Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.986
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(16): 4193-4212.e24, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38942014

RESUMEN

Neuroimmune interactions mediate intercellular communication and underlie critical brain functions. Microglia, CNS-resident macrophages, modulate the brain through direct physical interactions and the secretion of molecules. One such secreted factor, the complement protein C1q, contributes to complement-mediated synapse elimination in both developmental and disease models, yet brain C1q protein levels increase significantly throughout aging. Here, we report that C1q interacts with neuronal ribonucleoprotein (RNP) complexes in an age-dependent manner. Purified C1q protein undergoes RNA-dependent liquid-liquid phase separation (LLPS) in vitro, and the interaction of C1q with neuronal RNP complexes in vivo is dependent on RNA and endocytosis. Mice lacking C1q have age-specific alterations in neuronal protein synthesis in vivo and impaired fear memory extinction. Together, our findings reveal a biophysical property of C1q that underlies RNA- and age-dependent neuronal interactions and demonstrate a role of C1q in critical intracellular neuronal processes.


Asunto(s)
Envejecimiento , Encéfalo , Complemento C1q , Homeostasis , Microglía , Neuronas , Ribonucleoproteínas , Animales , Complemento C1q/metabolismo , Ratones , Microglía/metabolismo , Envejecimiento/metabolismo , Encéfalo/metabolismo , Ribonucleoproteínas/metabolismo , Neuronas/metabolismo , Ratones Endogámicos C57BL , Humanos
2.
Cell ; 187(3): 782-796.e23, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244547

RESUMEN

The rapid kinetics of biological processes and associated short-lived conformational changes pose a significant challenge in attempts to structurally visualize biomolecules during a reaction in real time. Conventionally, on-pathway intermediates have been trapped using chemical modifications or reduced temperature, giving limited insights. Here, we introduce a time-resolved cryo-EM method using a reusable PDMS-based microfluidic chip assembly with high reactant mixing efficiency. Coating of PDMS walls with SiO2 virtually eliminates non-specific sample adsorption and ensures maintenance of the stoichiometry of the reaction, rendering it highly reproducible. In an operating range from 10 to 1,000 ms, the device allows us to follow in vitro reactions of biological molecules at resolution levels in the range of 3 Å. By employing this method, we show the mechanism of progressive HflX-mediated splitting of the 70S E. coli ribosome in the presence of the GTP via capture of three high-resolution reaction intermediates within 140 ms.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Ribosomas , Microscopía por Crioelectrón/métodos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Unión al GTP/metabolismo , Microfluídica/métodos , Ribosomas/metabolismo , Dióxido de Silicio/análisis
3.
Annu Rev Biochem ; 92: 227-245, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37001134

RESUMEN

Messenger RNA (mRNA) stability and translational efficiency are two crucial aspects of the post-transcriptional process that profoundly impact protein production in a cell. While it is widely known that ribosomes produce proteins, studies during the past decade have surprisingly revealed that ribosomes also control mRNA stability in a codon-dependent manner, a process referred to as codon optimality. Therefore, codons, the three-nucleotide words read by the ribosome, have a potent effect on mRNA stability and provide cis-regulatory information that extends beyond the amino acids they encode. While the codon optimality molecular mechanism is still unclear, the translation elongation rate appears to trigger mRNA decay. Thus, transfer RNAs emerge as potential master gene regulators affecting mRNA stability. Furthermore, while few factors related to codon optimality have been identified in yeast, the orthologous genes in vertebrates do not necessary share the same functions. Here, we discuss codon optimality findings and gene regulation layers related to codon composition in different eukaryotic species.


Asunto(s)
Biosíntesis de Proteínas , Proteínas , Animales , ARN Mensajero/metabolismo , Codón/genética , Proteínas/genética , Estabilidad del ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Cell ; 186(6): 1244-1262.e34, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36931247

RESUMEN

In prokaryotes, translation can occur on mRNA that is being transcribed in a process called coupling. How the ribosome affects the RNA polymerase (RNAP) during coupling is not well understood. Here, we reconstituted the E. coli coupling system and demonstrated that the ribosome can prevent pausing and termination of RNAP and double the overall transcription rate at the expense of fidelity. Moreover, we monitored single RNAPs coupled to ribosomes and show that coupling increases the pause-free velocity of the polymerase and that a mechanical assisting force is sufficient to explain the majority of the effects of coupling. Also, by cryo-EM, we observed that RNAPs with a terminal mismatch adopt a backtracked conformation, while a coupled ribosome allosterically induces these polymerases toward a catalytically active anti-swiveled state. Finally, we demonstrate that prolonged RNAP pausing is detrimental to cell viability, which could be prevented by polymerase reactivation through a coupled ribosome.


Asunto(s)
Proteínas de Escherichia coli , Transcripción Genética , Escherichia coli/genética , Escherichia coli/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Ribosomas/metabolismo , Proteínas de Escherichia coli/genética
5.
Cell ; 186(25): 5517-5535.e24, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-37992713

RESUMEN

Transfer RNA (tRNA) modifications are critical for protein synthesis. Queuosine (Q), a 7-deaza-guanosine derivative, is present in tRNA anticodons. In vertebrate tRNAs for Tyr and Asp, Q is further glycosylated with galactose and mannose to generate galQ and manQ, respectively. However, biogenesis and physiological relevance of Q-glycosylation remain poorly understood. Here, we biochemically identified two RNA glycosylases, QTGAL and QTMAN, and successfully reconstituted Q-glycosylation of tRNAs using nucleotide diphosphate sugars. Ribosome profiling of knockout cells revealed that Q-glycosylation slowed down elongation at cognate codons, UAC and GAC (GAU), respectively. We also found that galactosylation of Q suppresses stop codon readthrough. Moreover, protein aggregates increased in cells lacking Q-glycosylation, indicating that Q-glycosylation contributes to proteostasis. Cryo-EM of human ribosome-tRNA complex revealed the molecular basis of codon recognition regulated by Q-glycosylations. Furthermore, zebrafish qtgal and qtman knockout lines displayed shortened body length, implying that Q-glycosylation is required for post-embryonic growth in vertebrates.


Asunto(s)
ARN de Transferencia , Animales , Humanos , Ratas , Anticodón , Línea Celular , Codón , Glicosilación , Nucleósido Q/química , Nucleósido Q/genética , Nucleósido Q/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Porcinos , Pez Cebra/metabolismo , Conformación de Ácido Nucleico
6.
Cell ; 186(4): 732-747.e16, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36803603

RESUMEN

Hematopoietic stem cells (HSCs) have a number of unique physiologic adaptations that enable lifelong maintenance of blood cell production, including a highly regulated rate of protein synthesis. Yet, the precise vulnerabilities that arise from such adaptations have not been fully characterized. Here, inspired by a bone marrow failure disorder due to the loss of the histone deubiquitinase MYSM1, characterized by selectively disadvantaged HSCs, we show how reduced protein synthesis in HSCs results in increased ferroptosis. HSC maintenance can be fully rescued by blocking ferroptosis, despite no alteration in protein synthesis rates. Importantly, this selective vulnerability to ferroptosis not only underlies HSC loss in MYSM1 deficiency but also characterizes a broader liability of human HSCs. Increasing protein synthesis rates via MYSM1 overexpression makes HSCs less susceptible to ferroptosis, more broadly illustrating the selective vulnerabilities that arise in somatic stem cell populations as a result of physiologic adaptations.


Asunto(s)
Ferroptosis , Células Madre Hematopoyéticas , Humanos , Endopeptidasas/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Transactivadores/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo
7.
Cell ; 186(11): 2361-2379.e25, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37192619

RESUMEN

Multiple anticancer drugs have been proposed to cause cell death, in part, by increasing the steady-state levels of cellular reactive oxygen species (ROS). However, for most of these drugs, exactly how the resultant ROS function and are sensed is poorly understood. It remains unclear which proteins the ROS modify and their roles in drug sensitivity/resistance. To answer these questions, we examined 11 anticancer drugs with an integrated proteogenomic approach identifying not only many unique targets but also shared ones-including ribosomal components, suggesting common mechanisms by which drugs regulate translation. We focus on CHK1 that we find is a nuclear H2O2 sensor that launches a cellular program to dampen ROS. CHK1 phosphorylates the mitochondrial DNA-binding protein SSBP1 to prevent its mitochondrial localization, which in turn decreases nuclear H2O2. Our results reveal a druggable nucleus-to-mitochondria ROS-sensing pathway-required to resolve nuclear H2O2 accumulation and mediate resistance to platinum-based agents in ovarian cancers.


Asunto(s)
Antineoplásicos , Especies Reactivas de Oxígeno , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Núcleo Celular/metabolismo , Humanos
8.
Cell ; 186(23): 5114-5134.e27, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37875108

RESUMEN

Human inherited disorders of interferon-gamma (IFN-γ) immunity underlie severe mycobacterial diseases. We report X-linked recessive MCTS1 deficiency in men with mycobacterial disease from kindreds of different ancestries (from China, Finland, Iran, and Saudi Arabia). Complete deficiency of this translation re-initiation factor impairs the translation of a subset of proteins, including the kinase JAK2 in all cell types tested, including T lymphocytes and phagocytes. JAK2 expression is sufficiently low to impair cellular responses to interleukin-23 (IL-23) and partially IL-12, but not other JAK2-dependent cytokines. Defective responses to IL-23 preferentially impair the production of IFN-γ by innate-like adaptive mucosal-associated invariant T cells (MAIT) and γδ T lymphocytes upon mycobacterial challenge. Surprisingly, the lack of MCTS1-dependent translation re-initiation and ribosome recycling seems to be otherwise physiologically redundant in these patients. These findings suggest that X-linked recessive human MCTS1 deficiency underlies isolated mycobacterial disease by impairing JAK2 translation in innate-like adaptive T lymphocytes, thereby impairing the IL-23-dependent induction of IFN-γ.


Asunto(s)
Interferón gamma , Janus Quinasa 2 , Infecciones por Mycobacterium , Humanos , Masculino , Proteínas de Ciclo Celular/metabolismo , Interferón gamma/inmunología , Interleucina-12 , Interleucina-23 , Janus Quinasa 2/metabolismo , Mycobacterium/fisiología , Infecciones por Mycobacterium/inmunología , Infecciones por Mycobacterium/metabolismo , Proteínas Oncogénicas/metabolismo
9.
Cell ; 186(15): 3245-3260.e23, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37369203

RESUMEN

Terrestrial organisms developed circadian rhythms for adaptation to Earth's quasi-24-h rotation. Achieving precise rhythms requires diurnal oscillation of fundamental biological processes, such as rhythmic shifts in the cellular translational landscape; however, regulatory mechanisms underlying rhythmic translation remain elusive. Here, we identified mammalian ATXN2 and ATXN2L as cooperating master regulators of rhythmic translation, through oscillating phase separation in the suprachiasmatic nucleus along circadian cycles. The spatiotemporal oscillating condensates facilitate sequential initiation of multiple cycling processes, from mRNA processing to protein translation, for selective genes including core clock genes. Depleting ATXN2 or 2L induces opposite alterations to the circadian period, whereas the absence of both disrupts translational activation cycles and weakens circadian rhythmicity in mice. Such cellular defect can be rescued by wild type, but not phase-separation-defective ATXN2. Together, we revealed that oscillating translation is regulated by spatiotemporal condensation of two master regulators to achieve precise circadian rhythm in mammals.


Asunto(s)
Relojes Circadianos , Ratones , Animales , Relojes Circadianos/genética , Ritmo Circadiano/fisiología , Núcleo Supraquiasmático/metabolismo , Procesamiento Proteico-Postraduccional , Mamíferos
10.
Cell ; 186(20): 4310-4324.e23, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37703874

RESUMEN

Cellular homeostasis requires the robust control of biomolecule concentrations, but how do millions of mRNAs coordinate their stoichiometries in the face of dynamic translational changes? Here, we identified a two-tiered mechanism controlling mRNA:mRNA and mRNA:protein stoichiometries where mRNAs super-assemble into condensates with buffering capacity and sorting selectivity through phase-transition mechanisms. Using C. elegans oogenesis arrest as a model, we investigated the transcriptome cytosolic reorganization through the sequencing of RNA super-assemblies coupled with single mRNA imaging. Tightly repressed mRNAs self-assembled into same-sequence nanoclusters that further co-assembled into multiphase condensates. mRNA self-sorting was concentration dependent, providing a self-buffering mechanism that is selective to sequence identity and controls mRNA:mRNA stoichiometries. The cooperative sharing of limiting translation repressors between clustered mRNAs prevented the disruption of mRNA:repressor stoichiometries in the cytosol. Robust control of mRNA:mRNA and mRNA:protein stoichiometries emerges from mRNA self-demixing and cooperative super-assembly into multiphase multiscale condensates with dynamic storage capacity.


Asunto(s)
Condensados Biomoleculares , Caenorhabditis elegans , ARN Mensajero , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Oogénesis , Biosíntesis de Proteínas , Transporte de ARN , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas/química , Proteínas/metabolismo , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo
11.
Cell ; 186(2): 346-362.e17, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36638793

RESUMEN

Ribosomes frequently stall during mRNA translation, resulting in the context-dependent activation of quality control pathways to maintain proteostasis. However, surveillance mechanisms that specifically respond to stalled ribosomes with an occluded A site have not been identified. We discovered that the elongation factor-1α (eEF1A) inhibitor, ternatin-4, triggers the ubiquitination and degradation of eEF1A on stalled ribosomes. Using a chemical genetic approach, we unveiled a signaling network comprising two E3 ligases, RNF14 and RNF25, which are required for eEF1A degradation. Quantitative proteomics revealed the RNF14 and RNF25-dependent ubiquitination of eEF1A and a discrete set of ribosomal proteins. The ribosome collision sensor GCN1 plays an essential role by engaging RNF14, which directly ubiquitinates eEF1A. The site-specific, RNF25-dependent ubiquitination of the ribosomal protein RPS27A/eS31 provides a second essential signaling input. Our findings illuminate a ubiquitin signaling network that monitors the ribosomal A site and promotes the degradation of stalled translation factors, including eEF1A and the termination factor eRF1.


Asunto(s)
Proteínas de Unión al ARN , Transactivadores , Proteínas Portadoras/metabolismo , Factores de Elongación de Péptidos/genética , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Humanos , Células HeLa , Células HEK293 , Proteínas de Unión al ARN/metabolismo , Transactivadores/metabolismo , Factor 1 de Elongación Peptídica/metabolismo
12.
Cell ; 186(8): 1652-1669, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37059068

RESUMEN

Immune checkpoint therapy (ICT) has dramatically altered clinical outcomes for cancer patients and conferred durable clinical benefits, including cure in a subset of patients. Varying response rates across tumor types and the need for predictive biomarkers to optimize patient selection to maximize efficacy and minimize toxicities prompted efforts to unravel immune and non-immune factors regulating the responses to ICT. This review highlights the biology of anti-tumor immunity underlying response and resistance to ICT, discusses efforts to address the current challenges with ICT, and outlines strategies to guide the development of subsequent clinical trials and combinatorial efforts with ICT.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Antígeno B7-H1 , Neoplasias/tratamiento farmacológico , Ensayos Clínicos como Asunto , Inhibidores de Puntos de Control Inmunológico/administración & dosificación
13.
Annu Rev Biochem ; 91: 245-267, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35287473

RESUMEN

Accurate protein synthesis (translation) relies on translation factors that rectify ribosome fluctuations into a unidirectional process. Understanding this process requires structural characterization of the ribosome and translation-factor dynamics. In the 2000s, crystallographic studies determined high-resolution structures of ribosomes stalled with translation factors, providing a starting point for visualizing translation. Recent progress in single-particle cryogenic electron microscopy (cryo-EM) has enabled near-atomic resolution of numerous structures sampled in heterogeneous complexes (ensembles). Ensemble and time-resolved cryo-EM have now revealed unprecedented views of ribosome transitions in the three principal stages of translation: initiation, elongation, and termination. This review focuses on how translation factors help achieve high accuracy and efficiency of translation by monitoring distinct ribosome conformations and by differentially shifting the equilibria of ribosome rearrangements for cognate and near-cognate substrates.


Asunto(s)
Ribosomas , Imagen Individual de Molécula , Microscopía por Crioelectrón , Ribosomas/metabolismo
14.
Cell ; 185(24): 4474-4487.e17, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36334590

RESUMEN

How the eukaryotic 43S preinitiation complex scans along the 5' untranslated region (5' UTR) of a capped mRNA to locate the correct start codon remains elusive. Here, we directly track yeast 43S-mRNA binding, scanning, and 60S subunit joining by real-time single-molecule fluorescence spectroscopy. 43S engagement with mRNA occurs through a slow, ATP-dependent process driven by multiple initiation factors including the helicase eIF4A. Once engaged, 43S scanning occurs rapidly and directionally at ∼100 nucleotides per second, independent of multiple cycles of ATP hydrolysis by RNA helicases post ribosomal loading. Scanning ribosomes can proceed through RNA secondary structures, but 5' UTR hairpin sequences near start codons drive scanning ribosomes at start codons backward in the 5' direction, requiring rescanning to arrive once more at a start codon. Direct observation of scanning ribosomes provides a mechanistic framework for translational regulation by 5' UTR structures and upstream near-cognate start codons.


Asunto(s)
Ribosomas , Saccharomyces cerevisiae , Codón Iniciador/metabolismo , ARN Mensajero/metabolismo , Regiones no Traducidas 5' , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Biosíntesis de Proteínas
15.
Cell ; 185(8): 1308-1324.e23, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35325593

RESUMEN

Asymmetric localization of oskar ribonucleoprotein (RNP) granules to the oocyte posterior is crucial for abdominal patterning and germline formation in the Drosophila embryo. We show that oskar RNP granules in the oocyte are condensates with solid-like physical properties. Using purified oskar RNA and scaffold proteins Bruno and Hrp48, we confirm in vitro that oskar granules undergo a liquid-to-solid phase transition. Whereas the liquid phase allows RNA incorporation, the solid phase precludes incorporation of additional RNA while allowing RNA-dependent partitioning of client proteins. Genetic modification of scaffold granule proteins or tethering the intrinsically disordered region of human fused in sarcoma (FUS) to oskar mRNA allowed modulation of granule material properties in vivo. The resulting liquid-like properties impaired oskar localization and translation with severe consequences on embryonic development. Our study reflects how physiological phase transitions shape RNA-protein condensates to regulate the localization and expression of a maternal RNA that instructs germline formation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Embrión no Mamífero/metabolismo , Animales , Gránulos de Ribonucleoproteínas Citoplasmáticas , Drosophila/embriología , Proteínas de Drosophila/genética , Desarrollo Embrionario , Oocitos/metabolismo , ARN/metabolismo
16.
Cell ; 185(17): 3186-3200.e17, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35907403

RESUMEN

Upon stress, eukaryotes typically reprogram their translatome through GCN2-mediated phosphorylation of the eukaryotic translation initiation factor, eIF2α, to inhibit general translation initiation while selectively translating essential stress regulators. Unexpectedly, in plants, pattern-triggered immunity (PTI) and response to other environmental stresses occur independently of the GCN2/eIF2α pathway. Here, we show that while PTI induces mRNA decapping to inhibit general translation, defense mRNAs with a purine-rich element ("R-motif") are selectively translated using R-motif as an internal ribosome entry site (IRES). R-motif-dependent translation is executed by poly(A)-binding proteins (PABPs) through preferential association with the PTI-activating eIFiso4G over the repressive eIF4G. Phosphorylation by PTI regulators mitogen-activated protein kinase 3 and 6 (MPK3/6) inhibits eIF4G's activity while enhancing PABP binding to the R-motif and promoting eIFiso4G-mediated defense mRNA translation, establishing a link between PTI signaling and protein synthesis. Given its prevalence in both plants and animals, the PABP/R-motif translation initiation module may have a broader role in reprogramming the stress translatome.


Asunto(s)
Factor 4G Eucariótico de Iniciación , Proteínas de Unión a Poli(A) , Animales , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Biosíntesis de Proteínas , Purinas , ARN Mensajero/metabolismo
17.
Cell ; 185(12): 2016-2034, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35584701

RESUMEN

Most circular RNAs are produced from the back-splicing of exons of precursor mRNAs. Recent technological advances have in part overcome problems with their circular conformation and sequence overlap with linear cognate mRNAs, allowing a better understanding of their cellular roles. Depending on their localization and specific interactions with DNA, RNA, and proteins, circular RNAs can modulate transcription and splicing, regulate stability and translation of cytoplasmic mRNAs, interfere with signaling pathways, and serve as templates for translation in different biological and pathophysiological contexts. Emerging applications of RNA circles to interfere with cellular processes, modulate immune responses, and direct translation into proteins shed new light on biomedical research. In this review, we discuss approaches used in circular RNA studies and the current understanding of their regulatory roles and potential applications.


Asunto(s)
ARN Circular , ARN , Proteínas/metabolismo , ARN/metabolismo , Precursores del ARN/metabolismo , Empalme del ARN , ARN Mensajero/metabolismo
18.
Annu Rev Cell Dev Biol ; 39: 253-275, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37843928

RESUMEN

Recent advances in single-molecule imaging of mRNAs in fixed and living cells have enabled the lives of mRNAs to be studied with unprecedented spatial and temporal detail. These approaches have moved beyond simply being able to observe specific events and have begun to allow an understanding of how regulation is coupled between steps in the mRNA life cycle. Additionally, these methodologies are now being applied in multicellular systems and animals to provide more nuanced insights into the physiological regulation of RNA metabolism.


Asunto(s)
ARN Mensajero , Animales , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
Annu Rev Biochem ; 90: 375-401, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33441035

RESUMEN

Codon usage bias, the preference for certain synonymous codons, is found in all genomes. Although synonymous mutations were previously thought to be silent, a large body of evidence has demonstrated that codon usage can play major roles in determining gene expression levels and protein structures. Codon usage influences translation elongation speed and regulates translation efficiency and accuracy. Adaptation of codon usage to tRNA expression determines the proteome landscape. In addition, codon usage biases result in nonuniform ribosome decoding rates on mRNAs, which in turn influence the cotranslational protein folding process that is critical for protein function in diverse biological processes. Conserved genome-wide correlations have also been found between codon usage and protein structures. Furthermore, codon usage is a major determinant of mRNA levels through translation-dependent effects on mRNA decay and translation-independent effects on transcriptional and posttranscriptional processes. Here, we discuss the multifaceted roles and mechanisms of codon usage in different gene regulatory processes.


Asunto(s)
Uso de Codones , Expresión Génica , Biosíntesis de Proteínas , Pliegue de Proteína , Animales , Eucariontes/genética , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
20.
Cell ; 184(23): 5824-5837.e15, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34672953

RESUMEN

The human mitochondrial genome encodes thirteen core subunits of the oxidative phosphorylation system, and defects in mitochondrial gene expression lead to severe neuromuscular disorders. However, the mechanisms of mitochondrial gene expression remain poorly understood due to a lack of experimental approaches to analyze these processes. Here, we present an in vitro system to silence translation in purified mitochondria. In vitro import of chemically synthesized precursor-morpholino hybrids allows us to target translation of individual mitochondrial mRNAs. By applying this approach, we conclude that the bicistronic, overlapping ATP8/ATP6 transcript is translated through a single ribosome/mRNA engagement. We show that recruitment of COX1 assembly factors to translating ribosomes depends on nascent chain formation. By defining mRNA-specific interactomes for COX1 and COX2, we reveal an unexpected function of the cytosolic oncofetal IGF2BP1, an RNA-binding protein, in mitochondrial translation. Our data provide insight into mitochondrial translation and innovative strategies to investigate mitochondrial gene expression.


Asunto(s)
Regulación de la Expresión Génica , Silenciador del Gen , Genes Mitocondriales , Transporte de Electrón , Complejo IV de Transporte de Electrones/genética , Células HEK293 , Humanos , Proteínas Mitocondriales/metabolismo , Oligonucleótidos/química , Fosforilación Oxidativa , Biosíntesis de Proteínas , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA