Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 882
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 237, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438980

RESUMEN

BACKGROUND: Here, we investigated the underlying transcriptional-level evidence behind phytochemical differences between two metabolically extreme genotypes of Thymus daenensis. The genotypes 'Zagheh-11' (thymol/carvacrol type, poor in essential oil [EO] [2.9%] but rich in triterpenic acids) and 'Malayer-21' (thymol type and rich in EO [3.8%]) were selected from an ongoing breeding program and then clonally propagated for further experimental use. MATERIALS AND METHODS: GC-MS, GC-FID, and HPLC-PDA were utilized to monitor the fluctuation of secondary metabolites at four phenological stages (vegetative, bud burst, early, and full-flowering stages). The highest phytochemical divergence was observed at early flowering stage. Both genotypes were subjected to mRNA sequencing (approximately 100 million paired reads) at the aforementioned stage. The expression patterns of four key genes involved in the biosynthesis of terpenoids were also validated using qRT-PCR. RESULTS: Carvacrol content in 'Zagheh-11' (26.13%) was approximately 23 times higher than 'Malayer-21' (1.12%). Reciprocally, about 10% higher thymol was found in 'Malayer-21' (62.15%). Moreover, the concentrations of three major triterpenic acids in 'Zagheh-11' were approximately as twice as those found in 'Malayer-21'. Transcriptome analysis revealed a total of 1840 unigenes that were differentially expressed, including terpene synthases, cytochrome P450, and terpenoid backbone genes. Several differentially expressed transcription factors (such as MYB, bZIP, HB-HD-ZIP, and WRKY families) were also identified. These results suggest that an active cytosolic mevalonate (MVA) pathway may be linked to higher levels of sesquiterpenes, triterpenic acids, and carvacrol in 'Zagheh-11'. The chloroplastic pathway of methyl erythritol phosphate (MEP) may have also contributed to a higher accumulation of thymol in Malayer-21. Indeed, 'Zagheh-11' showed higher expression of certain genes (HMGR, CYP71D180, ß-amyrin 28-monooxygenase, and sesquiterpene synthases) in the MVA pathway, while some genes in the MEP pathway (including DXR, ispG, and γ-terpinene synthase) were distinctly expressed in Malayer-21. Future efforts in metabolic engineering of MVA/MEP pathways may benefit from these findings to produce increased levels of desired secondary metabolites at commercial scale.


Asunto(s)
Cimenos , Ácido Mevalónico , Aceites Volátiles , Humanos , Fosfatos , Timol , Genotipo , Fitoquímicos , RNA-Seq , Terpenos , Expresión Génica
2.
Anal Biochem ; 691: 115551, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38702023

RESUMEN

A molecularly imprinted electrochemical sensor was facilely fabricated for the detection of thymol (THY). o-Phenylenediamine (oPD) was used as the functional monomer and electropolymerized on the surface of the glassy carbon electrode (GCE) by using THY as the templates. After the THY templates were removed with 50 % (v/v) ethanol, imprinted cavities complementary to the templates were formed within the poly(o-phenylenediamine) (PoPD) films. The resultant molecularly imprinted PoPD/GCE (MI-PoPD/GCE) was used for the detection of THY, and a wide linear range from 0.5 to 100 µM with a low limit of detection (LOD) of 0.084 µM were obtained under the optimal conditions. The developed MI-PoPD/GCE also displays high selectivity, reproducibility and stability for THY detection. Finally, the content of THY in the real samples was accurately determined by the as-fabricated MI-PoPD/GCE, demonstrating its high practicability and reliability.


Asunto(s)
Técnicas Electroquímicas , Impresión Molecular , Fenilendiaminas , Timol , Fenilendiaminas/química , Timol/análisis , Timol/química , Técnicas Electroquímicas/métodos , Límite de Detección , Electrodos , Polímeros Impresos Molecularmente/química , Carbono/química , Reproducibilidad de los Resultados
3.
J Fluoresc ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771406

RESUMEN

The tip of a piece of plastic fiber was dyed with thymol blue to form a temperature probe. The fiber optic sensor was calibrated on a heatboard by comparison with a K-type thermal couple. Fluorescence characteristics including fluorescence intensity, emission bandwidth, peak & barycenter wavelengths, and self-referenced intensity ratio were used to carry the information of environment temperature. Accordingly, more than five temperature sensing functions were retrieved from the fluorescent sensor. Among such functions, the emission band barycenter showed premium precision. Temperature-driven shift of the emission band barycenter has a sensitivity of 0.095 nm/K, with a nonlinearity of 2.2%FS, resolution of 4 K and repeatability of 1.8%FS. The sensor can find its applications in wearable devices and radiofrequency ablation. Finally in a verification experiment, the sensor was used to monitor the temperature of a microwave oven chamber in real time.

4.
Mol Biol Rep ; 51(1): 61, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38170326

RESUMEN

BACKGROUND: Breast adenocarcinoma cells (MCF-7) are characterized by the overexpression of apoptotic marker genes and proliferative cell nuclear antigen (PCNA), which promote cancer cell proliferation. Thymol, derived from Nigella sativa (NS), has been investigated for its potential anti-proliferative and anticancer properties, especially its ability to suppress Cyclin D1 and PCNA expression, which are crucial in the proliferation of cancer cells. METHODS: The cytotoxicity of thymol on MCF-7 cells was assessed using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release methods. Thymol was tested at increasing concentrations (0-1000 µM) to evaluate its impact on MCF-7 cell growth. Additionally, Cyclin D1 and PCNA gene expression in thymol-treated and vehicle control groups of MCF-7 were quantified using real-time Polymerase Chain Reaction (RT-qPCR). Protein-ligand interactions were also investigated using the CB-Dock2 server. RESULTS: Thymol significantly inhibited MCF-7 cell growth, with a 50% inhibition observed at 200 µM. The gene expression of Cyclin D1 and PCNA was down-regulated in the thymol-treated group relative to the vehicle control. The experimental results were verified through protein-ligand interaction investigations. CONCLUSIONS: Thymol, extracted from NS, demonstrated specific cytotoxic effects on MCF-7 cells by suppressing the expression of Cyclin D1 and PCNA, suggesting its potential as an effective drug for MCF-7. However, additional in vivo research is required to ascertain its efficacy and safety in medical applications.


Asunto(s)
Neoplasias de la Mama , Nigella sativa , Humanos , Femenino , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Células MCF-7 , Neoplasias de la Mama/genética , Timol/farmacología , Timol/uso terapéutico , Nigella sativa/metabolismo , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Antígenos Nucleares/uso terapéutico , Ciclina D1/genética , Ciclina D1/metabolismo , Regulación hacia Abajo , Ligandos , Proliferación Celular
5.
Cell Biochem Funct ; 42(5): e4084, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38963282

RESUMEN

Safe chemicals for drug withdrawal can be extracted from natural sources. This study investigates the effects of clonidine and Thymbra spicata extract (TSE) on mice suffering from morphine withdrawal syndrome. Thymol, which is the active constituent in TSE, was also tested. A total of 90 mice were divided into nine groups. Group 1 was the control group, while Group 2 was given only morphine, and Group 3 received morphine and 0.2 mg/kg of clonidine. Groups 4-6 were given morphine along with 100, 200, and 300 mg/kg of TSE, respectively. Groups 7-9 received morphine plus 30, 60, and 90 mg/kg of Thymol, respectively, for 7 days. An oral naloxone challenge of 3 mg/kg was used to induce withdrawal syndrome in all groups. Improvement of liver enzyme levels (aspartate aminotransferase, alkaline phosphatase, and alanine transaminase) (p < .01) and behavioral responses (frequencies of jumping, frequencies of two-legged standing, Straub tail reaction) (p < .01) were significantly observed in the groups receiving TSE and Thymol (Groups 4-9) compared to Group 2. Additionally, antioxidant activity in these groups was improved compared to Group 2. Nitric oxide significantly decreased in Groups 4 and 6 compared to Groups 2 and 3 (p < .01). Superoxide dismutase increased dramatically in Groups 5, 8, and 9 compared to Groups 2 and 3 (p < .01). Groups 5-9 were significantly different from Group 2 in terms of malondialdehyde levels (p < .01). Certain doses of TSE and Thymol were found to alleviate the narcotics withdrawal symptoms. This similar effect to clonidine can pave the way for their administration in humans.


Asunto(s)
Antioxidantes , Hígado , Morfina , Extractos Vegetales , Síndrome de Abstinencia a Sustancias , Timol , Animales , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Síndrome de Abstinencia a Sustancias/metabolismo , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/química , Timol/farmacología , Timol/uso terapéutico , Antioxidantes/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Morfina/farmacología , Masculino , Conducta Animal/efectos de los fármacos , Clonidina/farmacología , Clonidina/uso terapéutico , Lamiaceae/química , Óxido Nítrico/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34930840

RESUMEN

Thymol and carvacrol are phenolic monoterpenes found in thyme, oregano, and several other species of the Lamiaceae. Long valued for their smell and taste, these substances also have antibacterial and anti-spasmolytic properties. They are also suggested to be precursors of thymohydroquinone and thymoquinone, monoterpenes with anti-inflammatory, antioxidant, and antitumor activities. Thymol and carvacrol biosynthesis has been proposed to proceed by the cyclization of geranyl diphosphate to γ-terpinene, followed by a series of oxidations via p-cymene. Here, we show that γ-terpinene is oxidized by cytochrome P450 monooxygenases (P450s) of the CYP71D subfamily to produce unstable cyclohexadienol intermediates, which are then dehydrogenated by a short-chain dehydrogenase/reductase (SDR) to the corresponding ketones. The subsequent formation of the aromatic compounds occurs via keto-enol tautomerisms. Combining these enzymes with γ-terpinene in in vitro assays or in vivo in Nicotiana benthamiana yielded thymol and carvacrol as products. In the absence of the SDRs, only p-cymene was formed by rearrangement of the cyclohexadienol intermediates. The nature of these unstable intermediates was inferred from reactions with the γ-terpinene isomer limonene and by analogy to reactions catalyzed by related enzymes. We also identified and characterized two P450s of the CYP76S and CYP736A subfamilies that catalyze the hydroxylation of thymol and carvacrol to thymohydroquinone when heterologously expressed in yeast and N. benthamiana Our findings alter previous views of thymol and carvacrol formation, identify the enzymes involved in the biosynthesis of these phenolic monoterpenes and thymohydroquinone in the Lamiaceae, and provide targets for metabolic engineering of high-value terpenes in plants.


Asunto(s)
Cimenos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Lamiaceae/metabolismo , Deshidrogenasas-Reductasas de Cadena Corta/metabolismo , Timol/análogos & derivados , Timol/metabolismo , Cimenos/química , Sistema Enzimático del Citocromo P-450/genética , Lamiaceae/enzimología , Lamiaceae/genética , Redes y Vías Metabólicas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Deshidrogenasas-Reductasas de Cadena Corta/genética , Timol/química
7.
Chem Biodivers ; : e202400810, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743456

RESUMEN

Oliveria decumbens is a folkloric medicinal plant belonging to the Apiaceae family, traditionally utilized to treat various diseases like gastrointestinal disorders, fever, and wounds. This review aims to provide a comprehensive overview of the plant's phytochemical composition and biological properties, with potential implications for various industries and avenues of further research. The data presented here has been compiled through searches utilizing the keyword "Oliveria" across scientific databases such as PubMed, Web of Science, Scopus, ScienceDirect, and SciFinder. Carvacrol and thymol have been identified as the primary volatile constituents, though the complete profile of the plant extract remains to be fully elucidated. Notably, Oliveria decumbens essential oil exhibits significant antibacterial, antifungal, antioxidant, and anticancer properties. Additionally, the plant extract demonstrates promising antiprotozoal, antiviral, hepatoprotective, and immunostimulant effects, although these findings are primarily derived from preliminary studies. While in vitro and in vivo investigations have validated some traditional uses of O. decumbens, further pre-clinical testing is warranted to ascertain both efficacy and safety profiles. Moreover, the identification of specific components within the plant extract is crucial for a more comprehensive understanding of the mechanisms of action underlying its therapeutic properties within the realm of phytomedicine.

8.
J Insect Sci ; 24(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805649

RESUMEN

Varroa destructor Oud (Acari: Varroidae) is a harmful ectoparasite of Apis mellifera L. honey bees causing widespread colony losses in Europe and North America. To control populations of these mites, beekeepers have an arsenal of different treatments, including both chemical and nonchemical options. However, nonchemical treatments can be labor intensive, and Varroa has gained resistance to some conventional pesticides, and the use of other chemical treatments is restricted temporally (e.g., cannot be applied during periods of honey production). Thus, beekeepers require additional treatment options for controlling mite populations. The compound 1-allyloxy-4-propoxybenzene (3c{3,6}) is a diether previously shown to be a strong feeding deterrent against Lepidopteran larvae and a repellent against mosquitoes and showed promise as a novel acaricide from laboratory and early field trials. Here we test the effect of the compound, applied at 8 g/brood box on wooden release devices, on honey bees and Varroa in field honey bee colonies located in Maryland, USA, and using a thymol-based commercial product as a positive control. 3c{3,6} had minimal effect on honey bee colonies, but more tests are needed to determine whether it affected egg production by queens. Against Varroa3c{3,6} had an estimated efficacy of 78.5%, while the positive control thymol product showed an efficacy of 91.3%. 3c{3,6} is still in the development stage, and the dose or application method needs to be revisited.


Asunto(s)
Acaricidas , Varroidae , Animales , Abejas/parasitología , Varroidae/efectos de los fármacos , Maryland , Apicultura/métodos
9.
J Insect Sci ; 24(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805647

RESUMEN

The parasitic mite Varroa destructor (Anderson and Trueman) is one of the greatest stressors of Apis mellifera (L.) honey bee colonies. When Varroa infestations reach damaging levels during fall, rapid control is necessary to minimize damage to colonies. We performed a field trial in the US Southeast to determine if a combination of registered treatments (Apivar, amitraz-based; and Apiguard, thymol-based) could provide rapid and effective control of Varroa. We compared colonies that received this combination treatment against colonies that received amitraz-based positive control treatments: (i) Apivar alone; or (ii) amitraz emulsifiable concentrate ("amitraz EC"). While not registered, amitraz EC is used by beekeepers in the United States in part because it is thought to control Varroa more rapidly and effectively than registered products. Based on measurements of Varroa infestation rates of colonies after 21 days of treatment, we found that the combination treatment controlled Varroa nearly as rapidly as the amitraz EC treatment: this or other combinations could be useful for Varroa management. At the end of the 42-day trial, colonies in the amitraz EC group had higher bee populations than those in the Apivar group, which suggests that rapid control helps reduce Varroa damage. Colonies in the combination group had lower bee populations than those in the amitraz EC group, which indicates that the combination treatment needs to be optimized to avoid damage to colonies.


Asunto(s)
Acaricidas , Timol , Toluidinas , Varroidae , Animales , Toluidinas/farmacología , Abejas/parasitología , Varroidae/efectos de los fármacos , Varroidae/fisiología , Timol/farmacología , Apicultura/métodos
10.
Int J Mol Sci ; 25(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732168

RESUMEN

Antimicrobial resistance (AMR) poses an emanating threat to humanity's future. The effectiveness of commonly used antibiotics against microbial infections is declining at an alarming rate. As a result, morbidity and mortality rates are soaring, particularly among immunocompromised populations. Exploring alternative solutions, such as medicinal plants and iodine, shows promise in combating resistant pathogens. Such antimicrobials could effectively inhibit microbial proliferation through synergistic combinations. In our study, we prepared a formulation consisting of Aloe barbadensis Miller (AV), Thymol, iodine (I2), and polyvinylpyrrolidone (PVP). Various analytical methods including SEM/EDS, UV-vis, Raman, FTIR, and XRD were carried out to verify the purity, composition, and morphology of AV-PVP-Thymol-I2. We evaluated the inhibitory effects of this formulation against 10 selected reference strains using impregnated sterile discs, surgical sutures, gauze bandages, surgical face masks, and KN95 masks. The antimicrobial properties of AV-PVP-Thymol-I2 were assessed through disc diffusion methods against 10 reference strains in comparison with two common antibiotics. The 25-month-old formulation exhibited slightly lower inhibitory zones, indicating changes in the sustained-iodine-release reservoir. Our findings confirm AV-PVP-Thymol-I2 as a potent antifungal and antibacterial agent against the reference strains, demonstrating particularly strong inhibitory action on surgical sutures, cotton bandages, and face masks. These results enable the potential use of the formulation AV-PVP-Thymol-I2 as a promising antimicrobial agent against wound infections and as a spray-on contact-killing agent.


Asunto(s)
Pruebas de Sensibilidad Microbiana , Timol , Timol/farmacología , Timol/química , Yodo/química , Yodo/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/química , Aloe/química , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Composición de Medicamentos/métodos
11.
Molecules ; 29(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38611858

RESUMEN

Nowadays, the effective processing of natural monoterpenes that constitute renewable biomass found in post-production waste into products that are starting materials for the synthesis of valuable compounds is a way to ensure independence from non-renewable fossil fuels and can contribute to reducing global carbon dioxide emissions. The presented research aims to determine, based on DFT calculations, the activity and reactivity of limonene, an organic substrate used in previous preparative analyses, in comparison to selected monoterpenes such as cymene, pinene, thymol, and menthol. The influence of the solvent model was also checked, and the bonds most susceptible to reaction were determined in the examined compounds. With regard to EHOMO, it was found that limonene reacts more easily than cymene or menthol but with more difficultly than thymol and pienene. The analysis of the global chemical reactivity descriptors "locates" the reactivity of limonene in the middle of the studied monoterpenes. It was observed that, among the tested compounds, the most reactive compound is thymol, while the least reactive is menthol. The demonstrated results can be a reference point for experimental work carried out using the discussed compounds, to focus research on those with the highest reactivity.

12.
Molecules ; 29(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38792138

RESUMEN

Cancer is ranked among lethal diseases globally, and the increasing number of cancer cases and deaths results from limited access to effective therapeutics. The use of plant-based medicine has been gaining interest from several researchers. Carvacrol and its isomeric compound, thymol, are plant-based extracts that possess several biological activities, such as antimalarial, anticancer, antifungal, and antibacterial. However, their efficacy is compromised by their poor bioavailability. Thus, medicinal scientists have explored the synthesis of hybrid compounds containing their pharmacophores to enhance their therapeutic efficacy and improve their bioavailability. Hence, this review is a comprehensive report on hybrid compounds containing carvacrol and its isomer, thymol, with potent anticancer and antibacterial agents reported between 2020 and 2024. Furthermore, their structural activity relationship (SAR) and recommended future strategies to further enhance their therapeutic effects will be discussed.


Asunto(s)
Antibacterianos , Antineoplásicos , Cimenos , Timol , Timol/química , Timol/farmacología , Cimenos/química , Cimenos/farmacología , Cimenos/uso terapéutico , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Relación Estructura-Actividad , Neoplasias/tratamiento farmacológico , Animales
13.
Molecules ; 29(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38474522

RESUMEN

A biobased material, polythymol (PTF), was prepared using thymol, a monoterpene obtained from the essential oil of Thymus vulgaris (Lamiaceae), as a starting material with the aim of enhancing the antimicrobial properties of this natural product. Initially, different processes were performed in order to optimize the reaction conditions to obtain a macromolecule with a high purity and yield. PTF was characterized using different techniques, such as NMR, infrared, UV-Vis, and thermogravimetric analyses. The antimicrobial activity of both PTF and thymol was evaluated against different microorganisms, including S. aureus, E. coli, P. aeruginosa, and C. albicans. The obtained MIC values showed a higher potential for PTF than the monomer thymol-for example, against S. aureus (500 and 31.5 µg·mL-1 for thymol and PTF, respectively). Therefore, the obtained results show that the polymerization of thymol afforded more active biomaterial than the starting monomeric antimicrobial compound (thymol), suggesting that PTF is an important biomaterial.


Asunto(s)
Antiinfecciosos , Aceites Volátiles , Timol/química , Staphylococcus aureus , Escherichia coli , Aceites Volátiles/química , Materiales Biocompatibles , Pruebas de Sensibilidad Microbiana , Antibacterianos/química
14.
J Sci Food Agric ; 104(10): 5751-5763, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38381096

RESUMEN

BACKGROUND: In recent decades cyanobacterial species have attracted research attention as potential sources of new biostimulants. In this study, the biostimulant effects of five cyanobacterial suspensions on the growth and essential oil composition of Thymus vulgaris L. were evaluated. The expression of key genes involved in the biosynthesis of thymol and carvacrol, such as DXR and TPS2, were investigated. RESULTS: A pot culture experiment revealed that cyanobacterial application significantly improved T. vulgaris L. growth indices, including plant height, dry and fresh weight, leaf and flower number, leaf area, and photosynthetic pigment content. Total phenol and flavonoid content in inoculated plants also showed a significant increase compared with the control. Anabaena torulosa ISB213 inoculation significantly increased root and shoot biomass by about 65.38% and 92.98% compared with the control, respectively. Nostoc calcicola ISB215 inoculation resulted in the highest amount of essential oil accumulation (18.08 ± 0.62) in T. vulgaris leaves, by about 72.19% compared with the control (10.5 ± 0.50%). Interestingly, the amount of limonene in the Nostoc ellipsosporum ISB217 treatment (1.67%) increased significantly compared with the control and other treatments. The highest expression rates of DXR and TPS2 genes were observed in the treatment of N. ellipsosporum ISB217, with 5.92-fold and 5.22-fold increases over the control, respectively. CONCLUSION: This research revealed the potential of the cyanobacteria that were studied as promising biostimulants to increase the production of biomass and secondary metabolites of T. vulgaris L., which could be a suitable alternative to chemical fertilizers. © 2024 Society of Chemical Industry.


Asunto(s)
Cianobacterias , Aceites Volátiles , Proteínas de Plantas , Thymus (Planta) , Thymus (Planta)/química , Thymus (Planta)/metabolismo , Thymus (Planta)/genética , Cianobacterias/metabolismo , Cianobacterias/genética , Cianobacterias/crecimiento & desarrollo , Aceites Volátiles/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Hojas de la Planta/química , Regulación de la Expresión Génica de las Plantas , Metaboloma , Inoculantes Agrícolas/genética , Inoculantes Agrícolas/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo
15.
Microb Pathog ; 183: 106301, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37579824

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a foremost human and animal pathogen with public health and veterinary significance causing hospital and community infections and contagious bovine mastitis. Due to its ability to develop multidrug resistance (MDR) and its pathogenicity, MRSA infection control is becoming a global concern. Natural antibacterial options are needed to combat MDR development and infectious dissemination. This study investigated the antimicrobial resistance and virulence genes profiling of MRSA isolates and explored the antivirulence efficacy of trans-cinnamaldehyde, thymol, and carvacrol essential oils (EOs) against multivirulent and MDR-MRSA isolates. Thirty six S. aureus isolates (25%) were retrieved, of which 34 (94.4%) were MRSA. A high prevalence of MDR (66.7%) was monitored and all 53 molecularly verified isolates possessed icaA and cna virulence genes. Moreover, 94.1% of these isolates were multivirulent with 23.5% of them carrying icaA, cna, eta, tst, and sea virulence genes. Our data proved superior in vitro antimicrobial and antivirulence activities of trans-cinnamaldehyde, thymol, and carvacrol. They inhibited the growth of multi-virulent and MDR-MRSA isolates and downregulated the transcription of examined virulence genes. Our study suggests using EOs as prospective antimicrobials with excellent antivirulence activities against MRSA isolates. We provided data regarding the eventual role of phytogenics in prevention and control of MRSA infection.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Femenino , Bovinos , Humanos , Staphylococcus aureus , Timol/farmacología , Estudios Prospectivos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/epidemiología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
16.
Microb Pathog ; 183: 106280, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37541555

RESUMEN

Antibiotic resistant bacteria are immune to most antibiotics and are therefore very difficult to treat and in most cases lead to death. As such there is a pressing need for alternative and more efficient antibacterial drugs which can target these drug-resistant strains as well. The objective of this research work was to investigate the antibacterial properties of Thymus linearis essential oil (EO) against multiple disease-causing bacterial pathogens. Additionally, the study aimed to examine the molecular docking and molecular dynamic (MD) simulations of the primary components of the EO with the essential bacterial proteins and enzymes. Gas chromatography-mass spectrometry was employed to analyse the chemical composition of Thymus linearis EO. The initial screening for antibacterial properties involved the use of disc diffusion and microdilution techniques. Molecular docking studies were conducted utilising Autodock Vina. The outcomes were subsequently visualised through BIOVIA Discovery Studio. MD simulations were conducted using iMODS, an internet-based platform designed for MD simulations. The essential oil (EO) was found to contain 26 components, with thymol, carvacrol, p-cymene, and γ-terpinene being the primary constituents. The study findings revealed that Thymus linearis EO demonstrated antibacterial effects that were dependent on both the dose and time. The results of molecular docking studies revealed that the primary constituents of the EO, namely thymol, carvacrol, and p-cymene, exhibited robust interactions with the active site of the bacterial DNA gyrase enzyme. This finding provides an explanation for the antibacterial mechanism of the EO. The results indicate that Thymus linearis EO possesses potent antibacterial properties against the MDR microorganisms. Molecular docking analyses revealed that the essential oil's primary components interact with the amino acid residues of the DNA-Gyrase B enzyme, resulting in a favourable docking score.


Asunto(s)
Aceites Volátiles , Thymus (Planta) , Aceites Volátiles/farmacología , Aceites Volátiles/química , Timol , Simulación del Acoplamiento Molecular , Girasa de ADN , Novobiocina , Antibacterianos/farmacología
17.
Respir Res ; 24(1): 45, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755306

RESUMEN

BACKGROUND: Upper respiratory tract infections (URTIs) impact all age groups and have a significant economic and social burden on society, worldwide. Most URTIs are mild and self-limiting, but due to the wide range of possible causative agents, including Rhinovirus (hRV), Adenovirus, Respiratory Syncytial Virus (RSV), Coronavirus and Influenza, there is no single and effective treatment. Over-the-counter (OTC) remedies, including traditional medicines and those containing plant derived substances, help to alleviate symptoms including inflammation, pain, fever and cough. PURPOSE: This systematic review focuses on the role of the major plant derived substances in several OTC remedies used to treat cold symptoms, with a particular focus on the transient receptor potential (TRP) channels involved in pain and cough. METHODS: Literature searches were done using Pubmed and Web of Science, with no date limitations, using the principles of the PRISMA statement. The search terms used were 'TRP channel AND plant compound', 'cough AND plant compound', 'cough AND TRP channels AND plant compound', 'cough AND P2X3 AND plant compound' and 'P2X3 AND plant compound' where plant compound represents menthol or camphor or eucalyptus or turpentine or thymol. RESULTS: The literature reviewed showed that menthol activates TRPM8 and may inhibit respiratory reflexes reducing irritation and cough. Menthol has a bimodal action on TRPA1, but inhibition may have an analgesic effect. Eucalyptus also activates TRPM8 and inhibits TRPA1 whilst down regulating P2X3, aiding in the reduction of cough, pain and airway irritation. Camphor inhibits TRPA1 and the activation of TRPM8 may add to the effects of menthol. Activation of TRPV1 by camphor, may also have an analgesic effect. CONCLUSIONS: The literature suggests that these plant derived substances have multifaceted actions and can interact with the TRP 'cough' receptors. The plant derived substances used in cough and cold medicines have the potential to target multiple symptoms experienced during a cold.


Asunto(s)
Canales Catiónicos TRPM , Canales de Potencial de Receptor Transitorio , Humanos , Mentol/farmacología , Mentol/uso terapéutico , Alcanfor/farmacología , Canal Catiónico TRPA1 , Tos/tratamiento farmacológico , Tos/etiología , Dolor , Analgésicos/farmacología , Analgésicos/uso terapéutico
18.
Biometals ; 36(6): 1273-1284, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37351759

RESUMEN

The use of metal nanoparticles (NPs) conjugated with natural herbal molecules in biomedical applications has been growing. In this work, we synthesized Iron oxide NPs conjugated with thymol (Fe3O4@Glu-Thymol) and investigated their antibacterial and anticancer potentials. Physicochemical features of the NPs were studied by FT-IR, EDS-mapping, XRD, DLS, zeta potential, and electron microscopy. The antibacterial activity of the NPs against Pseudomonas aeruginosa and anticancer activity for breast cancer cells was investigated by broth microdilution and MTT and flow cytometry assays, respectively. The expression of apoptosis signaling genes in breast cancer cells that were treated with the NPs was studied by qPCR assay. The NPs were spherical, in a size range of 40-66 nm, without impurities, and with zeta potential and hydrodynamic size of - 23 mV and 185 nm, respectively. Moreover, the FT-IR and XRD assays confirmed the proper synthesis of Fe3O4 and conjugation with thymol. The minimum inhibitory concentration of the NPs for P. aeruginosa strains was 64-128 µg/mL. Our results showed that Fe3O4@Glu-Thymol was considerably more toxic for breast cancer cells than normal human cells and the 50% inhibitory concentration were 90.4 and 322 µg/mL, respectively. Upon treating breast cancer cells with the NPs the frequency of cell apoptosis increased by 18.9%. Also, the expression of the BAX and CASP8 genes in NPs treated cells significantly increased by 1.75 and 2.25 folds, respectively while the BCL-2 gene remained almost constant. This study reveals that Fe3O4@Glu-Thymol has considerable potential to be used in biomedical fields.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas del Metal , Nanopartículas , Humanos , Femenino , Timol/farmacología , Proteína X Asociada a bcl-2 , Genes bcl-2 , Espectroscopía Infrarroja por Transformada de Fourier , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas del Metal/química , Antineoplásicos/farmacología , Antineoplásicos/química , Nanopartículas Magnéticas de Óxido de Hierro , Nanopartículas/química , Caspasa 8
19.
J Enzyme Inhib Med Chem ; 38(1): 294-308, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36408833

RESUMEN

New thymol - 1,5-disubstitutedpyrazole hybrids were synthesised as dual COX-2/5-LOX inhibitors. Compounds 8b, 8g, 8c, and 4a displayed in vitro inhibitory activity against COX-2 (IC50 = 0.043, 0.045, 0.063, and 0.068 µM) nearly equal to celecoxib (IC50 = 0.045 µM) with high SI (316, 268, 204, and 151, respectively) comparable to celecoxib (327). All target compounds, 4a-c and 8a-i, showed in vitro 5-LOX inhibitory activity higher than reference quercetin. Besides, they possessed in vivo inhibition of formalin-induced paw oedema higher than celecoxib. In addition, compounds 4a, 4b, 8b, and 8g showed superior gastrointestinal safety profile (no ulceration) as celecoxib and diclofenac sodium in the population of fasted rats. In conclusion, compounds 4a, 8b, and 8g achieved the target goal. They elicited in vitro dual inhibition of COX-2/5-LOX higher than celecoxib and quercetin, in vivo potent anti-inflammatory activity higher than celecoxib and in vivo superior gastrointestinal safety profile (no ulceration) as celecoxib.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2 , Timol , Ratas , Animales , Inhibidores de la Ciclooxigenasa 2/farmacología , Ciclooxigenasa 2 , Inhibidores de la Lipooxigenasa/farmacología , Celecoxib/farmacología , Quercetina , Simulación del Acoplamiento Molecular , Antiinflamatorios/farmacología , Pirazoles/farmacología
20.
Phytother Res ; 37(7): 2811-2826, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36808768

RESUMEN

Several reports have stated the neuroprotective and learning/memory effects of Tachyspermum ammi seed extract (TASE) and its principal component thymol; however, little is known about its underlying molecular mechanisms and neurogenesis potential. This study aimed to provide insights into TASE and a thymol-mediated multifactorial therapeutic approach in a scopolamine-induced Alzheimer's disease (AD) mouse model. TASE and thymol supplementation significantly reduced oxidative stress markers such as brain glutathione, hydrogen peroxide, and malondialdehyde in mouse whole brain homogenates. Tumor necrosis factor-alpha was significantly downregulated, whereas the elevation of brain-derived neurotrophic factor and phospho-glycogen synthase kinase-3 beta (serine 9) enhanced learning and memory in the TASE- and thymol-treated groups. A significant reduction in the accumulation of Aß 1-42 peptides was observed in the brains of TASE- and thymol-treated mice. Furthermore, TASE and thymol significantly promoted adult neurogenesis, with increased doublecortin positive neurons in the subgranular and polymorphic zones of the dentate gyrus in treated-mice. Collectively, TASE and thymol could  potentially act as natural therapeutic agents for the treatment of  neurodegenerative disorders, such as  AD.


Asunto(s)
Enfermedad de Alzheimer , Ammi , Apiaceae , Fármacos Neuroprotectores , Ratones , Animales , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Timol/farmacología , Timol/uso terapéutico , Escopolamina/efectos adversos , Neuroprotección , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA