664 THz and 8.062 THz, with the absorption bandwidths 0.0171 THz and 0.0152 THz, respectively. Compared with noble metal absorbers, our graphene absorber can achieve tunability by adjusting the Fermi level and relaxation time of the graphene layer with the geometry of the absorber unchanged, which greatly saves the manufacturing cost. The results show that the sensor has the properties of polarization-independence and large-angle insensitivity due to the symmetric structure. In addition, the practical application of testing the content of hemoglobin biomolecules was conducted, the frequency of first resonance mode shows a shift of 0.017 THz, and the second resonance mode has a shift of 0.016 THz, demonstrating the good frequency sensitivity of our sensor. The S (sensitivities) of the sensor were calculated at 875 GHz/RIU and 775 GHz/RIU, and quality factors FOM (Figure of Merit) are 26.51 and 18.90, respectively; and the minimum limit of detection is 0.04. By comparing with previous similar sensors, our sensor has better sensing performance, which can be applied to photon detection in the terahertz band, biochemical sensing, and other fields.


Asunto(s)
Grafito , Refractometría , Metales , Refracción Ocular , Dióxido de Silicio
4.
Sensors (Basel) ; 21(9)2021 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-34063265

RESUMEN

We report on a prototypical study of the detection of microplastic embedded in table salts by using terahertz time-domain spectroscopy. In the experiment, high-density polyethylene (HDPE) of sizes from 150 to 400 µm are used as a representative microplastic and mixed with table salts. Analyzing terahertz transmittance with an effective medium model, we extract various optical properties such as refractive index, absorption coefficient, and real/imaginary parts of the dielectric constant of the mixture. Consequently, the optical properties exhibit volume-ratio-dependence in 0.1-0.5 THz regimes. Especially, the refractive index and the real part of the dielectric constant possess monotonic frequency dependence, meaning that the quantities can be relevant indicators for the detection of the microplastic in terms of practical applications. Our work proves that terahertz time-domain spectroscopy can pave a way to recognize microplastic mixed with salts and be expanded for detecting various micro-sized particles.

5.
Adv Sci (Weinh) ; 11(34): e2405378, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38976553

RESUMEN

A 3D bulk metamaterial (MM) containing amorphous multilayered split-ring resonators is proposed, fabricated, and evaluated. Experimentally, the effective refractive index is engineered via the 3D bulk MM, with a contrast of 0.118 across the frequency span from 0.315 to 0.366 THz and the index changing at a slope of 2.314 per THz within this frequency range. Additionally, the 3D bulk MM exhibits optical isotropy with respect to polarization. Moreover, the peak transmission and optical dispersion are tailored by adjusting the density of the split-ring resonators. Compared to reported conventional approaches for constructing bulk MMs, this approach offers advantages in terms of the potential for large-scale manufacturing, the ability to adopt any shape, optical isotropy, and rapid optical dispersion. These features hold promise for dispersive optical devices operating at THz frequencies, such as high-dispersive prisms for high-resolution spectroscopy.

6.
ACS Nano ; 18(6): 4796-4810, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38261783

RESUMEN

Telomeres are nanoscale DNA-protein complexes to protect and stabilize chromosomes. The reexpression of telomerase in cancer cells is a key determinant crucial for the infinite proliferation and long-term survival of most cancer cells. However, the use of telomerase inhibitors for cancer treatment may cause problems such as poor specificity, drug resistance, and cytotoxicity. Here, we discovered a nondrug and noninvasive terahertz modulation strategy capable of the long-term suppression of cancer cells by inhibiting telomerase activity. First, we found that an optimized frequency of 33 THz photon irradiation effectively inhibited the telomerase activity by molecular dynamics simulation and frequency filtering experiments. Moreover, in vitro experiments showed that telomerase activity in 4T1 and MCF-7 cells significantly decreased by 77% and 80% respectively, after 21 days of regular 33 THz irradiation. Furthermore, two kinds of cells were found to undergo aging, apoptosis, and DNA double-strand breaks caused by telomere crisis, which seriously affected the survival of cancer cells. In addition, the tumorigenicity of 4T1 cells irradiated with 33 THz waves for 21 days in in vivo mice decreased by 70%. In summary, this study demonstrates the potential application of THz modulation in nano therapy for cancer.


Asunto(s)
Neoplasias , Telomerasa , Animales , Ratones , Telomerasa/metabolismo , Inhibidores Enzimáticos/farmacología , Telómero , Apoptosis , ADN
7.
Front Bioeng Biotechnol ; 11: 1147684, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180041

RESUMEN

Introduction: Terahertz waves lie within the energy range of hydrogen bonding and van der Waals forces. They can couple directly with proteins to excite non-linear resonance effects in proteins, and thus affect the structure of neurons. However, it remains unclear which terahertz radiation protocols modulate the structure of neurons. Furthermore, guidelines and methods for selecting terahertz radiation parameters are lacking. Methods: In this study, the propagation and thermal effects of 0.3-3 THz wave interactions with neurons were modelled, and the field strength and temperature variations were used as evaluation criteria. On this basis, we experimentally investigated the effects of cumulative radiation from terahertz waves on neuron structure. Results: The results show that the frequency and power of terahertz waves are the main factors influencing field strength and temperature in neurons, and that there is a positive correlation between them. Appropriate reductions in radiation power can mitigate the rise in temperature in the neurons, and can also be used in the form of pulsed waves, limiting the duration of a single radiation to the millisecond level. Short bursts of cumulative radiation can also be used. Broadband trace terahertz (0.1-2 THz, maximum radiated power 100 µW) with short duration cumulative radiation (3 min/day, 3 days) does not cause neuronal death. This radiation protocol can also promote the growth of neuronal cytosomes and protrusions. Discussion: This paper provides guidelines and methods for terahertz radiation parameter selection in the study of terahertz neurobiological effects. Additionally, it verifies that the short-duration cumulative radiation can modulate the structure of neurons.

8.
ACS Chem Neurosci ; 14(23): 4128-4138, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37983764

RESUMEN

Amyloid-ß (Aß) and its assemblies play important roles in the pathogenesis of Alzheimer's disease (AD). Recent studies conducted by experimental and computational researchers have extensively explored the structure, assembly, and influence of biomolecules and cell membranes on Aß. However, the impact of terahertz waves on the structures of Aß monomers and aggregates remains largely unexplored. In this study, we systematically investigate the molecular mechanisms by which terahertz waves affect the structure of the Aß42 monomer, dimer, and tetramer through all-atom molecular dynamics (MD) simulations. Our findings indicate that terahertz waves at a specific frequency (42.55 THz) can enhance intramolecular and intermolecular interactions in the Aß42 monomer and dimer, respectively, by resonating with the symmetric stretching mode of the -COO- groups and the symmetric bending/stretching mode of -CH3 groups. Consequently, the ß-structure content of the Aß42 monomer is greatly increased, and the binding energy between the monomers in the Aß42 dimer is significantly enhanced. Additionally, our observations suggest that terahertz waves can mildly stabilize the structure of tetrameric protofibrils by enhancing the interactions among peripheral peptides. Furthermore, we also investigated the effect of the frequency of terahertz waves on the structure of Aß42. The present study contributes to a better understanding of the impact of external fields on the biobehavior of Aß42 peptides and may shed some light on the potential risks associated with electromagnetic field radiation.


Asunto(s)
Enfermedad de Alzheimer , Simulación de Dinámica Molecular , Humanos , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Fragmentos de Péptidos/metabolismo
9.
Polymers (Basel) ; 15(23)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38231965

RESUMEN

In this study, we investigated how high-temperature, high-pressure hydrogen affects the optical properties of three kinds of sealing rubber (chloroprene rubber, ethylene propylene diene monomer, and acrylonitrile butadiene rubber) using pulsed terahertz waves. The optical properties of the rubber samples were analyzed before and after exposure to hydrogen (80 °C and 200 bar) for 72 h. The results showed that the terahertz waves had a shorter time delay and a lower signal intensity for all rubber types. The exposure response intensity, refractive index, and absorption rate also changed in the frequency domain. Raman and Fourier transform infrared spectroscopy were used for comparison, and a few peak shifts were observed. However, the Raman spectra had low signal quality, and the laser damaged the specimen. The study demonstrates that terahertz waves can be used as a non-contact non-destructive testing technique to evaluate the changes in sealing rubbers after hydrogen exposure.

10.
Adv Sci (Weinh) ; 9(24): e2201391, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35839468

RESUMEN

Solid-state molecular phonons play a crucial role in the performance of diverse photonic and optoelectronic devices. In this work, new organic terahertz (THz) generators based on a catechol group that acts as a phonon suppressing intermolecular adhesive are developed. The catechol group is widely used in mussel-inspired mechanical adhesive chemistry. Newly designed organic electro-optic crystals consist of catechol-based nonlinear optical 4-(3,4-dihydroxystyryl)-1-methylpyridinium (DHP) cations and 4-(trifluoromethyl)benzenesulfonate anions (TFS), which both have multiple interionic interaction capability. Interestingly, compared to benchmark organic crystals for THz generators, DHP-TFS crystals concomitantly achieve top level values of the lowest void volume and the highest crystal density, resulting in an exceptionally small amplitude of solid-state molecular phonons. Simultaneously achieving small molecular phonon amplitude, large optical nonlinearity and good phase matching at infrared optical pump wavelengths, DHP-TFS crystals are capable of generating broadband THz waves of up to 16 THz with high optical-to-THz conversion efficiency; one order of magnitude higher than commercial inorganic THz generators.

11.
Biosensors (Basel) ; 12(11)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36421147

RESUMEN

Terahertz (THz) wave is a good candidate for biological sample detection, because vibration and rotation energy levels of biomolecule are in THz band. However, the strong absorption of THz wave by water in biological samples hinders its development. In this paper, a method for direct detection of THz absorption spectra of L-arginine suspension was proposed by using a strong field THz radiation source combined with a polyethylene cell with micrometer thickness in a THz time-domain spectroscopy system. And the THz absorption spectrum of L-arginine solution was simulated by the density functional theory and the simulation result is in good agreement with the experimental results. Finally, the types of chemical bond interaction that cause the absorption peak are identified based on the experimental and simulation results. This work paves a way to investigate the THz absorption spectra and intramolecular interactions of aqueous biological samples.


Asunto(s)
Arginina , Espectroscopía de Terahertz , Simulación por Computador , Agua , Polietileno
12.
Mil Med Res ; 8(1): 28, 2021 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-33894781

RESUMEN

With the rapid development of terahertz technologies, basic research and applications of terahertz waves in biomedicine have attracted increasing attention. The rotation and vibrational energy levels of biomacromolecules fall in the energy range of terahertz waves; thus, terahertz waves might interact with biomacromolecules. Therefore, terahertz waves have been widely applied to explore features of the terahertz spectrum of biomacromolecules. However, the effects of terahertz waves on biomacromolecules are largely unexplored. Although some progress has been reported, there are still numerous technical barriers to clarifying the relation between terahertz waves and biomacromolecules and to realizing the accurate regulation of biological macromolecules by terahertz waves. Therefore, further investigations should be conducted in the future. In this paper, we reviewed terahertz waves and their biomedical research advantages, applications of terahertz waves on biomacromolecules and the effects of terahertz waves on biomacromolecules. These findings will provide novel ideas and methods for the research and application of terahertz waves in the biomedical field.


Asunto(s)
Lípidos/efectos de la radiación , Monosacáridos/efectos de la radiación , Ácidos Nucleicos/efectos de la radiación , Proteínas/efectos de la radiación , Radiación Terahertz , Humanos , Lípidos/fisiología , Monosacáridos/fisiología , Ácidos Nucleicos/fisiología , Proteínas/fisiología
13.
Nanomaterials (Basel) ; 11(1)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467556

RESUMEN

The waveguiding of terahertz surface plasmons by a GaAs strip-loaded graphene waveguide is investigated based on the effective-index method and the finite element method. Modal properties of the effective mode index, modal loss, and cut-off characteristics of higher order modes are investigated. By modulating the Fermi level, the modal properties of the fundamental mode could be adjusted. The accuracy of the effective-index method is verified by a comparison between the analytical results and numerical simulations. Besides the modal properties, the crosstalk between the adjacent waveguides, which determines the device integration density, is studied. The findings show that the effective-index method is highly valid for analyzing dielectric-loaded graphene plasmon waveguides in the terahertz region and may have potential applications in subwavelength tunable integrated photonic devices.

14.
Materials (Basel) ; 14(5)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33670854

RESUMEN

The radiation intensity from the intrinsic Josephson junction high-Tc superconductor Bi2Sr2CaCu2O8+δ terahertz emitters (Bi2212-THz emitters) is one of the most important characteristics for application uses of the device. In principle, it would be expected to be improved with increasing the number of intrinsic Josephson junctions N in the emitters. In order to further improve the device characteristics, we have developed a stand alone type of mesa structures (SAMs) of Bi2212 crystals. Here, we understood the radiation characteristics of our SAMs more deeply, after we studied the radiation characteristics from three SAMs (S1, S2, and S3) with different thicknesses. Comparing radiation characteristics of the SAMs in which the number of intrinsic Josephson junctions are N∼ 1300 (S1), 2300 (S2), and 3100 (S3), respectively, the radiation intensity, frequency as well as the characteristics of the device working bath temperature are well understood. The strongest radiation of the order of few tens of microwatt was observed from the thickest SAM of S3. We discussed this feature through the N2-relationship and the radiation efficiency of a patch antenna. The thinner SAM of S1 can generate higher radiation frequencies than the thicker one of S3 due to the difference of the applied voltage per junctions limited by the heat-removal performance of the device structures. The observed features in this study are worthwhile designing Bi2212-THz emitters with better emission characteristics for many applications.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 246: 119044, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33068898

RESUMEN

Terahertz (THz) waves have unique advantages in detecting biological substances. However, due to the strong absorption of THz waves by water, the development of THz detection technology in this field is seriously restricted. At present, although there are a few methods to detect hydrated materials, they cannot be widely used because of their defects. In this paper, a convenient and promising method for the detection of THz spectra of hydrated substances is proposed. A horn shaped tapered parallel plate waveguide is designed, which can enhance the electrical field of the incident THz wave at its central position, so as to obtain the THz spectral information of hydrated substances in a THz time-domain spectroscopy system. The detection of α-lactose dilute solution was demonstrated, the spectral range is from 0.1 to 1.5 THz and the sensitivity can reach the order of femtomole. This method has potential application prospect in the in situ detection of trace hydrated substances, cells and biomolecules.


Asunto(s)
Lactosa , Espectroscopía de Terahertz , Agua
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 245: 118932, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32971343

RESUMEN

The applications of terahertz (THz) radiation for plant water status monitoring require systematic studies on interaction of THz wave and plants. Here, we present theoretical investigations on scattering behavior of THz waves reflected by and transmitting through a plant leaf under different water content. A theoretical model combining integral equation and radiative transfer theory is presented to fit the measured data. Good agreement confirms the availability of the model for water status evaluation when variation of leaf thickness and surface roughness is considered. We investigate the applicability of THz waves for water status monitoring in reflection and transmission geometries under different temperatures, salinities and polarizations.


Asunto(s)
Radiación Terahertz , Agua , Modelos Teóricos , Hojas de la Planta
17.
Adv Sci (Weinh) ; 7(20): 2001738, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33101871

RESUMEN

New organic THz generators are designed herein by molecular engineering of the refractive index, phonon mode, and spatial asymmetry. These benzothiazolium crystals simultaneously satisfy the crucial requirements for efficient THz wave generation, including having nonlinear optical chromophores with parallel alignment that provide large optical nonlinearity; good phase matching for enhancing the THz generation efficiency in the near-infrared region; strong intermolecular interactions that provide restraining THz self-absorption; high solubility that promotes good crystal growth ability; and a plate-like crystal morphology with excellent optical quality. Consequently, the as-grown benzothiazolium crystals exhibit excellent characteristics for THz wave generation, particularly at near-infrared pump wavelengths around 1100 nm, which is very promising given the availability of femtosecond laser sources at this wavelength, where current conventional THz generators deliver relatively low optical-to-THz conversion efficiencies. Compared to a 1.0-mm-thick ZnTe crystal as an inorganic benchmark, the 0.28-mm-thick benzothiazolium crystal yields a 19 times higher peak-to-peak THz electric field with a broader spectral bandwidth (>6.5 THz) when pumped at 1140 nm. The present work provides a valuable approach toward realizing organic crystals that can be pumped by near-infrared sources for efficient THz wave generation.

18.
Adv Mater ; 32(35): e2000250, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32187763

RESUMEN

Metamaterials, artificially constructed structures that mimic lattices in natural materials, have made numerous contributions to the development of unconventional optical devices. With an increasing demand for more diverse functionalities, terahertz (THz) metamaterials are also expanding their domain, from the realm of mere passive devices to the broader area where functionalized active THz devices are particularly required. A brief review on THz metamaterials is given with a focus on research conducted in the authors' group. The first part is centered on enhanced THz optical responses from tightly coupled meta-atom structures, such as high refractive index, enhanced optical activity, anomalous wavelength scaling, large phase retardation, and nondispersive polarization rotation. Next, electrically gated graphene metamaterials are reviewed with an emphasis on the functionalization of enhanced THz optical responses. Finally, the linear frequency conversion of THz waves in a rapidly time-variant THz metamaterial is briefly discussed in the more general context of spatiotemporal control of light.

19.
Materials (Basel) ; 13(23)2020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-33260744

RESUMEN

The terahertz (THz) frequency range is incredibly important as it covers electromagnetic emissions typical for biological and molecular processes. All molecules emit THz waves in a unique fingerprint pattern, although the intensity of such signals is usually too weak to be detected. To address the efficiency gap in existing THz devices it is extremely important to create surfaces with perfect anti-reflection properties. Although metals are absolutely reflective, here we show both theoretically and experimentally that by constructing meta-surfaces made of a superposition of ultra-thin metallic nano-films (a couple of nanometres thick) and oxide layers a unique property of perfect transmission and impedance matching may be realised. The perfect transmission rates can be as high as 100% and it may be achieved in both optical and THz regimes. The predicted effect has been observed for numerous meta-surfaces of different compositions. The effect found here is expected to impact the renewable energies sectors, optoelectronic and telecommunication industries, accelerating the arrival of the sensors for the new 6G-technology. The phenomenon is highly relevant to all scientific fields where minimising electromagnetic losses through reflection is important.

20.
Adv Mater ; 29(30)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28589627

RESUMEN

Highly efficient nonlinear optical organic crystals are very attractive for various photonic applications including terahertz (THz) wave generation. Up to now, only two classes of ionic crystals based on either pyridinium or quinolinium with extremely large macroscopic optical nonlinearity have been developed. This study reports on a new class of organic nonlinear optical crystals introducing electron-accepting benzothiazolium, which exhibit higher electron-withdrawing strength than pyridinium and quinolinium in benchmark crystals. The benzothiazolium crystals consisting of new acentric core HMB (2-(4-hydroxy-3-methoxystyryl)-3-methylbenzo[d]thiazol-3-ium) exhibit extremely large macroscopic optical nonlinearity with optimal molecular ordering for maximizing the diagonal second-order nonlinearity. HMB-based single crystals prepared by simple cleaving method satisfy all required crystal characteristics for intense THz wave generation such as large crystal size with parallel surfaces, moderate thickness and high optical quality with large optical transparency range (580-1620 nm). Optical rectification of 35 fs pulses at the technologically very important wavelength of 800 nm in 0.26 mm thick HMB crystal leads to one order of magnitude higher THz wave generation efficiency with remarkably broader bandwidth compared to standard inorganic 0.5 mm thick ZnTe crystal. Therefore, newly developed HMB crystals introducing benzothiazolium with extremely large macroscopic optical nonlinearity are very promising materials for intense broadband THz wave generation and other nonlinear optical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA