Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Traffic ; 22(8): 274-283, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34101314

RESUMEN

African trypanosomes cause disease in humans and livestock, avoiding host immunity by changing the expression of variant surface glycoproteins (VSGs); the major glycosylphosphatidylinositol (GPI) anchored antigens coating the surface of the bloodstream stage. Proper trafficking of VSGs is therefore critical to pathogen survival. The valence model argues that GPI anchors regulate progression and fate in the secretory pathway and that, specifically, a valence of two (VSGs are dimers) is critical for stable cell surface association. However, recent reports that the MITat1.3 (M1.3) VSG N-terminal domain (NTD) behaves as a monomer in solution and in a crystal structure challenge this model. We now show that the behavior of intact M1.3 VSG in standard in vivo trafficking assays is consistent with an oligomer. Nevertheless, Blue Native Gel electrophoresis and size exclusion chromatography-multiangle light scattering chromatography of purified full length M1.3 VSG indicates a monomer in vitro. However, studies with additional VSGs show that multiple oligomeric states are possible, and that for some VSGs oligomerization is concentration dependent. These data argue that individual VSG monomers possess different propensities to self-oligomerize, but that when constrained at high density to the cell surface, oligomeric species predominate. These results resolve the apparent conflict between the valence hypothesis and the M1.3 NTD VSG crystal structure.


Asunto(s)
Trypanosoma brucei brucei , Glicoproteínas Variantes de Superficie de Trypanosoma , Membrana Celular , Glicosilfosfatidilinositoles , Glicoproteínas de Membrana , Glicoproteínas Variantes de Superficie de Trypanosoma/genética
2.
J Mol Recognit ; 35(11): e2984, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35869579

RESUMEN

Mimotope peptides of native antigens are valuable for diverse applications such as diagnostics, therapeutics and modern vaccine design. Here, we report for the first time the selection and identification of peptide mimotopes of Trypanosoma evansi RoTat 1.2 variant surface glycoprotein (VSG) for their potential uses in surra diagnostics and multi-epitope vaccine research. First, we produced the mouse monoclonal antibodies (mAbs), designated as 2E11 (IgG1) and 1C2 (IgG1), against the antigens in T. evansi RoTat 1.2 lysates. We then used 2E11 mAb to immunoprecipitate the target antigen. The immunoprecipitated antigen was then identified to be the VSG by mass spectrometry. Both 2E11 and 1C2 mAbs reacted with the VSG in immunoblots. The surface plasmon resonance immunosensors developed with both the mAbs detected VSG in the parasite lysates as well as in the rodent sera. Further, the mAbs were biotinylated and used in three rounds of panning to select peptide mimotopes from the random peptide phage display library (PhD-12; New England Biolabs, USA). The phage clones selected against each mAb were amplified and tested by phage capture ELISA for specificity. The peptide coding regions of the selected phages were sequenced and the protein blast search of the deduced amino acid sequences was performed by accessing the non-redundant protein database at https://blast.ncbi.nlm.nih.gov/. The conformational B epitope prediction of the selected mimotope sequences was done by using 3D Pepitope algorithms accessed at: http://pepitope.tau.ac.il/. The potential applications of the selected mimotopes in surra diagnostics and research are being explored.


Asunto(s)
Bacteriófagos , Técnicas Biosensibles , Trypanosoma , Vacunas , Animales , Anticuerpos Monoclonales , Antígenos de Superficie , Epítopos , Inmunoensayo , Inmunoglobulina G , Glicoproteínas de Membrana , Ratones , Biblioteca de Péptidos , Péptidos , Trypanosoma/genética
3.
Proc Natl Acad Sci U S A ; 116(33): 16561-16570, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31358644

RESUMEN

Monoallelic exclusion ensures that the African trypanosome Trypanosoma brucei exclusively expresses only 1 of thousands of different variant surface glycoprotein (VSG) coat genes. The active VSG is transcribed from 1 of 15 polycistronic bloodstream-form VSG expression sites (ESs), which are controlled in a mutually exclusive fashion. Unusually, T. brucei uses RNA polymerase I (Pol I) to transcribe the active ES, which is unprecedented among eukaryotes. This active ES is located within a unique extranucleolar Pol I body called the expression-site body (ESB). A stringent restriction mechanism prevents T. brucei from expressing multiple ESs at the same time, although how this is mediated is unclear. By using drug-selection pressure, we generated VSG double-expresser T. brucei lines, which have disrupted monoallelic exclusion, and simultaneously express 2 ESs in a dynamic fashion. The 2 unstably active ESs appear epigenetically similar to fully active ESs as determined by using chromatin immunoprecipitation for multiple epigenetic marks (histones H3 and H1, TDP1, and DNA base J). We find that the double-expresser cells, similar to wild-type single-expresser cells, predominantly contain 1 subnuclear ESB, as determined using Pol I or the ESB marker VEX1. Strikingly, simultaneous transcription of the 2 dynamically transcribed ESs is normally observed only when the 2 ESs are both located within this single ESB. This colocalization is reversible in the absence of drug selection. This discovery that simultaneously active ESs dynamically share a single ESB demonstrates the importance of this unique subnuclear body in restricting the monoallelic expression of VSG.


Asunto(s)
Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo , Línea Celular , Epigénesis Genética , Transporte de Proteínas , Transcripción Genética , Trypanosoma brucei brucei/genética
4.
Proc Natl Acad Sci U S A ; 116(41): 20725-20735, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31554700

RESUMEN

Trypanosoma brucei parasites successfully evade the host immune system by periodically switching the dense coat of variant surface glycoprotein (VSG) at the cell surface. Each parasite expresses VSGs in a monoallelic fashion that is tightly regulated. The consequences of exposing multiple VSGs during an infection, in terms of antibody response and disease severity, remain unknown. In this study, we overexpressed a high-mobility group box protein, TDP1, which was sufficient to open the chromatin of silent VSG expression sites, to disrupt VSG monoallelic expression, and to generate viable and healthy parasites with a mixed VSG coat. Mice infected with these parasites mounted a multi-VSG antibody response, which rapidly reduced parasitemia. Consequently, we observed prolonged survival in which nearly 90% of the mice survived a 30-d period of infection with undetectable parasitemia. Immunodeficient RAG2 knock-out mice were unable to control infection with TDP1-overexpressing parasites, showing that the adaptive immune response is critical to reducing disease severity. This study shows that simultaneous exposure of multiple VSGs is highly detrimental to the parasite, even at the very early stages of infection, suggesting that drugs that disrupt VSG monoallelic expression could be used to treat trypanosomiasis.


Asunto(s)
Variación Antigénica/inmunología , Proteínas HMGB/metabolismo , Interacciones Huésped-Parásitos/inmunología , Parasitemia/prevención & control , Trypanosoma brucei brucei/inmunología , Tripanosomiasis Africana/complicaciones , Glicoproteínas Variantes de Superficie de Trypanosoma/inmunología , Animales , Variación Antigénica/genética , Proteínas HMGB/genética , Sistema Inmunológico , Ratones , Parasitemia/etiología , Parasitemia/patología , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/patogenicidad , Tripanosomiasis Africana/parasitología , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo
5.
J Bacteriol ; 203(7)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33468592

RESUMEN

The pneumococcal serine-rich repeat protein (PsrP) is a high-molecular-weight, glycosylated adhesin that promotes the attachment of Streptococcus pneumoniae to host cells. PsrP, its associated glycosyltransferases (GTs), and dedicated secretion machinery are encoded in a 37-kb genomic island that is present in many invasive clinical isolates of S. pneumoniae PsrP has been implicated in establishment of lung infection in murine models, although specific roles of the PsrP glycans in disease progression or bacterial physiology have not been elucidated. Moreover, enzymatic specificities of associated glycosyltransferases are yet to be fully characterized. We hypothesized that the glycosyltransferases that modify PsrP are critical for the adhesion properties and infectivity of S. pneumoniae Here, we characterize the putative S. pneumoniaepsrP locus glycosyltransferases responsible for PsrP glycosylation. We also begin to elucidate their roles in S. pneumoniae virulence. We show that four glycosyltransferases within the psrP locus are indispensable for S. pneumoniae biofilm formation, lung epithelial cell adherence, and establishment of lung infection in a mouse model of pneumococcal pneumonia.IMPORTANCE PsrP has previously been identified as a necessary virulence factor for many serotypes of S. pneumoniae and studied as a surface glycoprotein. Thus, studying the effects on virulence of each glycosyltransferase (GT) that builds the PsrP glycan is of high importance. Our work elucidates the influence of GTs in vivo We have identified at least four GTs that are required for lung infection, an indication that it is worthwhile to consider glycosylated PsrP as a candidate for serotype-independent pneumococcal vaccine design.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glicosiltransferasas/metabolismo , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/enzimología , Streptococcus pneumoniae/patogenicidad , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Animales , Proteínas Bacterianas/genética , Femenino , Glicosiltransferasas/genética , Humanos , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Virulencia
6.
EMBO Rep ; 20(12): e48029, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31693280

RESUMEN

SUMOylation is a post-translational modification that positively regulates monoallelic expression of the trypanosome variant surface glycoprotein (VSG). The presence of a highly SUMOylated focus associated with the nuclear body, where the VSG gene is transcribed, further suggests an important role of SUMOylation in regulating VSG expression. Here, we show that SNF2PH, a SUMOylated plant homeodomain (PH)-transcription factor, is upregulated in the bloodstream form of the parasite and enriched at the active VSG telomere. SUMOylation promotes the recruitment of SNF2PH to the VSG promoter, where it is required to maintain RNA polymerase I and thus to regulate VSG transcript levels. Further, ectopic overexpression of SNF2PH in insect forms, but not of a mutant lacking the PH domain, induces the expression of bloodstream stage-specific surface proteins. These data suggest that SNF2PH SUMOylation positively regulates VSG monoallelic transcription, while the PH domain is required for the expression of bloodstream-specific surface proteins. Thus, SNF2PH functions as a positive activator, linking expression of infective form surface proteins and VSG regulation, thereby acting as a major regulator of pathogenicity.


Asunto(s)
Glicoproteínas/metabolismo , Proteínas Protozoarias/metabolismo , Sumoilación , Factores de Transcripción/metabolismo , Trypanosoma brucei brucei/metabolismo , Ensamble y Desensamble de Cromatina , Epigénesis Genética , Glicoproteínas/genética , Proteínas Protozoarias/genética , ARN Polimerasa I/metabolismo , Factores de Transcripción/genética , Trypanosoma brucei brucei/genética
7.
Traffic ; 19(6): 391-405, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29533496

RESUMEN

The predominant secretory cargo of bloodstream form Trypanosoma brucei is variant surface glycoprotein (VSG), comprising ~10% total protein and forming a dense protective layer. Blocking VSG translation using Morpholino oligonucleotides triggered a precise pre-cytokinesis arrest. We investigated the effect of blocking VSG synthesis on the secretory pathway. The number of Golgi decreased, particularly in post-mitotic cells, from 3.5 ± 0.6 to 2.0 ± 0.04 per cell. Similarly, the number of endoplasmic reticulum exit sites (ERES) in post-mitotic cells dropped from 3.9 ± 0.6 to 2.7 ± 0.1 eight hours after blocking VSG synthesis. The secretory pathway was still functional in these stalled cells, as monitored using Cathepsin L. Rates of phospholipid and glycosylphosphatidylinositol-anchor biosynthesis remained relatively unaffected, except for the level of sphingomyelin which increased. However, both endoplasmic reticulum and Golgi morphology became distorted, with the Golgi cisternae becoming significantly dilated, particularly at the trans-face. Membrane accumulation in these structures is possibly caused by reduced budding of nascent vesicles due to the drastic reduction in the total amount of secretory cargo, that is, VSG. These data argue that the total flux of secretory cargo impacts upon the biogenesis and maintenance of secretory structures and organelles in T. brucei, including the ERES and Golgi.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Glicoproteínas de Membrana/metabolismo , Biosíntesis de Proteínas/fisiología , Trypanosoma brucei brucei/metabolismo , Homeostasis/fisiología , Vías Secretoras/fisiología
8.
Traffic ; 19(6): 406-420, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29582527

RESUMEN

Trypanosoma brucei possesses a streamlined secretory system that guarantees efficient delivery to the cell surface of the critical glycosyl-phosphatidylinositol (GPI)-anchored virulence factors, variant surface glycoprotein (VSG) and transferrin receptor (TfR). Both are thought to be constitutively endocytosed and returned to the flagellar pocket via TbRab11+ recycling endosomes. We use conditional knockdown with established reporters to investigate the role of TbRab11 in specific endomembrane trafficking pathways in bloodstream trypanosomes. TbRab11 is essential. Ablation has a modest negative effect on general endocytosis, but does not affect turnover, steady state levels or surface localization of TfR. Nor are biosynthetic delivery to the cell surface and recycling of VSG affected. TbRab11 depletion also causes increased shedding of VSG into the media by formation of nanotubes and extracellular vesicles. In contrast to GPI-anchored cargo, TbRab11 depletion reduces recycling of the transmembrane invariant surface protein, ISG65, leading to increased lysosomal turnover. Thus, TbRab11 plays a critical role in recycling of transmembrane, but not GPI-anchored surface proteins. We proposed a two-step model for VSG turnover involving release of VSG-containing vesicles followed by GPI hydrolysis. Collectively, our results indicate a critical role of TbRab11 in the homeostatic maintenance of the secretory/endocytic system of bloodstream T. brucei.


Asunto(s)
Endocitosis/fisiología , Transporte de Proteínas/fisiología , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Endosomas/metabolismo , Glicosilfosfatidilinositoles/metabolismo
9.
Bioessays ; 40(12): e1800181, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30370931

RESUMEN

The process of antigenic variation in parasitic African trypanosomes is a remarkable mechanism for outwitting the immune system of the mammalian host, but it requires a delicate balancing act for the monoallelic expression, folding and transport of a single variant surface glycoprotein (VSG). Only one of hundreds of VSG genes is expressed at time, and this from just one of ≈15 dedicated expression sites. By switching expression of VSGs the parasite presents a continuously shifting antigenic facade leading to prolonged chronic infections lasting months to years. The basics of VSG structure and switching have been known for several decades, but recent studies have brought higher resolution to many aspects this process. New VSG structures, in silico modeling of infections, studies of VSG codon usage, and experimental ablation of VSG expression provide insights that inform how this remarkable system may have evolved.


Asunto(s)
Variación Antigénica , Glicoproteínas de Membrana/química , Trypanosoma/inmunología , África , Regulación de la Expresión Génica , Glicoproteínas de Membrana/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Trypanosoma/genética
10.
Curr Genet ; 63(3): 441-449, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27822899

RESUMEN

All pathogens must survive host immune attack and, amongst the survival strategies that have evolved, antigenic variation is a particularly widespread reaction to thwart adaptive immunity. Though the reactions that underlie antigenic variation are highly varied, recombination by gene conversion is a widespread approach to immune survival in bacterial and eukaryotic pathogens. In the African trypanosome, antigenic variation involves gene conversion-catalysed movement of a huge number of variant surface glycoprotein (VSG) genes into a few telomeric sites for VSG expression, amongst which only a single site is actively transcribed at one time. Genetic evidence indicates VSG gene conversion has co-opted the general genome maintenance reaction of homologous recombination, aligning the reaction strategy with targeted rearrangements found in many organisms. What is less clear is how gene conversion might be initiated within the locality of the VSG expression sites. Here, we discuss three emerging models for VSG switching initiation and ask how these compare with processes for adaptive genome change found in other organisms.


Asunto(s)
Antígenos/análisis , Interacciones Huésped-Patógeno/genética , Recombinación Genética/genética , Trypanosoma brucei gambiense/genética , Tripanosomiasis Africana/genética , Inmunidad Adaptativa/genética , Animales , Variación Antigénica/genética , Antígenos/inmunología , Replicación del ADN/genética , Conversión Génica/genética , Interacciones Huésped-Patógeno/inmunología , Evasión Inmune/genética , Trypanosoma brucei gambiense/patogenicidad , Tripanosomiasis Africana/inmunología , Tripanosomiasis Africana/parasitología
11.
Parasitology ; 144(7): 923-936, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28183369

RESUMEN

Trypanosoma equiperdum possesses a dense coat of a variant surface glycoprotein (VSG) that is used to evade the host immune response by a process known as antigenic variation. Soluble and membrane forms of the predominant VSG from the Venezuelan T. equiperdum TeAp-N/D1 strain (sVSG and mVSG, respectively) were purified to homogeneity; and antibodies against sVSG and mVSG were raised, isolated, and employed to produce anti-idiotypic antibodies that structurally mimic the VSG surface. Prospective VSG-binding partners were initially detected by far-Western blots, and then by immunoblots using the generated anti-idiotypic antibodies. Polypeptides of ~80 and 55 kDa were isolated when anti-idiotypic antibodies-Sepharose affinity matrixes were used as baits. Mass spectrometry sequencing yielded hits with various proteins from Trypanosoma brucei such as heat-shock protein 70, tryparedoxin peroxidase, VSG variants, expression site associated gene product 6, and two hypothetical proteins. In addition, a possible interaction with a protein homologous to the glutamic acid/alanine-rich protein from Trypanosoma congolense was also found. These results indicate that the corresponding orthologous gene products are candidates for VSG-interacting proteins in T. equiperdum.


Asunto(s)
Proteínas Protozoarias/metabolismo , Trypanosoma/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo , Unión Proteica
12.
Open Res Eur ; 4: 87, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903703

RESUMEN

Background: Trypanosoma brucei is a protozoan parasite that evades the mammalian host's adaptive immune response by antigenic variation of the highly immunogenic variant surface glycoprotein (VSG). VSGs form a dense surface coat that is constantly recycled through the endosomal system. Bound antibodies are separated in the endosome from the VSG and destroyed in the lysosome. For VSGs it has been hypothesized that pH-dependent structural changes of the VSG could occur in the more acidic environment of the endosome and hence, facilitate the separation of the antibody from the VSG. Methods: We used size exclusion chromatography, where molecules are separated according to their hydrodynamic radius to see if the VSG is present as a homodimer at both pH values. To gain information about the structural integrity of the protein we used circular dichroism spectroscopy by exposing the VSG in solution to a mixture of right- and left-circularly polarized light and analysing the absorbed UV spectra. Evaluation of protein stability and molecular dynamics simulations at different pH values was performed using different computational methods. Results: We show, for an A2-type VSG, that the dimer size is only slightly larger at pH 5.2 than at pH 7.4. Moreover, the dimer was marginally more stable at lower pH due to the higher affinity (ΔG = 353.37 kcal/mol) between the monomers. Due to the larger size, the predicted epitopes were more exposed to the solvent at low pH. Moderate conformational changes (ΔRMSD = 0.35 nm) in VSG were detected between the dimers at pH 5.2 and pH 7.4 in molecular dynamics simulations, and no significant differences in the protein secondary structure were observed by circular dichroism spectroscopy. Conclusions: Thus, the dissociation of anti-VSG-antibodies in endosomes cannot be explained by changes in pH.

13.
Int Immunopharmacol ; 140: 112847, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39088922

RESUMEN

Trypanosomes are the extracellular protozoan parasites that cause human African trypanosomiasis disease in humans and nagana disease in animals. Tsetse flies act as a vector for the transmission of the disease in African countries. Animals infected with these parasites become useless or workless, and if not treated, disease can be fatal. There are many side effects associated with old treatments and some of them result in death in 5% of cases. There is a major surface glycoprotein in the parasite known as variant surface glycoprotein. The immune system of the host develops antibodies against this antigen but due to antigenic variation, parasites evade the immune response. Currently, no vaccine is available that provides complete protection. In murine models, only partial protection was observed using certain antigens. In order to develop vaccines against trypanosomes, molecular biology and immunology tools have been used. Immunization is the sole method for the control of disease because the eradication of the vector from endemic areas is an impossible task. Genetic vaccines can carry multiple genes encoding different antigens of the same parasite or different parasites. DNA immunization induces the activation of both cellular immune response and humoral immune response along with the generation of memory. This review highlights the importance of DNA vaccines and advances in the development of DNA vaccines against T. brucei.

14.
Cell Rep ; 42(2): 112049, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36719797

RESUMEN

Poorly immunogenic small molecules pose challenges for the production of clinically efficacious vaccines and antibodies. To address this, we generate an immunization platform derived from the immunogenic surface coat of the African trypanosome. Through sortase-based conjugation of the target molecules to the variant surface glycoprotein (VSG) of the trypanosome surface coat, we develop VSG-immunogen array by sortase tagging (VAST). VAST elicits antigen-specific memory B cells and antibodies in a murine model after deploying the poorly immunogenic molecule fentanyl as a proof of concept. We also develop a single-cell RNA sequencing (RNA-seq)-based computational method that synergizes with VAST to specifically identify memory B cell-encoded antibodies. All computationally selected antibodies bind to fentanyl with picomolar affinity. Moreover, these antibodies protect mice from fentanyl effects after passive immunization, demonstrating the ability of these two coupled technologies to elicit therapeutic antibodies to challenging immunogens.


Asunto(s)
Trypanosoma brucei brucei , Trypanosoma , Tripanosomiasis Africana , Animales , Ratones , Trypanosoma brucei brucei/genética , Tripanosomiasis Africana/tratamiento farmacológico , Analgésicos Opioides , Fentanilo/farmacología , Fentanilo/uso terapéutico , Glicoproteínas Variantes de Superficie de Trypanosoma , Inmunoterapia
15.
Annu Rev Pathol ; 18: 19-45, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36055769

RESUMEN

African trypanosomes are bloodstream protozoan parasites that infect mammals including humans, where they cause sleeping sickness. Long-lasting infection is required to favor parasite transmission between hosts. Therefore, trypanosomes have developed strategies to continuously escape innate and adaptive responses of the immune system, while also preventing premature death of the host. The pathology linked to infection mainly results from inflammation and includes anemia and brain dysfunction in addition to loss of specificity and memory of the antibody response. The serum of humans contains an efficient trypanolytic factor, the membrane pore-forming protein apolipoprotein L1 (APOL1). In the two human-infective trypanosomes, specific parasite resistance factors inhibit APOL1 activity. In turn, many African individuals express APOL1 variants that counteract these resistance factors, enabling them to avoid sleeping sickness. However, these variants are associated with chronic kidney disease, particularly in the context of virus-induced inflammation such as coronavirus disease 2019. Vaccination perspectives are discussed.


Asunto(s)
COVID-19 , Tripanosomiasis Africana , Humanos , Apolipoproteína L1/genética , Inflamación , Trypanosoma brucei rhodesiense/fisiología , Tripanosomiasis Africana/genética , Tripanosomiasis Africana/parasitología
16.
mSphere ; 7(4): e0012222, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35727016

RESUMEN

African trypanosomes evade the immune system of the mammalian host by the antigenic variation of the predominant glycosylphosphatidylinositol (GPI)-anchored surface protein, variant surface glycoprotein (VSG). VSG is a very stable protein that is turned over from the cell surface with a long half-life (~26 h), allowing newly synthesized VSG to populate the surface. We have recently demonstrated that VSG turnover under normal growth is mediated by a combination of GPI hydrolysis and direct shedding with intact GPI anchors. VSG synthesis is tightly regulated in dividing trypanosomes, and when subjected to RNA interference (RNAi) silencing, cells display rapid cell cycle arrest in order to conserve VSG density on the cell surface (K. Sheader, S. Vaughan, J. Minchin, K. Hughes, et al., Proc Natl Acad Sci U S A 102:8716-8721, 2005, https://doi.org/10.1073/pnas.0501886102). Arrested cells also display an altered morphology of secretory organelles-engorgement of the trans-Golgi cisternae-that may reflect a disruption of post-Golgi secretory transport. We now ask whether trypanosomes under VSG silencing also reduce the rate of VSG turnover to further conserve coat density. Our data indicate that trypanosomes do not regulate VSG turnover according to VSG protein abundance, nor was there any effect on the post-Golgi transport of soluble or GPI-anchored secretory cargo. However, the surface morphology of silenced cells was altered from a typically rugose topology to a smoother profile, consistent with reduced overall membrane trafficking to the cell surface. IMPORTANCE African trypanosomes evade the host immune system by altering the expression of variant surface glycoproteins (VSGs) in a process called antigenic variation. VSG is essential, and when its synthesis is ablated by RNAi silencing, cells enter precytokinesis growth arrest as a means to maintain constant cell surface VSG levels. We have investigated whether arrested cells also alter the rate of natural VSG turnover as a means to conserve the surface coat. This work provides insights into the natural biology of the glycocalyx of this important human and veterinary parasite.


Asunto(s)
Trypanosoma brucei brucei , Animales , Variación Antigénica , Glicosilfosfatidilinositoles , Humanos , Mamíferos , Glicoproteínas de Membrana/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo
17.
mSphere ; 7(4): e0018822, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35727050

RESUMEN

A hallmark of eukaryotic cells is the ability to form a secretory pathway connecting many intracellular compartments. In the early secretory pathway, coated protein complex II (COPII)-coated vesicles mediate the anterograde transport of newly synthesized secretory cargo from the endoplasmic reticulum to the Golgi apparatus. The COPII coat complex is comprised of an inner layer of Sec23/Sec24 heterodimers and an outer layer of Sec13/Sec31 heterotetramers. In African trypanosomes, there are two paralogues each of Sec23 and Sec24, that form obligate heterodimers (TbSec23.2/TbSec24.1, TbSec23.1/TbSec24.2). It is not known if these form distinct homotypic classes of vesicles or one heterotypic class, but it is known that TbSec23.2/TbSec24.1 specifically mediate forward trafficking of GPI-anchored proteins (GPI-APs) in bloodstream-form trypanosomes (BSF). Here, we showed that this selectivity was lost in insect procyclic stage parasites (PCF). All isoforms of TbSec23 and TbSec24 are essential in PCF parasites as judged by RNAi knockdowns. RNAi silencing of each subunit had equivalent effects on the trafficking of GPI-APs and p67, a transmembrane lysosomal protein. However, silencing of the TbSec23.2/TbSec24.1 had heterodimer had a significant impact on COPII mediated trafficking of soluble TbCatL from the ER to the lysosome. This finding suggests a model in which selectivity of COPII transport was altered between the BSF and PCF trypanosomes, possibly as an adaptation to a digenetic life cycle. IMPORTANCE African trypanosomes synthesize dense surface coats composed of stage-specific glycosylphosphatidylinositol lipid anchored proteins. We previously defined specific machinery in bloodstream stage parasites that mediate the exit of these proteins from the endoplasmic reticulum. Here, we performed similar analyses in the procyclic insect stage and found significant differences in this process. These findings contribute to our understanding of secretory processes in this unusual eukaryotic model system.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento , Trypanosoma , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Trypanosoma/metabolismo
18.
Microbiol Spectr ; 10(3): e0221221, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35384693

RESUMEN

Ebola virus, a member of the Filoviridae family, utilizes the attachment factors on host cells to support its entry and cause severe tissue damage. TIM-1 has been identified as a predominant attachment factor via interaction with phosphatidylserine (PS) localized on the viral envelope and glycoprotein (GP). In this study, we give the first demonstration that TIM-1 enhances the cellular entry of three species of Ebola virus, as well as those harboring GP mutations (A82V, T544I, and A82V T544I). Furthermore, two TIM-1 variants (i.e., TIM-1-359aa and TIM-1-364aa) had comparable effects on promoting Zaire Ebola virus (EBOV) attachment, internalization, and infection. Importantly, recombinant TIM-1 ectodomain (ECD) protein could decrease the infectivity of Ebola virus and display synergistic inhibitory effects with ADI-15946, a monoclonal antibody with broad neutralizing activity to Ebola virus. Of note, EBOV strains harboring GP mutations (K510E and D552N), which were refractory to antibody treatment, were still sensitive to TIM-1 protein-mediated impairment of infectivity, indicating that TIM-1 protein may represent an alternative therapeutic regimen when antibody evasion occurs. IMPORTANCE The viral genome has acquired numerous mutations with the potential to increase transmission during the 2013-to-2016 outbreak of Ebola virus. EBOV strains harboring GP mutations (A82V, T544I, and A82V T544I), which have been identified to increase viral infectivity in humans, have attracted our attention. Herein, we give the first report that polymorphic TIM-1 enhances the infectivity of three species of Ebola virus, as well as those harboring GP mutations (A82V, T544I, and A82V T544I). We show that recombinant TIM-1 ECD protein could decrease the infectivity of Ebola virus with or without a point mutation and displays synergistic inhibitory effects with ADI-15946. Furthermore, TIM-1 protein potently blocked cell entry of antibody-evading Ebola virus species. These findings highlight the role of TIM-1 in Ebola virus infection and indicate that TIM-1 protein represents a potential therapeutic avenue for Ebola virus and its mutated species.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Ebolavirus/genética , Genoma Viral , Fiebre Hemorrágica Ebola/epidemiología , Humanos , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus
19.
mBio ; 13(6): e0255322, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36354333

RESUMEN

Trypanosoma brucei gambiense is the primary causative agent of human African trypanosomiasis (HAT), a vector-borne disease endemic to West and Central Africa. The extracellular parasite evades antibody recognition within the host bloodstream by altering its variant surface glycoprotein (VSG) coat through a process of antigenic variation. The serological tests that are widely used to screen for HAT use VSG as one of the target antigens. However, the VSGs expressed during human infection have not been characterized. Here, we use VSG sequencing (VSG-seq) to analyze the VSGs expressed in the blood of patients infected with T. b. gambiense and compared them to VSG expression in Trypanosoma brucei rhodesiense infections in humans as well as Trypanosoma brucei brucei infections in mice. The 44 VSGs expressed during T. b. gambiense infection revealed a striking bias toward expression of type B N termini (82% of detected VSGs). This bias is specific to T. b. gambiense, which is unique among T. brucei subspecies in its chronic clinical presentation and anthroponotic nature. The expressed T. b. gambiense VSGs also share very little similarity to sequences from 36 T. b. gambiense whole-genome sequencing data sets, particularly in areas of the VSG protein exposed to host antibodies, suggesting the antigen repertoire is under strong selective pressure to diversify. Overall, this work demonstrates new features of antigenic variation in T. brucei gambiense and highlights the importance of understanding VSG repertoires in nature. IMPORTANCE Human African trypanosomiasis is a neglected tropical disease primarily caused by the extracellular parasite Trypanosoma brucei gambiense. To avoid elimination by the host, these parasites repeatedly replace their variant surface glycoprotein (VSG) coat. Despite the important role of VSGs in prolonging infection, VSG expression during human infections is poorly understood. A better understanding of natural VSG gene expression dynamics can clarify the mechanisms that T. brucei uses to alter its VSG coat. We analyzed the expressed VSGs detected in the blood of patients with trypanosomiasis. Our findings indicate that there are features of antigenic variation unique to human-infective T. brucei subspecies and that natural VSG repertoires may vary more than previously expected.


Asunto(s)
Trypanosoma brucei brucei , Tripanosomiasis Africana , Humanos , Animales , Ratones , Tripanosomiasis Africana/parasitología , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei gambiense/genética , Glicoproteínas de Membrana
20.
Front Cell Dev Biol ; 10: 876701, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35517511

RESUMEN

The African trypanosome Trypanosoma brucei is a parasite of the mammalian bloodstream and tissues, where an antigenically variable Variant Surface Glycoprotein (VSG) coat protects it from immune attack. This dense layer comprised of ∼107 VSG proteins, makes VSG by far the most abundant mRNA (7-10% total) and protein (∼10% total) in the bloodstream form trypanosome. How can such prodigious amounts of VSG be produced from a single VSG gene? Extremely high levels of RNA polymerase I (Pol I) transcription of the active VSG provide part of the explanation. However, recent discoveries highlight the role of pre-mRNA processing, both in maintaining high levels of VSG transcription, as well as its monoallelic expression. Trypanosome mRNAs are matured through trans-splicing a spliced leader (SL) RNA to the 5' end of precursor transcripts, meaning abundant SL RNA is required throughout the nucleus. However, requirement for SL RNA in the vicinity of the active VSG gene is so intense, that the cell reconfigures its chromatin architecture to facilitate interaction between the SL RNA genes and the active VSG. This presumably ensures that sufficient localised SL RNA is available, and not limiting for VSG mRNA expression. Recently, novel nuclear splicing bodies which appear to provide essential trans-splicing components, have been identified associating with the active VSG. These observations highlight the underappreciated role of pre-mRNA processing in modulating gene expression in trypanosomes. Dissecting the function of these nuclear RNA processing bodies should help us elucidate the mechanisms of both VSG expression and monoallelic exclusion in T. brucei.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA