Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Clin Endocrinol (Oxf) ; 100(3): 304-311, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38148509

RESUMEN

BACKGROUND: The hypothyroid phenotype associated with resistance to thyroid hormone alpha (RTH-α) is associated with a diverse clinical picture. On the other hand, thyroid-stimulating hormone (TSH) levels are normal. Free triiodothyronine (fT3) and free thyroxine (fT4) levels can also be normal; however, normo- or macrocytic anaemia is usually present in reported cases. Diagnosis is challenging and there is limited data regarding screening methods. OBJECTIVE: The study aimed to assess the efficiency of a screening strategy for RTH-α. SUBJECTS AND METHODS: Out of a total of 6540 children evaluated at the outpatient clinics of paediatric neurology over 2 years and who underwent complete blood count and thyroid function tests, 432 were found to have anaemia. Within this group, we identified 42 children without an underlying specific neurological aetiology who exhibited normo- or macrocytic anaemia, normal TSH levels, fT3 levels in the upper half of the normal range or high, and fT4 levels in the lower half of the normal range or low. We excluded one patient who had already been diagnosed with RTH-α and nine patients could not be reached. Subsequently, clinical evaluation, biochemical assessment, and THRA sequencing analysis were conducted on 32 children. The findings were compared with those of the known RTH-α patients in our unit. RESULTS: The median age of the patients was 5.7 (5.1-7.4) years, and 22 of them were males (69%). The main reasons for assessment in paediatric neurology clinics were autism spectrum disorder (n = 12, 38%), epilepsy (n = 11, 34%), and delay in developmental stages (n = 8, 25%). Constipation was present in five of the cases (16%), while the closure of the anterior fontanelle and tooth eruption were delayed in two cases (6%) and one case (3%), respectively. The median length/height and weight standard deviation (SD) scores were 0.3 [(-0.8)-(1.1)] and -0.1 [(-0.8)-(0.3)], respectively. The median fT3, fT4, and TSH levels were 4.6 (4.2-5.0) pg/mL, 0.9 (0.8-1.0) ng/dL, and 2.2 (1.8-3.1) uIU/mL, respectively. Thirteen of the patients (41%) had high fT3 levels, while none of them had low fT4 levels. The normo- or macrocytic anaemia rate was 47% (normocytic/macrocytic, n = 8/7) at the time of reassessment. Serum creatine kinase (CK) was elevated in five patients (16%; one had anaemia). None of the subjects had a pathological variant in THRA. Known RTH-α patients had significantly lower median height SD score, higher rates of delayed tooth eruption and closure of the anterior fontanelle, lower haemoglobin levels, and higher mean corpuscular volume (MCV) and CK levels as compared to those found without RTH-α. CONCLUSIONS: This approach found one known patient with RTH-α but did not reveal any new cases. Notably, normo- or macrocytic anaemia did not persist in nearly half of the screened patients. A screening strategy that takes clinical findings and prominent laboratory features suggestive of RTH-α into account could lower unnecessary genetic analysis of THRA in patients presenting with neurological problems.


Asunto(s)
Anemia Macrocítica , Trastorno del Espectro Autista , Masculino , Niño , Humanos , Preescolar , Femenino , Tiroxina , Triyodotironina , Hormonas Tiroideas , Pruebas de Función de la Tiroides , Tirotropina
2.
Int J Mol Sci ; 22(10)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069457

RESUMEN

The nuclear thyroid hormone receptors (THRs) are key mediators of thyroid hormone function on the cellular level via modulation of gene expression. Two different genes encode THRs (THRA and THRB), and are pleiotropically involved in development, metabolism, and growth. The THRA1 and THRA2 isoforms, which result from alternative splicing of THRA, differ in their C-terminal ligand-binding domain (LBD). Most published disease-associated THRA variants are located in the LBD of THRA1 and impede triiodothyronine (T3) binding. This keeps the nuclear receptor in an inactive state and inhibits target gene expression. Here, we investigated a new dominant THRA variant (chr17:g.38,241,010A > G, GRCh37.13 | c.518A > G, NM_199334 | p.(E173G), NP_955366), which is located between the DNA- and ligand-binding domains and affects both splicing isoforms. Patients presented partially with hypothyroid (intellectual disability, motor developmental delay, brain atrophy, and constipation) and partially with hyperthyroid symptoms (tachycardia and behavioral abnormalities) to varying degrees. Functional characterization of THRA1p.(E173G) by reporter gene assays revealed increased transcriptional activity in contrast to THRA1(WT), unexpectedly revealing the first gain-of-function mutation found in THRA1. The THRA2 isoform does not bind T3 and antagonizes THRA1 action. Introduction of p.(E173G) into THRA2 increased its inhibitory effect on THRA1, which helps to explain the hypothyroid symptoms seen in our patients. We used protein structure models to investigate possible underlying pathomechanisms of this variant with a gain-of-antagonistic function and suggest that the p.(E173G) variant may have an influence on the dimerization domain of the nuclear receptor.


Asunto(s)
Genes erbA/genética , Receptores de Hormona Tiroidea/metabolismo , Enfermedades de la Tiroides/genética , Adulto , Empalme Alternativo/genética , Familia , Femenino , Mutación con Ganancia de Función/genética , Expresión Génica/genética , Genes erbA/fisiología , Humanos , Hipotiroidismo/metabolismo , Mutación/genética , Linaje , Isoformas de Proteínas/metabolismo , Receptores de Hormona Tiroidea/genética , Hermanos , Glándula Tiroides/metabolismo , Receptores alfa de Hormona Tiroidea/genética , Receptores beta de Hormona Tiroidea/genética , Hormonas Tiroideas/metabolismo
3.
J Med Genet ; 52(5): 312-6, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25670821

RESUMEN

BACKGROUND: Resistance to thyroid hormone is characterised by a lack of response of peripheral tissues to the active form of thyroid hormone (triiodothyronine, T3). In about 85% of cases, a mutation in THRB, the gene coding for thyroid receptor ß (TRß), is the cause of this disorder. Recently, individual reports described the first patients with thyroid hormone receptor α gene (THRA) defects. METHODS: We used longitudinal clinical assessments over a period of 18 years at one hospital setting combined with biochemical and molecular studies to characterise a novel thyroid hormone resistance syndrome in a cohort of six patients from five families. FINDINGS: Using whole exome sequencing and subsequent Sanger sequencing, we identified truncating and missense mutations in the THRA gene in five of six individuals and describe a distinct and consistent phenotype of mild hypothyroidism (growth retardation, relatively high birth length and weight, mild-to-moderate mental retardation, mild skeletal dysplasia and constipation), specific facial features (round, somewhat coarse and flat face) and macrocephaly. Laboratory investigations revealed anaemia and slightly elevated cholesterol, while the thyroid profile showed low free thyroxine (fT4) levels coupled with high free T3 (fT3), leading to an altered T4 : T3 ratio, along with normal thyroid-stimulating hormone levels. We observed a genotype-phenotype correlation, with milder outcomes for missense mutations and more severe phenotypical effects for truncating mutations. INTERPRETATION: THRA mutations may be more common than expected. In patients with clinical symptoms of mild hypothyreosis without confirmation in endocrine studies, a molecular study of THRA defects is strongly recommended.


Asunto(s)
Estudios de Asociación Genética , Mutación , Receptores alfa de Hormona Tiroidea/genética , Síndrome de Resistencia a Hormonas Tiroideas/genética , Adolescente , Adulto , Niño , Preescolar , Análisis Mutacional de ADN , Facies , Femenino , Genotipo , Humanos , Masculino , Fenotipo , Síndrome de Resistencia a Hormonas Tiroideas/diagnóstico , Síndrome de Resistencia a Hormonas Tiroideas/tratamiento farmacológico , Tiroxina , Insuficiencia del Tratamiento , Adulto Joven
4.
Horm Res Paediatr ; : 1-8, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744258

RESUMEN

INTRODUCTION: Mutations in the thyroid hormone receptor alpha (THRA) gene are a rare cause of thyroid hormone resistance, which leads to a pleomorphic phenotypic spectrum. Hormonal profiles are variable and subtle, making laboratory diagnoses challenging. Genetic evaluation can be a helpful tool in diagnosing these cases. CASE PRESENTATION: Three patients (P1, P2, and P3) from unrelated families presented to their endocrinologists with short stature and abnormalities in thyroid function results. P1 showed hypoactivity and mild thyroid-stimulating hormone (TSH) elevation. P2 presented with a mild developmental delay and a hormonal profile initially interpreted as central hypothyroidism. Patient P3 had severe symptoms, including hypotonia, developmental delay, normal TSH, hypercholesterolemia, severe hypertriglyceridemia, high amylase levels, and mild pericardial effusion. All the patients had low free thyroxine (FT4) levels, mild constipation, and short stature. The patients underwent exome sequencing analysis that identified three different heterozygous variants in the THRA gene (P1 and P2 had missense variants, and P3 had a stop codon variant). All patients were treated with levothyroxine replacement, improving their clinical symptoms, such as constipation, and neurological symptoms. P1 and P2 were also treated with the recombinant human growth hormone (rhGH). The improvements in growth velocity and height standard deviation scores (SDS) were remarkable. Notably, P1 had a total height gain of 2.5 SDS, reaching an adult height within the normal range. CONCLUSION: THRA gene defects can lead to growth disorders with different phenotypes. Children with THRA mutations can benefit from adequate treatment with levothyroxine and may respond well to rhGH treatment.

5.
Endocrinology ; 165(8)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38889231

RESUMEN

Thyroid hormone (TH) effects are mediated through TH receptors (TRs), TRα1, TRß1, and TRß2. The TRs bind to the DNA and regulate expression of TH target genes (canonical signaling). In addition, they mediate activation of signaling pathways (noncanonical signaling). Whether noncanonical TR action contributes to the spectrum of TH effects is largely unknown. The aim of this study was to attribute physiological effects to the TR isoforms and their canonical and noncanonical signaling. We conducted multiparameter phenotyping in male and female TR knockout mice (TRαKO, TRßKO), mice with disrupted canonical signaling due to mutations in the TR DNA binding domain (TRαGS, TRßGS), and their wild-type littermates. Perturbations in senses, especially hearing (mainly TRß with a lesser impact of TRα), visual acuity, retinal thickness (TRα and TRß), and in muscle metabolism (TRα) highlighted the role of canonical TR action. Strikingly, selective abrogation of canonical TR action often had little phenotypic consequence, suggesting that noncanonical TR action sufficed to maintain the wild-type phenotype for specific effects. For instance, macrocytic anemia, reduced retinal vascularization, or increased anxiety-related behavior were only observed in TRαKO but not TRαGS mice. Noncanonical TRα action improved energy utilization and prevented hyperphagia observed in female TRαKO mice. In summary, by examining the phenotypes of TRα and TRß knockout models alongside their DNA binding-deficient mutants and wild-type counterparts, we could establish that the noncanonical actions of TRα and TRß play a crucial role in modulating sensory, behavioral, and metabolic functions and, thus, contribute to the spectrum of physiological TH effects.


Asunto(s)
Ratones Noqueados , Fenotipo , Receptores alfa de Hormona Tiroidea , Receptores beta de Hormona Tiroidea , Animales , Femenino , Masculino , Receptores alfa de Hormona Tiroidea/genética , Receptores alfa de Hormona Tiroidea/metabolismo , Receptores beta de Hormona Tiroidea/genética , Receptores beta de Hormona Tiroidea/metabolismo , Ratones , Transducción de Señal/genética , Hormonas Tiroideas/metabolismo , Ratones Endogámicos C57BL
6.
Thyroid ; 32(5): 581-593, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35286177

RESUMEN

Background: Maternal exercise (ME) improves fetal and offspring muscle development, but mechanisms remain to be established. Since the thyroid hormone (TH) is critical for cell differentiation during embryonic development, we hypothesized that ME elevates TH receptor (THR) signaling in embryos, which promotes embryonic myogenesis. Methods: Female mice were exercised daily on a treadmill or received a daily TH, triiodothyronine (T3) injection. Embryos (embryonic day 12.5 [E12.5]) and P19 cells were used for studying effects of TH on embryonic myogenesis. TH levels in serum and embryos after ME or T3I were analyzed. Expression of TH signaling related genes and myogenic genes was assessed. THRα binding to the promoters of myogenic genes was investigated by chromatin immunoprecipitation-qantitative polymerase chain reaction (ChIP-qPCR). A CRISPR/CAS9 plasmid was utilized to knock out THRα in P19 cells. Results: ME elevated TH levels in both maternal circulation and embryos, which were correlated with enhanced TH signaling and myogenesis. At E12.5, both myogenic determinants (Pax3, Pax7) and myogenic regulatory factors (Myf5, Myod) were upregulated in ME embryos. ME increased THRα content and elevated messenger RNA (mRNA) expression of TH transporter Slc16a2 and deiodinase Dio2. In addition, the THRα binding to the promoters of Pax3/7 was increased. In P19 embryoid bodies, T3 promoted myogenic differentiation, which was abolished by ablating THRα. Furthermore, maternal daily injection of T3 at a level matching exercised mothers promoted embryonic myogenesis. Conclusions: ME promotes TH delivery to the embryos and enhances embryonic myogenesis, which is partially mediated by enhanced TH signaling in ME embryos.


Asunto(s)
Desarrollo de Músculos , Condicionamiento Físico Animal , Simportadores , Triyodotironina , Animales , Diferenciación Celular , Femenino , Ratones , Transportadores de Ácidos Monocarboxílicos/metabolismo , Embarazo , Transducción de Señal , Simportadores/metabolismo , Triyodotironina/fisiología
7.
Thyroid ; 31(4): 678-691, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32924834

RESUMEN

Background: In humans, resistance to thyroid hormone (RTH) caused by mutations in the thyroid hormone receptor alpha (THRA) gene, RTHα, manifests as tissue-specific hypothyroidism and circulating thyroid hormone levels exhibit hypothyroid-like clinical features. Before the identification of patients with RTHα, several Thrα1 knock-in mouse models were generated to clarify the function of TRα1. However, the phenotypes of these mice were not consistent with the clinical presentation of RTHα in humans. For the present study, we generated an RTHα mouse model that carries the Thra1E403X mutation found in human RTHα patients. Here, we report the gross phenotypes of this mouse RTHα model. Methods: Traditional homologous recombination gene targeting techniques were used to introduce a mutation (Thra1E403X) in the mouse Thra gene. The phenotypes of the resulting mice were studied and compared with clinical features observed for RTHα with THRAE403X. Results: Thrα1E403X/E403X homozygous mice exhibited severe neurological phenotypes, such as spasticity and motor ataxia, which were similar to those observed in endemic cretinism. Thrα1E403X/+ heterozygous mice reproduced most clinical manifestations of patient with RTHα, such as a normal survival rate and male fertility, as well as delayed postnatal growth and development, neurological and motor coordination deficits, and anemia. The mice had typical thyroid function with a modest increase in serum triiodothyronine (T3) levels, a low thyroxine (T4)/T3 ratio, and low reverse T3 (rT3) levels. Conclusions: The Thrα1E403X/+ mice faithfully recapitulate the clinical features of human RTHα and thus can provide a useful tool to dissect the role of TRα1 in development and to determine the pathological mechanisms of RTHα.


Asunto(s)
Mutación , Glándula Tiroides/metabolismo , Receptores alfa de Hormona Tiroidea/genética , Síndrome de Resistencia a Hormonas Tiroideas/genética , Hormonas Tiroideas/sangre , Animales , Ataxia/genética , Ataxia/metabolismo , Ataxia/fisiopatología , Desarrollo Óseo , Encéfalo/crecimiento & desarrollo , Modelos Animales de Enfermedad , Fertilidad , Predisposición Genética a la Enfermedad , Heterocigoto , Homocigoto , Ratones Endogámicos C57BL , Ratones Mutantes , Actividad Motora , Espasticidad Muscular/genética , Espasticidad Muscular/metabolismo , Espasticidad Muscular/fisiopatología , Fuerza Muscular , Fenotipo , Glándula Tiroides/fisiopatología , Receptores alfa de Hormona Tiroidea/metabolismo , Síndrome de Resistencia a Hormonas Tiroideas/sangre , Síndrome de Resistencia a Hormonas Tiroideas/fisiopatología
8.
Thyroid ; 31(6): 1003-1005, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33198587

RESUMEN

Resistance to thyroid hormone alpha (RTHα) is caused by mutations in thyroid hormone receptor α (THRA). Little is known about the natural history and treatment of RTHα, and diagnosis before the age of 1 year has not been previously reported. A de novo heterozygous THRA mutation (pC380SfsX9) was identified in a 10-month-old female investigated for developmental delay, hypotonia, macrocephaly, and severe constipation. Treatment with levothyroxine was accompanied by an appropriate rise in thyroxine (T4), triiodothyronine (T3), as well as decrease in thyrotropin levels and in the T3/T4 ratio with a trend toward normalization of peripheral markers of thyroid hormone action. THRA pC380SfsX9 results in extreme RTHα.


Asunto(s)
Receptores alfa de Hormona Tiroidea/genética , Síndrome de Resistencia a Hormonas Tiroideas/tratamiento farmacológico , Tiroxina/uso terapéutico , Estreñimiento/fisiopatología , Discapacidades del Desarrollo/fisiopatología , Diagnóstico Precoz , Intervención Médica Temprana , Femenino , Humanos , Lactante , Megalencefalia/fisiopatología , Hipotonía Muscular/fisiopatología , Mutación , Síndrome de Resistencia a Hormonas Tiroideas/diagnóstico , Síndrome de Resistencia a Hormonas Tiroideas/genética , Síndrome de Resistencia a Hormonas Tiroideas/fisiopatología
9.
Curr Res Toxicol ; 1: 124-132, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34345841

RESUMEN

Some endocrine-disrupting chemicals (EDCs) can affect the endocrine system through covalent interactions with specific sites, leading to deregulation of physiological homeostasis. The acrylamide (AA) present in some fried or baked foods is an example of an electrophile molecule that is able to form adducts with nucleophilic regions of nervous system proteins leading to neurological defects. A positive correlation between increased urinary AA metabolite concentration and reduced levels of thyroid hormones (TH) was described in adolescents and young adults. Thus, this study aimed to evaluate whether AA affects the physiology of the hypothalamus-pituitary-thyroid (HPT) axis and the possible repercussions in peripheral TH-target systems. For this, male Wistar rats were exposed to doses of 2.5 or 5.0 mg AA/Kg/day, based on the LOAEL (Lowest Observed Adverse Effect Level) during prepubertal development. The expression of molecular markers of HPT functionality was investigated in the hypothalamus, pituitary, thyroid, heart and liver, as well as the hormonal and lipid profiles in blood samples. Herein, we showed that AA acts as EDCs for thyroid gland function, increasing the transcript expression of several proteins related to TH synthesis and altering hypothalamus-pituitary-thyroid axis homeostasis, an effect evidenced by the higher levels of THs in the serum. Compensatory mechanisms were observed in TH-target tissues, such as an increase in Dio3 mRNA expression in the liver and a reduction in Mct8 transcript content in the hearts of AA-treated rats. Together, these results pointed out an allostatic regulation of the HPT axis induced by AA and suggest that chronic exposure to it, mainly associated with food consumption, might be related to the higher prevalence of thyroid dysfunctions.

10.
Hormones (Athens) ; 18(2): 223-227, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30747412

RESUMEN

Thyroid hormone receptor alpha (THRA) gene mutation is a thyroid hormone resistance syndrome characterized by near-normal thyroid function tests and tissue-specific hypothyroidism. In this case study, we report a novel de novo p.G291S heterozygous mutation in the THRA gene was detected at mutation analysis. A 4-year-old male patient was admitted due to short stature, motor-mental retardation, and constipation. At physical examination, coarse facial appearance, eyelid edema, pallor, and umbilical hernia were observed. Primary thyroid hormone resistance should be considered in patients with phenotypically hypothyroid features. Laboratory analysis found moderate elevation in free triiodothyronine (T3) levels, normochromic normocytic anemia, and elevated creatine kinase levels. In conclusion, THRA gene mutation should be considered in patients with clinical hypothyroid findings and increased/moderately elevated free T3, decreased/ normal free thyroxine, normal thyroid-stimulating hormone levels, and increased muscle enzymes.


Asunto(s)
Mutación Missense , Receptores alfa de Hormona Tiroidea/genética , Síndrome de Resistencia a Hormonas Tiroideas/genética , Sustitución de Aminoácidos , Preescolar , Análisis Mutacional de ADN , Estudios de Seguimiento , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Pruebas de Función de la Tiroides , Síndrome de Resistencia a Hormonas Tiroideas/diagnóstico
11.
Eur J Surg Oncol ; 43(8): 1428-1432, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28583788

RESUMEN

BACKGROUND: In breast cancer, hormonal receptors hold promise for developing novel targeted therapies. The thyroid exerts its actions via the thyroid hormone receptors alpha and beta. The clinical significance of the expression of thyroid hormone receptors in breast cancer is unclear. MATERIAL AND METHODS: We studied thyroid hormone receptor alpha (TRa) expression in 82 samples from 41 women with ductal invasive breast cancer and no thyroid disease. We performed quantitative immunohistochemistry with digital image analysis and correlated TRa expression with clinicopathological parameters. RESULTS: TRa was expressed in both normal breast epithelium and breast cancer, but expression in breast cancer was significantly lower. TRa was expressed significantly less in larger and grade III tumors. Conversely, breast cancers with lymphovascular invasion showed increased TRa expression compared to cancers without lymphovascular invasion. TRa expression was not significantly different between node-positive and node-negative breast cancers, or among different hormonal profiles and intrinsic subtypes. DISCUSSION: This is the first-in-human study to combine quantitative immunohistochemistry with image analysis to study TRa expression in women with ductal invasive breast cancer and no clinical or biochemical evidence of thyroid dysfunction. We confirm that TRa is expressed in both normal and malignant breast epithelium and suggest that TRa expression is downregulated during breast carcinogenesis. Larger and higher grade breast cancers demonstrate partial loss in TRa expression. Alterations in TRa expression take place even in the absence of clinical or biochemical thyroid disease. The underlying mechanism of these findings and their potential significance in survival and relapse mandate further research.


Asunto(s)
Neoplasias de la Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Receptores alfa de Hormona Tiroidea/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Inmunohistoquímica , Escisión del Ganglio Linfático , Metástasis Linfática , Persona de Mediana Edad , Clasificación del Tumor , Invasividad Neoplásica
12.
Thyroid ; 27(7): 973-982, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28471274

RESUMEN

BACKGROUND: Resistance to thyroid hormone alpha (RTHα), a disorder characterized by tissue-selective hypothyroidism and near-normal thyroid function tests due to thyroid receptor alpha gene mutations, is rare but probably under-recognized. This study sought to correlate the clinical characteristics and response to thyroxine (T4) therapy in two adolescent RTHα patients with the properties of the THRA mutation, affecting both TRα1 and TRα2 proteins, they harbored. METHODS: Clinical, auxological, biochemical, and physiological parameters were assessed in each patient at baseline and after T4 therapy. RESULTS: Heterozygous THRA mutations occurring de novo were identified in a 17-year-old male (patient P1; c.788C>T, p.A263V mutation) investigated for mild pubertal delay and in a 15-year-old male (patient P2; c.821T>C, p.L274P mutation) with short stature (0.4th centile), skeletal dysplasia, dysmorphic facies, and global developmental delay. Both individuals exhibited macrocephaly, delayed dentition, and constipation, together with a subnormal T4/triiodothyronine (T3) ratio, low reverse T3 levels, and mild anemia. When studied in vitro, A263V mutant TRα1 was transcriptionally impaired and inhibited the function of its wild-type counterpart at low (0.01-10 nM) T3 levels, with higher T3 concentrations (100 nM-1 µM) reversing dysfunction and such dominant negative inhibition. In contrast, L274P mutant TRα1 was transcriptionally inert, exerting significant dominant negative activity, only overcome with 10 µM of T3. Mirroring this, normal expression of KLF9, a TH-responsive target gene, was achieved in A263V mutation-containing peripheral blood mononuclear cells following 1 µM of T3 exposure, but with markedly reduced expression levels in L274P mutation-containing peripheral blood mononuclear cells, even with 10 µM of T3. Following T4 therapy, growth, body composition, dyspraxia, and constipation improved in P1, whereas growth retardation and constipation in P2 were unchanged. Neither A263V nor L274P mutations exhibited gain or loss of function in the TRα2 background, and no additional phenotype attributable to this was discerned. CONCLUSIONS: This study correlates a milder clinical phenotype and favorable response to T4 therapy in a RTHα patient (P1) with heterozygosity for mutant TRα1 exhibiting partial, T3-reversible, loss of function. In contrast, a more severe clinical phenotype refractory to hormone therapy was evident in another case (P2) associated with severe, virtually irreversible, dysfunction of mutant TRα1.


Asunto(s)
Mutación , Receptores alfa de Hormona Tiroidea/genética , Síndrome de Resistencia a Hormonas Tiroideas/genética , Tiroxina/uso terapéutico , Adolescente , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Fenotipo , Evaluación de Síntomas , Síndrome de Resistencia a Hormonas Tiroideas/diagnóstico , Síndrome de Resistencia a Hormonas Tiroideas/tratamiento farmacológico , Resultado del Tratamiento , Adulto Joven
13.
Endocr Connect ; 6(8): 731-740, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29101248

RESUMEN

Innate immune cells have recently been identified as novel thyroid hormone (TH) target cells in which intracellular TH levels appear to play an important functional role. The possible involvement of TH receptor alpha (TRα), which is the predominant TR in these cells, has not been studied to date. Studies in TRα0/0 mice suggest a role for this receptor in innate immune function. The aim of this study was to determine whether TRα affects the human innate immune response. We assessed circulating interleukin-8 concentrations in a cohort of 8 patients with resistance to TH due to a mutation of TRα (RTHα) and compared these results to healthy controls. In addition, we measured neutrophil and macrophage function in one of these RTHα patients (mutation D211G). Circulating interleukin-8 levels were elevated in 7 out of 8 RTHα patients compared to controls. These patients harbor different mutations, suggesting that this is a general feature of the syndrome of RTHα. Neutrophil spontaneous apoptosis, bacterial killing, NAPDH oxidase activity and chemotaxis were unaltered in cells derived from the RTHαD211G patient. RTHα macrophage phagocytosis and cytokine induction after LPS treatment were similar to results from control cells. The D211G mutation did not result in clinically relevant impairment of neutrophil or pro-inflammatory macrophage function. As elevated circulating IL-8 is also observed in hyperthyroidism, this observation could be due to the high-normal to high levels of circulating T3 found in patients with RTHα.

14.
Curr Top Dev Biol ; 125: 337-355, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28527577

RESUMEN

BACKGROUND: Thyroid hormone (TH) acts via nuclear thyroid hormone receptors (TRs). TR isoforms (TRα1, TRα2, TRß1, TRß2) are encoded by distinct genes (THRA and THRB) and show differing tissue distributions. Patients with mutations in THRB, exhibiting resistance within the hypothalamic-pituitary-thyroid axis with elevated TH and nonsuppressed thyroid-stimulating hormone (TSH) levels, were first described decades ago. In 2012, the first patients with mutations in THRA were identified. Scope of this review: This review describes the clinical and biochemical characteristics of patients with resistance to thyroid hormone alpha (RTHα) due to heterozygous mutations in THRA. The genetic basis and molecular pathogenesis of the disorder together with effects of levothyroxine treatment are discussed. CONCLUSIONS: The severity of the clinical phenotype of RTHα patients seems to be associated with the location and type of mutation in THRA. The most frequent abnormalities observed include anemia, constipation, and growth and developmental delay. In addition, serum (F)T3 levels can be high-normal to high, (F)T4 and rT3 levels normal to low, while TSH is normal or mildly raised. Despite heterogeneous consequences of mutations in THRA, RTHα should be suspected in subjects with even mild clinical features of hypothyroidism together with high/high-normal (F)T3, low/low-normal (F)T4, and normal TSH.


Asunto(s)
Mutación , Receptores alfa de Hormona Tiroidea/genética , Síndrome de Resistencia a Hormonas Tiroideas/genética , Femenino , Heterocigoto , Humanos , Masculino , Receptores alfa de Hormona Tiroidea/metabolismo , Síndrome de Resistencia a Hormonas Tiroideas/diagnóstico , Síndrome de Resistencia a Hormonas Tiroideas/tratamiento farmacológico , Hormonas Tiroideas/metabolismo
15.
Reprod Biol ; 15(1): 27-33, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25726374

RESUMEN

Thyroid dysfunction can cause ovarian cycle and ovulatory disturbances, however, the molecular link(s) between these two disorders remains largely unknown. In the current study, we examined the roles of nitric oxide synthase (NOS) and thyroid hormone receptor alpha 1 (TRα1) in these disorders using immature hyper-thyroid (hyper-T) and hypo-thyroid (hypo-T) rats. In comparison to controls, hyper-T rats had higher serum concentrations of triiodothyronine (T3) and thyroxine (T4), whereas hypo-T rats had lower serum T3 and T4. Serum estradiol (E2) level was decreased in both hyper-T and hypo-T animals and serum E2 in hyper-T rats were lower than in hypo-T rats. We found that neuronal NOS (nNOS) and TRα1 were present in oocytes, granulosa cells and theca cells of all examined rat groups. Ovarian nitric oxide (NO) content and the constitutive NOS (cNOS) activity in hyper-T rats were significantly decreased compared with control or hypo-T rats. Moreover, the number of large antral follicles was reduced in hyper-T rats, and number of primordial follicles was decreased in hypo-T rats compared with control rats. In conclusion, we observed an association between thyroid hormone and NO signaling pathways during the process of ovarian follicular development in immature rats. In hyperthyroidism, thyroid hormones induced an estrogen deficiency that inhibited the function of nNOS, resulting in the inhibition of NO synthesis and suppressed development of large antral follicles, while in hypothyroidism only development of primordial follicles was inhibited.


Asunto(s)
Hipertiroidismo/metabolismo , Hipotiroidismo/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Folículo Ovárico/crecimiento & desarrollo , Maduración Sexual/fisiología , Receptores alfa de Hormona Tiroidea/metabolismo , Animales , Femenino , Regulación Enzimológica de la Expresión Génica/fisiología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo I/genética , Ratas , Receptores alfa de Hormona Tiroidea/genética
16.
Interact Cardiovasc Thorac Surg ; 17(4): 664-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23820669

RESUMEN

OBJECTIVES: The present study investigated the potential of the failing myocardium of patients with ventricular assist devices (VAD) to respond to physiological growth stimuli, such as exercise, by activating growth signalling pathways. This may be of therapeutic relevance in identifying novel pharmacological targets for therapies that could facilitate recovery after VAD implantation. METHODS: Twenty-two patients bridged to heart transplantation (HTx) with VAD were included in the study. A group of patients underwent moderate intensity aerobic exercise (GT), while another group of patients did not receive exercise training (CG). Thyroid hormone receptor alpha1 (TRα1) protein and total (t) and phosphorylated (p) protein kinase B (Akt) and c-Jun N-terminal kinase (JNK) kinase signalling were measured in myocardial tissue by western blotting at pre-VAD and pre-HTx period. In addition, Thyroid hormone (TH) levels were measured in plasma. RESULTS: Peak oxygen consumption (VO2) at pre-HTx period was higher in patients subjected to training protocol [18.0 (0.8) for GT when compared with 13.7 (0.7) for CG group, P = 0.002]. N-terminal-prohormone of brain natriuretic peptide (NT-proBNP) levels were 1068 (148) for CG vs 626 (115) for GT group, P = 0.035. A switch towards up-regulation of physiological growth signalling was observed: the ratio of p-Akt/t-Akt was 2-fold higher in GT vs CG, P < 0.05 while p-JNK/t-JNK was 2.5-fold lower (P < 0.05) in GT vs CG, in pre-HTx samples. This response was accompanied by a 2.0-fold increase in TRα1 expression in pre-HTx samples with concomitant increase in circulating T3 in GT vs CG, P < 0.05. No differences in peak VO2, NT-proBNP, T3, TRα1, p/t-AKT and p/t-JNK were found between groups in the pre-VAD period. CONCLUSIONS: The unloaded failing myocardium responded to physical training by enhancing thyroid hormone signalling. This response was associated with an up-regulation of Akt and suppression of JNK activation.


Asunto(s)
Terapia por Ejercicio , Insuficiencia Cardíaca/terapia , Corazón Auxiliar , Miocardio/metabolismo , Transducción de Señal , Hormonas Tiroideas/sangre , Adulto , Biomarcadores/sangre , Femenino , Grecia , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/fisiopatología , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Persona de Mediana Edad , Péptido Natriurético Encefálico/sangre , Consumo de Oxígeno , Fragmentos de Péptidos/sangre , Fosforilación , Estudios Prospectivos , Diseño de Prótesis , Proteínas Proto-Oncogénicas c-akt , Receptores alfa de Hormona Tiroidea/metabolismo , Resultado del Tratamiento , Función Ventricular
17.
Metabolism ; 62(10): 1387-93, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23773982

RESUMEN

OBJECTIVE: Thyroid hormone (TH) is shown to be protective against cardiac and pancreatic injury. Thus, this study explored the potential effects of TH treatment on the functional status of the postinfarcted diabetic myocardium. Diabetic patients have worse prognosis after acute myocardial infarction (AMI). MATERIALS/METHODS: AMI was induced by left coronary ligation in rats previously treated with 35 mg/kg streptozotocin (STZ), (DM-AMI). TH treatment was initiated at 2 weeks after AMI and continued for 6 weeks (DM-AMI+TH), while sham-operated animals served as control (DM-SHAM). RESULTS: TH treatment increased cardiac mass, improved wall stress and favorably changed cardiac geometry. TH significantly increased echocardiographic left ventricular ejection fraction (LVEF%): [54.2 (6.5) for DM-AMI+TH vs 37 (2.0) for DM-AMI, p<0.05]. TH treatment resulted in significantly increased insulin and decreased glucose levels in serum. The ratios of phosphorylated (p)-Akt/total Akt and p-mTOR/total mTOR were increased 2.0 fold and 2.7 fold in DM-AMI+TH vs DM-AMI respectively, p<0.05. Furthermore, the ratio of p-AMPK/total AMPK was found to be increased 1.6 fold in DM-AMI+TH vs DM-AMI, p<0.05. CONCLUSION: TH treatment improved the mechanical performance of the post-infarcted myocardium in rats with STZ-induced diabetes, an effect which was associated with Akt/mTOR and AMPK activation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Complicaciones de la Diabetes/tratamiento farmacológico , Corazón/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Hormonas Tiroideas/farmacología , Animales , Glucemia/metabolismo , Cardiomegalia/sangre , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Complicaciones de la Diabetes/sangre , Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/fisiopatología , Diabetes Mellitus/sangre , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatología , Corazón/fisiopatología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Insulina/sangre , Insulina/metabolismo , Masculino , Infarto del Miocardio/sangre , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Miocardio/metabolismo , Ratas , Ratas Wistar , Transducción de Señal , Regulación hacia Arriba
18.
Toxicol Lett ; 222(3): 312-20, 2013 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-23973438

RESUMEN

The xenoestrogen bisphenol A (2,2-bis-(p-hydroxyphenyl)-2-propane, BPA) is a known endocrine-disrupting chemical used in the fabrication of plastics, resins and flame retardants, that can be found throughout the environment and in numerous every day products. Human exposure to this chemical is extensive and generally occurs via oral route because it leaches from the food and beverage containers that contain it. Although most of the effects related to BPA exposure have been linked to the activation of the estrogen receptor (ER), the mechanisms of the interaction of BPA with protein targets different from ER are still unknown. Therefore, the objective of this work was to use a bioinformatics approach to identify possible new targets for BPA. Docking studies were performed between the optimized structure of BPA and 271 proteins related to different biochemical processes, as selected by text-mining. Refinement docking experiments and conformational analyses were carried out using LigandScout 3.0 for the proteins selected through the affinity ranking (lower than -8.0kcal/mol). Several proteins including ERR gamma (-9.9kcal/mol), and dual specificity protein kinases CLK-4 (-9.5kcal/mol), CLK-1 (-9.1kcal/mol) and CLK-2 (-9.0kcal/mol) presented great in silico binding affinities for BPA. The interactions between those proteins and BPA were mostly hydrophobic with the presence of some hydrogen bonds formed by leucine and asparagine residues. Therefore, this study suggests that this endocrine disruptor may have other targets different from the ER.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Disruptores Endocrinos/farmacología , Simulación del Acoplamiento Molecular/métodos , Fenoles/farmacología , Proteínas/efectos de los fármacos , Compuestos de Bencidrilo/metabolismo , Sitios de Unión , Receptor de Androstano Constitutivo , Disruptores Endocrinos/metabolismo , Humanos , Ligandos , Fenoles/metabolismo , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Proteínas/metabolismo , Receptores de Estrógenos/efectos de los fármacos , Receptores de Estrógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA