Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.624
Filtrar
1.
Arch Microbiol ; 206(3): 108, 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38368591

RESUMEN

A Gram-stain-positive, anaerobic, motile, and short rod-shaped bacterium, designated KGMB12511T, was isolated from the feces of healthy Koreansubjects. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain KGMB12511T was closely related to Gordonibacter pamelaeae 7-10-1-bT (95.2%). The draft genome of KGMB12511T comprised 33 contigs and 2,744 protein-coding genes. The DNA G + C content was 59.9% based on whole-genome sequences. The major cellular fatty acids (>10%) of strain KGMB12511T were C18:1 cis9, C18:1 cis9 DMA (dimethylacetal), and C16:0 DMA. The predominant polar lipids included a diphosphatydilglycerol, four glycolipids, and an unidentified phospholipid. The major respiratory quinones were menaquinone 6 (MK-6) and monomethylmenaquinone 6 (MMK-6). Furthermore, HPLC analysis demonstrated the ability of strain KGMB12511T to convert ellagic acid into urolithin. Based on a comprehensive analysis of phenotypic, chemotaxonomic, and phylogenetic data, strain KGMB12511T represents a novel species in the genus Gordonibacter. The type strain is KGMB12511T (= KCTC 25343T = NBRC 116190T).


Asunto(s)
Ácido Elágico , Taninos Hidrolizables , Humanos , Filogenia , ARN Ribosómico 16S/genética , Heces , República de Corea
2.
Appl Microbiol Biotechnol ; 108(1): 215, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363367

RESUMEN

The metabolite urolithin A, a metabolite of the dietary polyphenol ellagic acid (EA), has significant health benefits for humans. However, studies on the gut microbiota involved in ellagic acid metabolism are limited. In this study, we conducted in vitro fermentation of EA using human intestinal microbiome combined with antibiotics (vancomycin, polymyxin B sulfate, and amphotericin B). Liquid chromatography-mass spectrometry (LC-MS/MS) analysis demonstrated that the production capacity of urolithin A by gut microbiota co-treated with polymyxin B sulfate and amphotericin B (22.39 µM) was similar to that of untreated gut microbiota (24.26 µM). Macrogenomics (high-throughput sequencing) was used to analyze the composition and structure of the gut microbiota. The results showed that the abundance of Bifidobacterium longum, Bifidobacterium adolescentis, and Bifidobacterium bifidum in the gut microbiota without antibiotic treatment or co-treated with polymyxin B sulfate and amphotericin B during EA fermentation was higher than that in other antibiotic treatment gut microbiota. Therefore, B. longum, B. adolescentis, and B. bifidum may be new genera involved in the conversion of EA to urolithin A. In conclusion, the study revealed unique interactions between polyphenols and gut microbiota, deepening our understanding of the relationship between phenolic compounds like EA and the gut microbiota. These findings may contribute to the development of gut bacteria as potential probiotics for further development. KEY POINTS: • Intestinal microbiome involved in ellagic acid metabolism. • Gram-positive bacteria in the intestinal microbiome are crucial for ellagic acid metabolism. • Bifidobacterium longum, Bifidobacterium adolescentis, and Bifidobacterium bifidum participate in ellagic acid metabolism.


Asunto(s)
Bifidobacterium longum , Cumarinas , Microbioma Gastrointestinal , Humanos , Ácido Elágico/metabolismo , Cromatografía Liquida , Polimixina B , Anfotericina B , Espectrometría de Masas en Tándem , Bifidobacterium longum/metabolismo , Antibacterianos
3.
Environ Toxicol ; 39(5): 3253-3263, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38356441

RESUMEN

The early myocardial response of hypertension is an elevation of angiotensin-II (Ang-II) concentration, leading to heart failure and cardiac hypertrophy. This hypertrophic event of the heart is mediated by the interaction of Ang type 1 receptors (AT-R1), thereby modulating NADPH oxidase activity in cardiomyocytes, which alters redox status in cardiomyocytes. Ellagic acid (EA) has anti-inflammatory and anti-oxidative capacities. Thus, EA has potential preventive effects on cardiovascular diseases and diabetes. In the last decades, because the protective effect of EA on Ang-II-induced hypertrophic responses is unclear, this study aims to investigate the protective effect of EA in cardiomyocytes. H9c2 cells were treated to Ang-II 1 µM for 24 h to induce cellular damage. We found that EA protected against Ang-II-increased cell surface area and pro-hypertrophic gene expression in H9c2. EA reduced Ang-II-caused AT-R1 upregulation, thereby inhibiting oxidative stress NADPH oxidase activation. EA mitigated Ang-II-enhanced p38 and extracellular-signal-regulated kinase (ERK) phosphorylation. Moreover, EA treatment under Ang-II stimulation also reversed NF-κB activity and iNOS expression. This study shows that EA protects against Ang-II-induced myocardial hypertrophy and attenuates oxidative stress through reactive oxygen species-mediated mitogen-activated protein kinase signaling pathways in H9c2 cells. Thus, EA may be an effective compound for preventing Ang-II-induced myocardial hypertrophy.


Asunto(s)
Angiotensina II , Ácido Elágico , Humanos , Especies Reactivas de Oxígeno/metabolismo , Angiotensina II/farmacología , Angiotensina II/metabolismo , Ácido Elágico/farmacología , Miocitos Cardíacos , Cardiomegalia , NADPH Oxidasas/metabolismo , NADPH Oxidasas/farmacología
4.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892078

RESUMEN

The aim of this work was to develop and characterize a thin films composed of hyaluronic acid/ellagic acid for potential medical application. Its principal novelty, distinct from the prior literature in terms of hyaluronic acid films supplemented with phenolic acids, resides in the predominant incorporation of ellagic acid-a distinguished compound-as the primary constituent of the films. Herein, ellagic acid was dissolved in two different solvents, i.e., acetic acid (AcOH) or sodium hydroxide (NaOH), and the surface properties of the resultant films were assessed using atomic force microscopy and contact angle measurements. Additionally, various physicochemical parameters were evaluated including moisture content, antioxidant activity, and release of ellagic acid in phosphate buffered saline. Furthermore, the evaluation of films' biocompatibility was conducted using human epidermal keratinocytes, dermal fibroblasts, and human amelanotic melanoma cells (A375 and G361), and the antimicrobial activity was elucidated accordingly against Staphylococcus aureus ATCC 6538 and Pseudomonas aeruginosa ATCC 15442. Our results showed that the films exhibited prominent antibacterial properties particularly against Staphylococcus aureus, with the 80HA/20EA/AcOH film indicating the strong biocidal activity against this strain leading to a significant reduction in viable cells. Comparatively, the 50HA/50EA/AcOH film also displayed biocidal activity against Staphylococcus aureus. This experimental approach could be a promising technique for future applications in regenerative dermatology or novel strategies in terms of bioengineering.


Asunto(s)
Materiales Biocompatibles , Ácido Elágico , Ácido Hialurónico , Staphylococcus aureus , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Humanos , Staphylococcus aureus/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ácido Elágico/farmacología , Ácido Elágico/química , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antioxidantes/farmacología , Antioxidantes/química , Fibroblastos/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Línea Celular Tumoral , Propiedades de Superficie
5.
Molecules ; 29(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38893376

RESUMEN

Ellagic acid (EA) is a natural polyphenol and possesses excellent in vivo bioactivity and antioxidant behaviors, which play an important role in the treatment of oxidative stress-related diseases, such as cancer. Additionally, EA is also known as a skin-whitening ingredient. The content of EA would determine its efficacy. Therefore, the accurate analysis of EA content can provide more information for the scientific consumption of EA-rich foods and cosmetics. Nevertheless, the analysis of EA in these samples is challenging due to the low concentration level and the presence of interfering components with high abundance. Molecularly imprinted polymers are highly efficient pretreatment materials in achieving specific recognition of target molecules. However, the traditional template molecule (EA) could not be absolutely removed. Hence, template leakage continues to occur during the sample preparation process, leading to a lack of accuracy in the quantification of EA in actual samples, particularly for trace analytes. In addition, another drawback of EA as an imprinting template is that EA possesses poor solubility and a high price. Gallic acid (GA), called dummy templates, was employed for the synthesis of MIPs as a solution to these challenges. The approach used in this study was boronate affinity-based oriented surface imprinting. The prepared dummy-imprinted nanoparticles exhibited several significant advantages, such as good specificity, high binding affinity ((4.89 ± 0.46) × 10-5 M), high binding capacity (6.56 ± 0.35 mg/g), fast kinetics (6 min), and low binding pH (pH 5.0) toward EA. The reproducibility of the dummy-imprinted nanoparticles was satisfactory. The dummy-imprinted nanoparticles could still be reused even after six adsorption-desorption cycles. In addition, the recoveries of the proposed method for EA at three spiked levels of analysis in strawberry and pineapple were 91.0-106.8% and 93.8-104.0%, respectively, which indicated the successful application to real samples.


Asunto(s)
Ácido Elágico , Impresión Molecular , Extracción en Fase Sólida , Ácido Elágico/química , Extracción en Fase Sólida/métodos , Impresión Molecular/métodos , Ácidos Borónicos/química , Polímeros Impresos Molecularmente/química , Análisis de los Alimentos/métodos , Nanoestructuras/química
6.
Molecules ; 29(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38338410

RESUMEN

Ellagic acid, known for its various biological activities, is widely used. Ellagic acid from pomegranate peels is safe for consumption, while that from gallnuts is only suitable for external use. However, there is currently no effective method to confirm the source of ellagic acid. Therefore, this study establishes an analysis method using ultra-high-performance liquid chromatography-electrospray ionization-high-resolution mass spectrometry (UHPLC-ESI-HR-MS) to identify the components of crude ellagic acid extracts from pomegranate peels and gallnuts. The analysis revealed that there was a mix of components in the crude extracts, such as ellagic acid, palmitic acid, oleic acid, stearic acid, and 9(10)-EpODE. Furthermore, it could be observed that ellagic acid extracted from gallnuts contained toxic substances such as anacardic acid and ginkgolic acid (15:1). These components could be used to effectively distinguish the origin of ellagic acid from pomegranate peels or gallnuts. Additionally, a rapid quantitative analysis method using UHPLC-ESI-MS with multiple reaction monitoring (MRM) mode was developed for the quality control of ellagic acid products, by quantifying anacardic acid and ginkgolic acid (15:1). It was found that one of three ellagic acid health care products contained ginkgolic acid (C15:1) and anacardic acid at more than 1 ppm.


Asunto(s)
Ácidos Anacárdicos , Granada (Fruta) , Salicilatos , Espectrometría de Masa por Ionización de Electrospray/métodos , Extractos Vegetales/química , Ácido Elágico/química , Cromatografía Líquida de Alta Presión/métodos
7.
Molecules ; 29(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38893299

RESUMEN

The pomegranate processing industry generates worldwide enormous amounts of by-products, such as pomegranate peels (PPs), which constitute a rich source of phenolic compounds. In this view, PPs could be exploited as a sustainable source of ellagic acid, which is a compound that possesses various biological actions. The present study aimed at the liberation of ellagic acid from its bound forms via ultrasound-assisted alkaline hydrolysis, which was optimized using response surface methodology. The effects of duration of sonication, solvent:solid ratio, and NaOH concentration on total phenol content (TPC), antioxidant activity, and punicalagin and ellagic acid content were investigated. Using the optimum hydrolysis conditions (i.e., 32 min, 1:48 v/w, 1.5 mol/L NaOH), the experimental responses were found to be TCP: 4230 ± 190 mg GAE/100 g dry PPs; AABTS: 32,398 ± 1817 µmol Trolox/100 g dry PPs; ACUPRAC: 29,816 ± 1955 µmol Trolox/100 g dry PPs; 59 ± 3 mg punicalagin/100 g dry PPs; and 1457 ± 71 mg ellagic acid/100 g dry PPs. LC-QTOF-MS and GC-MS analysis of the obtained PP extract revealed the presence of various phenolic compounds (e.g., ellagic acid), organic acids (e.g., citric acid), sugars (e.g., fructose) and amino acids (e.g., glycine). The proposed methodology could be of use for food, pharmaceutical, and cosmetics applications, thus reinforcing local economies.


Asunto(s)
Antioxidantes , Ácido Elágico , Granada (Fruta) , Ácido Elágico/química , Granada (Fruta)/química , Hidrólisis , Antioxidantes/química , Fenoles/química , Fenoles/análisis , Extractos Vegetales/química , Taninos Hidrolizables/química , Frutas/química
8.
Pak J Pharm Sci ; 37(1(Special)): 205-213, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38747271

RESUMEN

In this study, a sensitive high-performance liquid chromatography detector was established and validated for the simultaneous determination of geniposide, ellagic acid, piperine, costunolide and dehydrocostuslactone in Liuwei Muxiang Capsules. The analysis was achieved on CHANIN 100-5-C18-H column (5µm, 250 mm×4.6 mm) with the temperature of 30oC. Gradient elution was applied using 0.1% phosphoric acid solution-methanol-acetonitrile (50:50) as mobile phase at the flow rate of 1.0 mL/min. The determination was performed at the wavelength of 225 nm (detecting geniposide), 254 nm (detecting ellagic acid), 343 nm (detecting piperine) and 225 nm (detecting costunolide and dehydrocostuslactone) along with the sample volume of 10µL. The linear ranges of geniposide, ellagic acid, piperine, costunolide and dehydrocostuslactone demonstrated good linear relationships within their respective determination ranges. The average recoveries were 100.04%, 99.86%, 99.79%, 100.17% and 100.41%, respectively. RSD% was 1.3%, 1.2%, 1.2%, 1.2%, 1.5%, respectively. The developed method was proved to be simple, accurate and sensitive, which can provide a quantitative analysis method for the content determination of geniposide, ellagic acid, piperine, costunolide and dehydrocostuslactone in Liuwei Muxiang capsules.


Asunto(s)
Alcaloides , Benzodioxoles , Cápsulas , Medicamentos Herbarios Chinos , Ácido Elágico , Iridoides , Lactonas , Piperidinas , Alcamidas Poliinsaturadas , Cromatografía Líquida de Alta Presión/métodos , Benzodioxoles/análisis , Alcamidas Poliinsaturadas/análisis , Piperidinas/análisis , Piperidinas/química , Alcaloides/análisis , Lactonas/análisis , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Iridoides/análisis , Ácido Elágico/análisis , Reproducibilidad de los Resultados , Sesquiterpenos/análisis
9.
J Cell Mol Med ; 27(23): 3878-3896, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37794689

RESUMEN

Ellagic acid (EA) is a natural polyphenolic compound. Recent studies have shown that EA has potential anticancer properties against gastric cancer (GC). This study aims to reveal the potential targets and mechanisms of EA against GC. This study adopted methods of bioinformatics analysis and network pharmacology, including the weighted gene co-expression network analysis (WGCNA), construction of protein-protein interaction (PPI) network, receiver operating characteristic (ROC) and Kaplan-Meier (KM) survival curve analysis, Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, molecular docking and molecular dynamics simulations (MDS). A total of 540 EA targets were obtained. Through WGCNA, we obtained a total of 2914 GC clinical module genes, combined with the disease database for screening, a total of 606 GC-related targets and 79 intersection targets of EA and GC were obtained by constructing Venn diagram. PPI network was constructed to identify 14 core candidate targets; TP53, JUN, CASP3, HSP90AA1, VEGFA, HRAS, CDH1, MAPK3, CDKN1A, SRC, CYCS, BCL2L1 and CDK4 were identified as the key targets of EA regulation of GC by ROC and KM curve analysis. The enrichment analysis of GO and KEGG pathways of key targets was performed, and they were mainly enriched in p53 signalling pathway, PI3K-Akt signalling pathway. The results of molecular docking and MDS showed that EA could effectively bind to 13 key targets to form stable protein-ligand complexes. This study revealed the key targets and molecular mechanisms of EA against GC and provided a theoretical basis for further study of the pharmacological mechanism of EA against GC.


Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias Gástricas , Humanos , Ácido Elágico/farmacología , Farmacología en Red , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Biología Computacional
10.
Neurobiol Dis ; 182: 106141, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37121555

RESUMEN

Niemann Pick diseases types A (NPDA) and C (NPDC) are lysosomal storage disorders (LSDs) leading to cognitive impairment, neurodegeneration, and early death. NPDA and NPDC have different genetic origins, being caused by mutations in the acid sphingomyelinase (ASM) or the cholesterol transport protein NPC1, respectively. However, they share a common pathological hallmark in the accumulation of lipids in the endolysosomal compartment. Here, we tested the hypothesis that polyphenols reduce lipid overload in NPD cells by enhancing the secretion of extracellular vesicles (ECVs). We show that among the polyphenols tested, the ellagic acid metabolites, urolithin A and B, were the safest and most efficient in increasing ECV secretion. They reduced levels of accumulating lipids and lysosomal size and permeabilization in cultured bone marrow-derived macrophages and neurons from ASMko and NPC1 mutant mice, which mimic NPDA and NPDC, respectively. Moreover, oral treatment with ellagic acid reduced lipid levels, ameliorated lysosomal alterations, and diminished microglia activation in the brain of NPD mice. These results support the therapeutic value of ECV secretion and polyphenols for NPDs, which may also help treat other LSDs characterized by intracellular lipid overload.


Asunto(s)
Vesículas Extracelulares , Enfermedades por Almacenamiento Lisosomal , Enfermedad de Niemann-Pick Tipo A , Ratones , Animales , Ácido Elágico/farmacología , Ácido Elágico/metabolismo , Esfingomielina Fosfodiesterasa/genética , Enfermedades por Almacenamiento Lisosomal/patología , Enfermedad de Niemann-Pick Tipo A/genética , Lisosomas/metabolismo , Fenotipo , Vesículas Extracelulares/metabolismo , Lípidos
11.
New Phytol ; 239(5): 2026-2040, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36880409

RESUMEN

The black nectar produced by Melianthus flowers is thought to serve as a visual attractant to bird pollinators, but the chemical identity and synthesis of the black pigment are unknown. A combination of analytical biochemistry, transcriptomics, proteomics, and enzyme assays was used to identify the pigment that gives Melianthus nectar its black color and how it is synthesized. Visual modeling of pollinators was also used to infer a potential function of the black coloration. High concentrations of ellagic acid and iron give the nectar its dark black color, which can be recapitulated through synthetic solutions containing only ellagic acid and iron(iii). The nectar also contains a peroxidase that oxidizes gallic acid to form ellagic acid. In vitro reactions containing the nectar peroxidase, gallic acid, hydrogen peroxide, and iron(iii) fully recreate the black color of the nectar. Visual modeling indicates that the black color is highly conspicuous to avian pollinators within the context of the flower. Melianthus nectar contains a natural analog of iron-gall ink, which humans have used since at least medieval times. This pigment is derived from an ellagic acid-Fe complex synthesized in the nectar and is likely involved in the attraction of passerine pollinators endemic to southern Africa.


Asunto(s)
Magnoliopsida , Néctar de las Plantas , Humanos , Ácido Elágico , Compuestos Férricos , Tinta , Flores , Peroxidasas , Polinización
12.
Mol Cell Biochem ; 478(9): 2029-2040, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36607523

RESUMEN

Anthracyclines such as doxorubicin (Dox) are widely used to treat a variety of adult and childhood cancers, however, a major limitation to many of these compounds is their propensity for inducing heart failure. A naturally occurring polyphenolic compound such as Ellagic acid (EA) has been shown by our laboratory to mitigate the cardiotoxic effects of Dox, however, the effects of EA on cancer cell viability have not been established. In this study, we explored the effects of EA alone and in combination with Dox on cancer cell viability and tumorigenesis. Herein, we show that EA induces cell cycle exit and reduces proliferation in colorectal cancer (HCT116) and breast adenocarcinoma cells (MCF7). We show that EA promotes cell cycle exit by a mechanism that inhibits mitochondrial dynamics protein Drp-1. EA treatment of HCT116 and MCF7 cells resulted in a hyperfused mitochondrial morphology that coincided with mitochondrial perturbations including loss of mitochondrial membrane potential, impaired respiratory capacity. Moreover, impaired mitochondrial function was accompanied by a reduction in cell cycle and proliferation markers, CDK1, Ki67, and Cyclin B. This resulted in a reduction in proliferation and widespread death of cancer cells. Furthermore, while Dox treatment alone promoted cell death in both HCT116 and MCF7 cancer cell lines, EA treatment lowered the effective dose of Dox to promote cell death. Hence, the findings of the present study reveal a previously unreported anti-tumor property of EA that impinges on mitochondrial dynamics protein, Drp-1 which is crucial for cell division and tumorigenesis. The ability of EA to lower the therapeutic threshold of Dox for inhibiting cancer cell growth may prove beneficial in reducing cardiotoxicity in cancer patients undergoing anthracycline therapy.


Asunto(s)
Ácido Elágico , Neoplasias , Humanos , Niño , Ácido Elágico/farmacología , Dinámicas Mitocondriales , Neoplasias/tratamiento farmacológico , Doxorrubicina/farmacología , Antibióticos Antineoplásicos/farmacología , Proteínas Mitocondriales , Proliferación Celular , Carcinogénesis , Apoptosis
13.
Med Microbiol Immunol ; 212(1): 35-51, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36399160

RESUMEN

Parasite of genus Leishmania viz. L. donovani and L. infantum cause visceral leishmaniasis (VL) or Kala-azar, systemic disease with significant enlargement of the liver and spleen, weight loss, anemia, fever and immunosuppression. The silent expansion of vectors, reservoir hosts and resistant strains is also of great concern in VL control. Considering all these issues, the present study focused on in vitro and in vivo antileishmanial screening of ellagic acid (EA) against L. donovani. The in vitro study was performed against the protozoan parasite L. donovani and a 50% inhibitory concentration was calculated. The DNA arrest in the sub-G0/G1 phase of the cell cycle was studied. In vivo studies included the assessment of parasite burden and immunomodulation in response to treatment of ellagic acid in BALB/c mice. The levels of Th1 and Th2 cytokines and isotype antibodies were assessed in different groups of mice. EA showed in vitro parasiticidal activity with IC50 18.55 µg/mL and thwarted cell-cycle progression at the sub-G0/G1 phase. Administration of ellagic acid to the BALB/c mice reported diminution of splenic and hepatic parasite burden coupled with an expansion of CD4+ and CD8+ T lymphocytes. EA further potentiated a protective immune response with augmentation of Th1 type immune response evidenced by elevation of serum IgG2a levels and DTH response. EA was reported to be safe and non-toxic to the THP-1 cell line as well as to the liver and kidneys of mice. These findings endorse the therapeutic potential of EA with significant immunomodulation and can serve as a promising agent against this debilitating parasitic disease.


Asunto(s)
Antiprotozoarios , Leishmania donovani , Leishmaniasis Visceral , Animales , Ratones , Leishmania donovani/fisiología , Ácido Elágico/farmacología , Ácido Elágico/uso terapéutico , Modelos Animales de Enfermedad , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Ratones Endogámicos BALB C
14.
Crit Rev Food Sci Nutr ; 63(24): 6900-6922, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35142569

RESUMEN

Foods rich in ellagic tannins are first hydrolyzed into ellagic acid in the stomach and small intestine, and then converted into urolithins with high bioavailability by the intestinal flora. Urolithin has beneficially biological effects, it can induce adipocyte browning, improve cholesterol metabolism, inhibit graft tumor growth, relieve inflammation, and downregulate neuronal amyloid protein formation via the ß3-AR/PKA/p38MAPK, ERK/AMPKα/SREBP1, PI3K/AKT/mTOR signaling pathways, and TLR4, AHR receptors. But differences have been reported in urolithin production capacity among different individuals. Thus, it is of great significance to explore the biological functions of urolithin, screen the strains responsible for biotransformation of urolithin, and explore the corresponding functional genes. Tannin acyl hydrolase can hydrolyze tannins into ellagic acid, and the genera Gordonibacter and Ellagibacter can metabolize ellagic acid into urolithins. Therefore, application of "single bacterium", "single bacterium + enzyme", and "microflora" can achieve biotransformation of urolithin A. In this review, the source and metabolic pathway of ellagic tannins, and the mechanisms of the biological function of a metabolite, urolithin A, are discussed. The current strategies of biotransformation to obtain urolithin A are expounded to provide ideas for further studies on the relationship between urolithin and human health.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Ácido Elágico/metabolismo , Ácido Elágico/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Cumarinas , Biotransformación , Taninos , Taninos Hidrolizables
15.
Anal Bioanal Chem ; 415(20): 4901-4909, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37341782

RESUMEN

Ellagic acid (EA), as a natural polyphenolic acid, is considered a naturally occurring inhibitor of carcinogenesis. Herein, we developed a plasmon-enhanced fluorescence (PEF) probe for EA detection based on silica-coated gold nanoparticles (Au NPs). A silica shell was designed to control the distance between silica quantum dots (Si QDs) and Au NPs. The experimental results indicated that an 8.8-fold fluorescence enhancement was obtained compared with the original Si QDs. Three-dimensional finite-difference time-domain (3D-FDTD) simulations further demonstrated that the local electric field enhancement around Au NPs led to the fluorescence enhancement. In addition, the fluorescent sensor was applied for the sensitive detection of EA with a detection limit of 0.14 µM. It can be used to detect EA in pomegranate rind with a recovery rate of 100.26-107.93%. It can also be applied to the analysis of other substances by changing the identification substances. These experimental results indicated that the probe provides a good option for clinical analysis and food safety.


Asunto(s)
Nanopartículas del Metal , Puntos Cuánticos , Oro/química , Ácido Elágico , Fluorescencia , Nanopartículas del Metal/química , Puntos Cuánticos/química , Colorantes Fluorescentes/química , Dióxido de Silicio/química
16.
Phys Chem Chem Phys ; 25(11): 8128-8143, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36877087

RESUMEN

The aberrant deposition of α-synuclein (α-Syn) protein into the intracellular neuronal aggregates termed Lewy bodies and Lewy neurites characterizes the devastating neurodegenerative condition known as Parkinson's disease (PD). The disruption of pre-existing disease-relevant α-Syn fibrils is recognized as a viable therapeutic approach for PD. Ellagic acid (EA), a natural polyphenolic compound, is experimentally proven as a potential candidate that prevents or reverses the α-Syn fibrillization process. However, the detailed inhibitory mechanism of EA against the destabilization of α-Syn fibril remains largely unclear. In this work, the influence of EA on α-Syn fibril and its putative binding mechanism were explored using molecular dynamics (MD) simulations. EA interacted primarily with the non-amyloid-ß component (NAC) of α-Syn fibril, disrupting its ß-sheet content and thereby increasing the coil content. The E46-K80 salt bridge, critical for the stability of Greek-key-like α-Syn fibril, was disrupted in the presence of EA. The binding free energy analysis using the MM-PBSA method demonstrates the favourable binding of EA to α-Syn fibril (ΔGbinding = -34.62 ± 11.33 kcal mol-1). Interestingly, the binding affinity between chains H and J of the α-Syn fibril was significantly reduced on the incorporation of EA, which highlights the disruptive ability of EA towards α-Syn fibril. The MD simulations provide mechanistic insights into the α-Syn fibril disruption by EA, which gives a valuable direction for the development of potential inhibitors of α-Syn fibrillization and its associated cytotoxicity.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/química , Simulación de Dinámica Molecular , Ácido Elágico/farmacología
17.
J Biochem Mol Toxicol ; 37(5): e23314, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36650745

RESUMEN

The pesticide malathion (MT), an organophosphate, is highly neurotoxic and causes cholinergic disorders as well as cytotoxicity, genotoxicity, mutagenicity, carcinogenicity and reproductive toxicity. Our purpose was to study the effect of ellagic acid (EA) and Vitamin C on the testis against MT-induced toxicity in the rats. Thirty-six adult Wistar rats were employed, separated into six groups and were given treatment for 14 days. The toxicity of MT on the testis was evaluated using a variety of physical parameters, such as mortality rate and body weight, as well as biochemical parameters, such as total protein, total cholesterol, serum glutamic-oxaloacetic transaminase and serum glutamic-pyruvic transaminase, and haematological parameters, such as counts of red blood cells, haemoglobin (Hb) and white blood cells, as well as mean corpuscular volume, mean corpuscular Hb, and mean corpuscular Hb concentration. At the end of the experiment, rats were killed and a histological examination of the testis was performed. A sperm count technique and an analysis of sperm motility were used to determine the sperm quality. Biochemical indicators, sperm count, motility, viability and morphology were significantly decreased with MT. When compared with MT and the control group, EA and Vitamin C administration significantly increased sperm motility and count (p < 0.05). After receiving EA and Vitamin C, biochemical indicators and histological characteristics are also intensified. The results of the current investigation show that EA and Vitamin C can both reduce increased levels of biochemical markers and improve pathological alterations in the testis brought on by MT treatment.


Asunto(s)
Ácido Ascórbico , Testículo , Masculino , Ratas , Animales , Testículo/metabolismo , Ácido Ascórbico/farmacología , Ratas Wistar , Malatión/toxicidad , Antioxidantes/farmacología , Ácido Elágico/farmacología , Motilidad Espermática , Semen/metabolismo
18.
J Biochem Mol Toxicol ; 37(6): e23332, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37294177

RESUMEN

Constant, systematic exposure to rotenone has been utilized in animal models to induce Parkinsonism. Ellagic acid is a polyphenol with anti-inflammatory and antioxidative properties which is found in numerous natural fruits. Here, we investigated the therapeutic effects of ellagic acid in rotenone-induced toxicity in Drosophila melanogaster evaluating their antioxidant and mitoprotective properties. Adult flies were treated with rotenone and ellagic acid through their diet for 7 days, thereafter markers of neurotoxicity (acetylcholinesterase, monoamine oxidase, tyrosine hydroxylase), antioxidant and oxidative stress markers (hydrogen peroxide, nitric oxide, lipid peroxidation, protein carbonyl contents, catalase, total thiol, and nonprotein thiol) was measured. Mitochondrial respiration was also evaluated in the flies. Survival assay was carried out with both genders of the flies, and we observed a significant increase in the survival rate of flies exposed to both rotenone and ellagic acid when compared with the increased mortality rate in the groups exposed to rotenone alone. The impaired locomotion, altered redox status, and enzymes of neurotoxicity induced by rotenone were significantly ameliorated by ellagic acid to levels comparable to the control. In addition, rotenone-induced complex 1 inhibition and altered bioenergetic state were restored upon ellagic acid supplementation. These findings show the beneficial properties of ellagic acid against pesticides induced toxicity.


Asunto(s)
Antioxidantes , Rotenona , Animales , Femenino , Masculino , Antioxidantes/farmacología , Antioxidantes/metabolismo , Rotenona/toxicidad , Drosophila melanogaster/metabolismo , Ácido Elágico/farmacología , Acetilcolinesterasa/metabolismo , Estrés Oxidativo , Mitocondrias/metabolismo , Compuestos de Sulfhidrilo/metabolismo
19.
J Sep Sci ; 46(6): e2200991, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36641601

RESUMEN

A simple and rapid high-performance thin-layer chromatographic method for quantification of gallic acid and ellagic acid in dried fruits of Terminalia chebula, Phyllanthus emblica, and Quercus infectoria has been developed. The chromatographic development was carried out on precoated silica gel 60 F254 plates in a mixture of toluene:ethyl acetate:chloroform:formic acid (4:8:1:3 v/v/v/v). The plate was scanned densitometrically at a wavelength of 280 nm. The retention factor value of gallic acid and ellagic acid was found to be 0.63 ± 0.2 and 0.53 ± 0.1, respectively. The developed method was validated in terms of linearity, precision, accuracy, sensitivity, robustness, specificity and stability as per the international conference of harmonization guidelines. The method showed good linear relationship over a range of 100-600 ng/band (gallic acid) and 100-500 ng/band (ellagic acid) with a regression coefficient (r2 ) of 0.997 (gallic acid) and 0.996 (ellagic acid). The method showed high accuracy (99.65%-100.85%). The percentage relative standard deviation of intra-day and inter-day precision studies was not more than 2%. The method is highly robust and has displayed high specificity. The developed method is new, simple, and accurate and can be successfully employed in routine analysis of raw materials and formulations containing gallic acid and ellagic acid.


Asunto(s)
Phyllanthus emblica , Quercus , Terminalia , Ácido Gálico/análisis , Ácido Elágico , Terminalia/química , Frutas/química , Cromatografía en Capa Delgada/métodos
20.
Clin Exp Pharmacol Physiol ; 50(2): 121-131, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36222179

RESUMEN

Diabetes mellitus is a widespread endocrine disorder globally. Due to its antioxidant and anti-inflammatory properties, ellagic acid has the potential to improve the metabolic effects of chronic non-communicable diseases. This systematic review summarizes current evidence about the potential effects of ellagic acid on metabolic variables in diabetes mellitus. A comprehensive systematic literature search was conducted in databases such as PubMed, Scopus, EMBASE, ProQuest and Google Scholar from inception until March 2022. All animal studies and clinical trials were eligible for inclusion. Studies using in vitro models or published in a non-English language were excluded. Of 1320 articles, 23 were selected for assessment, including 21 animal studies and two randomized controlled trial studies. Following ellagic acid administration, findings reported improvement in FBS, HbA1c, insulin (20, 8 and 12 studies, respectively), TG, TC, HDL-C (13, 10 and 5 studies, respectively), MDA, GSH, CAT, SOD (11, 6, 3 and 4 studies, respectively), and TNF-α and IL-6 (6 and 3 studies, respectively). In conclusion, ellagic acid may improve glycaemic indicators, dyslipidaemia, oxidative stress and inflammation in diabetes mellitus. However, further clinical trials are needed to explore the mechanisms more precisely and to observe the applied consequences.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Animales , Ácido Elágico/farmacología , Ácido Elágico/uso terapéutico , Diabetes Mellitus/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Estrés Oxidativo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucemia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA