Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.991
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(10): 2044-2061, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37172561

RESUMEN

Phenotypic sex-based differences exist for many complex traits. In other cases, phenotypes may be similar, but underlying biology may vary. Thus, sex-aware genetic analyses are becoming increasingly important for understanding the mechanisms driving these differences. To this end, we provide a guide outlining the current best practices for testing various models of sex-dependent genetic effects in complex traits and disease conditions, noting that this is an evolving field. Insights from sex-aware analyses will not only teach us about the biology of complex traits but also aid in achieving the goals of precision medicine and health equity for all.


Asunto(s)
Modelos Genéticos , Caracteres Sexuales , Animales , Femenino , Masculino , Herencia Multifactorial , Fenotipo , Control de Calidad , Estudio de Asociación del Genoma Completo , Guías como Asunto , Interacción Gen-Ambiente , Humanos
2.
Cell ; 185(22): 4233-4248.e27, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36306736

RESUMEN

The human genome contains hundreds of thousands of regions harboring copy-number variants (CNV). However, the phenotypic effects of most such polymorphisms are unknown because only larger CNVs have been ascertainable from SNP-array data generated by large biobanks. We developed a computational approach leveraging haplotype sharing in biobank cohorts to more sensitively detect CNVs. Applied to UK Biobank, this approach accounted for approximately half of all rare gene inactivation events produced by genomic structural variation. This CNV call set enabled a detailed analysis of associations between CNVs and 56 quantitative traits, identifying 269 independent associations (p < 5 × 10-8) likely to be causally driven by CNVs. Putative target genes were identifiable for nearly half of the loci, enabling insights into dosage sensitivity of these genes and uncovering several gene-trait relationships. These results demonstrate the ability of haplotype-informed analysis to provide insights into the genetic basis of human complex traits.


Asunto(s)
Herencia Multifactorial , Sitios de Carácter Cuantitativo , Humanos , Variaciones en el Número de Copia de ADN , Fenotipo , Genoma Humano , Polimorfismo de Nucleótido Simple/genética
3.
Cell ; 184(9): 2302-2315.e12, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33838112

RESUMEN

By following up the gut microbiome, 51 human phenotypes and plasma levels of 1,183 metabolites in 338 individuals after 4 years, we characterize microbial stability and variation in relation to host physiology. Using these individual-specific and temporally stable microbial profiles, including bacterial SNPs and structural variations, we develop a microbial fingerprinting method that shows up to 85% accuracy in classifying metagenomic samples taken 4 years apart. Application of our fingerprinting method to the independent HMP cohort results in 95% accuracy for samples taken 1 year apart. We further observe temporal changes in the abundance of multiple bacterial species, metabolic pathways, and structural variation, as well as strain replacement. We report 190 longitudinal microbial associations with host phenotypes and 519 associations with plasma metabolites. These associations are enriched for cardiometabolic traits, vitamin B, and uremic toxins. Finally, mediation analysis suggests that the gut microbiome may influence cardiometabolic health through its metabolites.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/metabolismo , Microbioma Gastrointestinal , Metaboloma , Metagenoma , Microbiota , Adulto , Anciano , Anciano de 80 o más Años , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Proteínas Bacterianas/genética , Farmacorresistencia Microbiana , Heces/microbiología , Femenino , Inestabilidad Genómica , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Adulto Joven
4.
Cell ; 179(6): 1424-1435.e8, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31761530

RESUMEN

The increasing proportion of variance in human complex traits explained by polygenic scores, along with progress in preimplantation genetic diagnosis, suggests the possibility of screening embryos for traits such as height or cognitive ability. However, the expected outcomes of embryo screening are unclear, which undermines discussion of associated ethical concerns. Here, we use theory, simulations, and real data to evaluate the potential gain of embryo screening, defined as the difference in trait value between the top-scoring embryo and the average embryo. The gain increases very slowly with the number of embryos but more rapidly with the variance explained by the score. Given current technology, the average gain due to screening would be ≈2.5 cm for height and ≈2.5 IQ points for cognitive ability. These mean values are accompanied by wide prediction intervals, and indeed, in large nuclear families, the majority of children top-scoring for height are not the tallest.


Asunto(s)
Embrión de Mamíferos/metabolismo , Pruebas Genéticas , Herencia Multifactorial/genética , Adulto , Familia , Estudio de Asociación del Genoma Completo , Humanos , Fenotipo
5.
Cell ; 177(4): 1022-1034.e6, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31051098

RESUMEN

Early genome-wide association studies (GWASs) led to the surprising discovery that, for typical complex traits, most of the heritability is due to huge numbers of common variants with tiny effect sizes. Previously, we argued that new models are needed to understand these patterns. Here, we provide a formal model in which genetic contributions to complex traits are partitioned into direct effects from core genes and indirect effects from peripheral genes acting in trans. We propose that most heritability is driven by weak trans-eQTL SNPs, whose effects are mediated through peripheral genes to impact the expression of core genes. In particular, if the core genes for a trait tend to be co-regulated, then the effects of peripheral variation can be amplified such that nearly all of the genetic variance is driven by weak trans effects. Thus, our model proposes a framework for understanding key features of the architecture of complex traits.


Asunto(s)
Regulación de la Expresión Génica/genética , Herencia/genética , Herencia Multifactorial/genética , Bases de Datos Genéticas , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Humanos , Modelos Teóricos , Fenotipo , Polimorfismo Genético/genética , Sitios de Carácter Cuantitativo/genética
6.
Cell ; 175(6): 1533-1545.e20, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30415838

RESUMEN

Budding yeasts (subphylum Saccharomycotina) are found in every biome and are as genetically diverse as plants or animals. To understand budding yeast evolution, we analyzed the genomes of 332 yeast species, including 220 newly sequenced ones, which represent nearly one-third of all known budding yeast diversity. Here, we establish a robust genus-level phylogeny comprising 12 major clades, infer the timescale of diversification from the Devonian period to the present, quantify horizontal gene transfer (HGT), and reconstruct the evolution of 45 metabolic traits and the metabolic toolkit of the budding yeast common ancestor (BYCA). We infer that BYCA was metabolically complex and chronicle the tempo and mode of genomic and phenotypic evolution across the subphylum, which is characterized by very low HGT levels and widespread losses of traits and the genes that control them. More generally, our results argue that reductive evolution is a major mode of evolutionary diversification.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal , Genoma Fúngico , Filogenia , Saccharomycetales/clasificación , Saccharomycetales/genética
7.
Annu Rev Genet ; 54: 439-464, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32897739

RESUMEN

The complexity of heredity has been appreciated for decades: Many traits are controlled not by a single genetic locus but instead by polymorphisms throughout the genome. The importance of complex traits in biology and medicine has motivated diverse approaches to understanding their detailed genetic bases. Here, we focus on recent systematic studies, many in budding yeast, which have revealed that large numbers of all kinds of molecular variation, from noncoding to synonymous variants, can make significant contributions to phenotype. Variants can affect different traits in opposing directions, and their contributions can be modified by both the environment and the epigenetic state of the cell. The integration of prospective (synthesizing and analyzing variants) and retrospective (examining standing variation) approaches promises to reveal how natural selection shapes quantitative traits. Only by comprehensively understanding nature's genetic tool kit can we predict how phenotypes arise from the complex ensembles of genetic variants in living organisms.


Asunto(s)
Sitios de Carácter Cuantitativo/genética , Selección Genética/genética , Variación Genética/genética , Genotipo , Humanos , Fenotipo , Estudios Prospectivos , Estudios Retrospectivos , Saccharomycetales/genética
8.
Trends Genet ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39191555

RESUMEN

There is an urgent need to improve wheat for upcoming challenges, including biotic and abiotic stresses. Sustainable wheat improvement requires the introduction of new genes and alleles in high-yielding wheat cultivars. Using new approaches, tools, and technologies to identify and introduce new genes in wheat cultivars is critical. High-quality genomes, transcriptomes, and pangenomes provide essential resources and tools to examine wheat closely to identify and manipulate new and targeted genes and alleles. Wheat genomics has improved excellently in the past 5 years, generating multiple genomes, pangenomes, and transcriptomes. Leveraging these resources allows us to accelerate our crop improvement pipelines. This review summarizes the progress made in wheat genomics and trait discovery in the past 5 years.

9.
Trends Genet ; 40(4): 364-378, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453542

RESUMEN

Dominance is usually considered a constant value that describes the relative difference in fitness or phenotype between heterozygotes and the average of homozygotes at a focal polymorphic locus. However, the observed dominance can vary with the genetic background of the focal locus. Here, alleles at other loci modify the observed phenotype through position effects or dominance modifiers that are sometimes associated with pathogen resistance, lineage, sex, or mating type. Theoretical models have illustrated how variable dominance appears in the context of multi-locus interaction (epistasis). Here, we review empirical evidence for variable dominance and how the observed patterns may be captured by proposed epistatic models. We highlight how integrating epistasis and dominance is crucial for comprehensively understanding adaptation and speciation.


Asunto(s)
Epistasis Genética , Modelos Genéticos , Heterocigoto , Fenotipo , Homocigoto , Alelos
10.
Trends Genet ; 40(8): 718-729, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38782642

RESUMEN

Intimate links between epigenome modifications and metabolites allude to a crucial role of cellular metabolism in transcriptional regulation. Retina, being a highly metabolic tissue, adapts by integrating inputs from genetic, epigenetic, and extracellular signals. Precise global epigenomic signatures guide development and homeostasis of the intricate retinal structure and function. Epigenomic and metabolic realignment are hallmarks of aging and highlight a link of the epigenome-metabolism nexus with aging-associated multifactorial traits affecting the retina, including age-related macular degeneration and glaucoma. Here, we focus on emerging principles of epigenomic and metabolic control of retinal gene regulation, with emphasis on their contribution to human disease. In addition, we discuss potential mitigation strategies involving lifestyle changes that target the epigenome-metabolome relationship for maintaining retinal function.


Asunto(s)
Envejecimiento , Epigénesis Genética , Epigenoma , Retina , Humanos , Envejecimiento/genética , Envejecimiento/metabolismo , Epigenoma/genética , Retina/metabolismo , Degeneración Macular/genética , Degeneración Macular/metabolismo , Animales , Regulación de la Expresión Génica/genética , Epigenómica , Glaucoma/genética , Glaucoma/metabolismo , Metilación de ADN/genética
11.
Am J Hum Genet ; 111(4): 680-690, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38490208

RESUMEN

We propose TetraHer, a method for estimating the liability heritability of binary phenotypes. TetraHer has five key features. First, it can be applied to data from complex pedigrees that contain multiple types of relationships. Second, it can correct for ascertainment of cases or controls. Third, it can accommodate covariates. Fourth, it can model the contribution of common environment. Fifth, it produces a likelihood that can be used for significance testing. We first demonstrate the validity of TetraHer on simulated data. We then use TetraHer to estimate liability heritability for 229 codes from the tenth International Classification of Diseases (ICD-10). We identify 107 codes with significant heritability (p < 0.05/229), which can be used in future analyses for investigating the genetic architecture of human diseases.


Asunto(s)
Estudio de Asociación del Genoma Completo , Modelos Genéticos , Humanos , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple
12.
Am J Hum Genet ; 111(9): 1899-1913, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39173627

RESUMEN

Understanding the molecular mechanisms of complex traits is essential for developing targeted interventions. We analyzed liver expression quantitative-trait locus (eQTL) meta-analysis data on 1,183 participants to identify conditionally distinct signals. We found 9,013 eQTL signals for 6,564 genes; 23% of eGenes had two signals, and 6% had three or more signals. We then integrated the eQTL results with data from 29 cardiometabolic genome-wide association study (GWAS) traits and identified 1,582 GWAS-eQTL colocalizations for 747 eGenes. Non-primary eQTL signals accounted for 17% of all colocalizations. Isolating signals by conditional analysis prior to coloc resulted in 37% more colocalizations than using marginal eQTL and GWAS data, highlighting the importance of signal isolation. Isolating signals also led to stronger evidence of colocalization: among 343 eQTL-GWAS signal pairs in multi-signal regions, analyses that isolated the signals of interest resulted in higher posterior probability of colocalization for 41% of tests. Leveraging allelic heterogeneity, we predicted causal effects of gene expression on liver traits for four genes. To predict functional variants and regulatory elements, we colocalized eQTL with liver chromatin accessibility QTL (caQTL) and found 391 colocalizations, including 73 with non-primary eQTL signals and 60 eQTL signals that colocalized with both a caQTL and a GWAS signal. Finally, we used publicly available massively parallel reporter assays in HepG2 to highlight 14 eQTL signals that include at least one expression-modulating variant. This multi-faceted approach to unraveling the genetic underpinnings of liver-related traits could lead to therapeutic development.


Asunto(s)
Estudio de Asociación del Genoma Completo , Hígado , Sitios de Carácter Cuantitativo , Humanos , Alelos , Enfermedades Cardiovasculares/genética , Predisposición Genética a la Enfermedad , Hígado/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple
13.
Am J Hum Genet ; 111(7): 1462-1480, 2024 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-38866020

RESUMEN

Understanding the contribution of gene-environment interactions (GxE) to complex trait variation can provide insights into disease mechanisms, explain sources of heritability, and improve genetic risk prediction. While large biobanks with genetic and deep phenotypic data hold promise for obtaining novel insights into GxE, our understanding of GxE architecture in complex traits remains limited. We introduce a method to estimate the proportion of trait variance explained by GxE (GxE heritability) and additive genetic effects (additive heritability) across the genome and within specific genomic annotations. We show that our method is accurate in simulations and computationally efficient for biobank-scale datasets. We applied our method to common array SNPs (MAF ≥1%), fifty quantitative traits, and four environmental variables (smoking, sex, age, and statin usage) in unrelated white British individuals in the UK Biobank. We found 68 trait-E pairs with significant genome-wide GxE heritability (p<0.05/200) with a ratio of GxE to additive heritability of ≈6.8% on average. Analyzing ≈8 million imputed SNPs (MAF ≥0.1%), we documented an approximate 28% increase in genome-wide GxE heritability compared to array SNPs. We partitioned GxE heritability across minor allele frequency (MAF) and local linkage disequilibrium (LD) values, revealing that, like additive allelic effects, GxE allelic effects tend to increase with decreasing MAF and LD. Analyzing GxE heritability near genes highly expressed in specific tissues, we find significant brain-specific enrichment for body mass index (BMI) and basal metabolic rate in the context of smoking and adipose-specific enrichment for waist-hip ratio (WHR) in the context of sex.


Asunto(s)
Interacción Gen-Ambiente , Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Humanos , Herencia Multifactorial/genética , Masculino , Femenino , Carácter Cuantitativo Heredable , Fenotipo , Modelos Genéticos , Sitios de Carácter Cuantitativo
14.
Proc Natl Acad Sci U S A ; 121(40): e2403120121, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39298470

RESUMEN

Despite decades of research documenting the consequences of naturalized and invasive plant species on ecosystem functions, our understanding of the functional underpinnings of these changes remains rudimentary. This is partially due to ineffective scaling of trait differences between native and naturalized species to whole plant communities. Working with data from over 75,000 plots and over 5,500 species from across the United States, we show that changes in the functional composition of communities associated with increasing abundance of naturalized species mirror the differences in traits between native and naturalized plants. We find that communities with greater abundance of naturalized species are more resource acquisitive aboveground and belowground, shorter, more shallowly rooted, and increasingly aligned with an independent strategy for belowground resource acquisition via thin fine roots with high specific root length. We observe shifts toward herbaceous-dominated communities but shifts within both woody and herbaceous functional groups follow community-level patterns for most traits. Patterns are remarkably similar across desert, grassland, and forest ecosystems. Our results demonstrate that the establishment and spread of naturalized species, likely in combination with underlying environmental shifts, leads to predictable and consistent changes in community-level traits that can alter ecosystem functions.


Asunto(s)
Ecosistema , Especies Introducidas , Plantas , Plantas/clasificación , Estados Unidos , Bosques , Biodiversidad , Fenómenos Fisiológicos de las Plantas , Raíces de Plantas
15.
Proc Natl Acad Sci U S A ; 121(26): e2404034121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38905242

RESUMEN

Plant functional traits hold the potential to greatly improve the understanding and prediction of climate impacts on ecosystems and carbon cycle feedback to climate change. Traits are commonly used to place species along a global conservative-acquisitive trade-off, yet how and if functional traits and conservative-acquisitive trade-offs scale up to mediate community and ecosystem fluxes is largely unknown. Here, we combine functional trait datasets and multibiome datasets of forest water and carbon fluxes at the species, community, and ecosystem-levels to quantify the scaling of the tradeoff between maximum flux and sensitivity to vapor pressure deficit. We find a strong conservative-acquisitive trade-off at the species scale, which weakens modestly at the community scale and largely disappears at the ecosystem scale. Functional traits, particularly plant water transport (hydraulic) traits, are strongly associated with the key dimensions of the conservative-acquisitive trade-off at community and ecosystem scales, highlighting that trait composition appears to influence community and ecosystem flux dynamics. Our findings provide a foundation for improving carbon cycle models by revealing i) that plant hydraulic traits are most strongly associated with community- and ecosystem scale flux dynamics and ii) community assembly dynamics likely need to be considered explicitly, as they give rise to ecosystem-level flux dynamics that differ substantially from trade-offs identified at the species-level.


Asunto(s)
Ciclo del Carbono , Cambio Climático , Ecosistema , Bosques , Plantas/metabolismo , Agua/metabolismo
16.
Proc Natl Acad Sci U S A ; 121(23): e2316971121, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38809703

RESUMEN

Assessing within-species variation in response to drought is crucial for predicting species' responses to climate change and informing restoration and conservation efforts, yet experimental data are lacking for the vast majority of tropical tree species. We assessed intraspecific variation in response to water availability across a strong rainfall gradient for 16 tropical tree species using reciprocal transplant and common garden field experiments, along with measurements of gene flow and key functional traits linked to drought resistance. Although drought resistance varies widely among species in these forests, we found little evidence for within-species variation in drought resistance. For the majority of functional traits measured, we detected no significant intraspecific variation. The few traits that did vary significantly between drier and wetter origins of the same species all showed relationships opposite to expectations based on drought stress. Furthermore, seedlings of the same species originating from drier and wetter sites performed equally well under drought conditions in the common garden experiment and at the driest transplant site. However, contrary to expectation, wetter-origin seedlings survived better than drier-origin seedlings under wetter conditions in both the reciprocal transplant and common garden experiment, potentially due to lower insect herbivory. Our study provides the most comprehensive picture to date of intraspecific variation in tropical tree species' responses to water availability. Our findings suggest that while drought plays an important role in shaping species composition across moist tropical forests, its influence on within-species variation is limited.


Asunto(s)
Sequías , Lluvia , Árboles , Clima Tropical , Árboles/fisiología , Cambio Climático , Agua/metabolismo , Plantones/genética , Plantones/fisiología , Especificidad de la Especie , Bosques , Flujo Génico , Resistencia a la Sequía
17.
Proc Natl Acad Sci U S A ; 121(40): e2406305121, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39316051

RESUMEN

The many independent transitions from hermaphroditism to separate sexes (dioecy) in flowering plants and some animal clades must often have involved the emergence of a heterogametic sex-determining locus, the basis of XY and ZW sex determination (i.e., male and female heterogamety). Current estimates indicate that XY sex determination is much more frequent than ZW, but the reasons for this asymmetry are unclear. One proposition is that separate sexes evolve through the invasion of sterility mutations at closely linked loci, in which case XY sex determination evolves if the initial male sterility mutation is fully recessive. Alternatively, dioecy may evolve via the gradual divergence of male and female phenotypes, but the genetic basis of such divergence and its connection to XY and ZW systems remain poorly understood. Using mathematical modeling, we show how dioecy with XY or ZW sex determination can emerge from the joint evolution of resource allocation to male and female function with its genetic architecture. Our model reveals that whether XY or ZW sex determination evolves depends on the trade-off between allocation to male and female function, and on the mating system of the ancestral hermaphrodites, with selection for female specialization or inbreeding avoidance both favoring XY sex determination. Together, our results cast light on an important but poorly understood path from hermaphroditism to dioecy, and provide an adaptive hypothesis for the preponderance of XY systems. Beyond sex and sex determination, our model shows how ecology can influence the way selection shapes the genetic architecture of polymorphic traits.


Asunto(s)
Procesos de Determinación del Sexo , Procesos de Determinación del Sexo/genética , Animales , Organismos Hermafroditas/genética , Organismos Hermafroditas/fisiología , Evolución Biológica , Cromosomas Sexuales/genética , Femenino , Modelos Genéticos
18.
Proc Natl Acad Sci U S A ; 121(16): e2320623121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38607930

RESUMEN

Fine root lifespan is a critical trait associated with contrasting root strategies of resource acquisition and protection. Yet, its position within the multidimensional "root economics space" synthesizing global root economics strategies is largely uncertain, and it is rarely represented in frameworks integrating plant trait variations. Here, we compiled the most comprehensive dataset of absorptive median root lifespan (MRL) data including 98 observations from 79 woody species using (mini-)rhizotrons across 40 sites and linked MRL to other plant traits to address questions of the regulators of MRL at large spatial scales. We demonstrate that MRL not only decreases with plant investment in root nitrogen (associated with more metabolically active tissues) but also increases with construction of larger diameter roots which is often associated with greater plant reliance on mycorrhizal symbionts. Although theories linking organ structure and function suggest that root traits should play a role in modulating MRL, we found no correlation between root traits associated with structural defense (root tissue density and specific root length) and MRL. Moreover, fine root and leaf lifespan were globally unrelated, except among evergreen species, suggesting contrasting evolutionary selection between leaves and roots facing contrasting environmental influences above vs. belowground. At large geographic scales, MRL was typically longer at sites with lower mean annual temperature and higher mean annual precipitation. Overall, this synthesis uncovered several key ecophysiological covariates and environmental drivers of MRL, highlighting broad avenues for accurate parametrization of global biogeochemical models and the understanding of ecosystem response to global climate change.


Asunto(s)
Ecosistema , Longevidad , Evolución Biológica , Cambio Climático , Cabeza
19.
Proc Natl Acad Sci U S A ; 121(24): e2404364121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38833469

RESUMEN

Sex difference (SD) is ubiquitous in humans despite shared genetic architecture (SGA) between the sexes. A univariate approach, i.e., studying SD in single traits by estimating genetic correlation, does not provide a complete biological overview, because traits are not independent and are genetically correlated. The multivariate genetic architecture between the sexes can be summarized by estimating the additive genetic (co)variance across shared traits, which, apart from the cross-trait and cross-sex covariances, also includes the cross-sex-cross-trait covariances, e.g., between height in males and weight in females. Using such a multivariate approach, we investigated SD in the genetic architecture of 12 anthropometric, fat depositional, and sex-hormonal phenotypes. We uncovered sexual antagonism (SA) in the cross-sex-cross-trait covariances in humans, most prominently between testosterone and the anthropometric traits - a trend similar to phenotypic correlations. 27% of such cross-sex-cross-trait covariances were of opposite sign, contributing to asymmetry in the SGA. Intriguingly, using multivariate evolutionary simulations, we observed that the SGA acts as a genetic constraint to the evolution of SD in humans only when selection is sexually antagonistic and not concordant. Remarkably, we found that the lifetime reproductive success in both the sexes shows a positive genetic correlation with anthropometric traits, but not with testosterone. Moreover, we demonstrated that genetic variance is depleted along multivariate trait combinations in both the sexes but in different directions, suggesting absolute genetic constraint to evolution. Our results indicate that testosterone drives SA in contemporary humans and emphasize the necessity and significance of using a multivariate framework in studying SD.


Asunto(s)
Fenotipo , Caracteres Sexuales , Testosterona , Humanos , Masculino , Femenino , Análisis Multivariante
20.
Am J Hum Genet ; 110(12): 2077-2091, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065072

RESUMEN

Understanding the genetic basis of complex phenotypes is a central pursuit of genetics. Genome-wide association studies (GWASs) are a powerful way to find genetic loci associated with phenotypes. GWASs are widely and successfully used, but they face challenges related to the fact that variants are tested for association with a phenotype independently, whereas in reality variants at different sites are correlated because of their shared evolutionary history. One way to model this shared history is through the ancestral recombination graph (ARG), which encodes a series of local coalescent trees. Recent computational and methodological breakthroughs have made it feasible to estimate approximate ARGs from large-scale samples. Here, we explore the potential of an ARG-based approach to quantitative-trait locus (QTL) mapping, echoing existing variance-components approaches. We propose a framework that relies on the conditional expectation of a local genetic relatedness matrix (local eGRM) given the ARG. Simulations show that our method is especially beneficial for finding QTLs in the presence of allelic heterogeneity. By framing QTL mapping in terms of the estimated ARG, we can also facilitate the detection of QTLs in understudied populations. We use local eGRM to analyze two chromosomes containing known body size loci in a sample of Native Hawaiians. Our investigations can provide intuition about the benefits of using estimated ARGs in population- and statistical-genetic methods in general.


Asunto(s)
Genética de Población , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Humanos , Mapeo Cromosómico/métodos , Modelos Genéticos , Fenotipo , Sitios de Carácter Cuantitativo/genética , Nativos de Hawái y Otras Islas del Pacífico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA