Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.957
Filtrar
1.
Phys Chem Chem Phys ; 25(4): 3472-3484, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36637052

RESUMEN

Orotate phosphoribosyltransferase (OPRT) catalyses the reversible phosphoribosyl transfer from α-D-5-phosphoribosyl-1-pyrophosphate (PRPP) to orotic acid (OA) to yield orotidine 5'-monophosphate (OMP) during the de novo synthesis of nucleotides. Numerous studies have reported the inhibition of this reaction as a strategy to check diseases like tuberculosis, malaria and cancer. Insight into the inhibition of this reaction is, therefore, of urgent interest. In this study, we implemented a QM/MM framework on OPRT derived from Saccharomyces cerevisiae to obtain insights into the competitive binding of OA and OA-mimetic inhibitors by quantifying their interactions with OPRT. 4-Hydroxy-6-methylpyridin-2(1H) one showed the best inhibiting activity among the structurally similar OA-mimetic inhibitors, as quantified from the binding energetics. Our analysis of protein-ligand interactions unveiled the association of this inhibitory ligand with a strong network of hydrogen bonds, a large contribution of hydrophobic contacts, and bridging water molecules in the binding site. The ortho-substituted CH3 group in the compound resulted in a large population of π-electrons in the aromatic ring of this inhibitor, supporting the ligand binding further.


Asunto(s)
Orotato Fosforribosiltransferasa , Ácido Orótico , Ácido Orótico/metabolismo , Ligandos , Orotato Fosforribosiltransferasa/química , Orotato Fosforribosiltransferasa/metabolismo , Sitios de Unión
2.
Arch Toxicol ; 97(6): 1701-1721, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37046073

RESUMEN

Chemically induced steatosis is characterized by lipid accumulation associated with mitochondrial dysfunction, oxidative stress and nucleus distortion. New approach methods integrating in vitro and in silico models are needed to identify chemicals that may induce these cellular events as potential risk factors for steatosis and associated hepatotoxicity. In this study we used high-content imaging for the simultaneous quantification of four cellular markers as sentinels for hepatotoxicity and steatosis in chemically exposed human liver cells in vitro. Furthermore, we evaluated the results with a computational model for the extrapolation of human oral equivalent doses (OED). First, we tested 16 reference chemicals with known capacities to induce cellular alterations in nuclear morphology, lipid accumulation, mitochondrial membrane potential and oxidative stress. Then, using physiologically based pharmacokinetic modeling and reverse dosimetry, OEDs were extrapolated from data of any stimulated individual sentinel response. The extrapolated OEDs were confirmed to be within biologically relevant exposure ranges for the reference chemicals. Next, we tested 14 chemicals found in food, selected from thousands of putative chemicals on the basis of structure-based prediction for nuclear receptor activation. Amongst these, orotic acid had an extrapolated OED overlapping with realistic exposure ranges. Thus, we were able to characterize known steatosis-inducing chemicals as well as data-scarce food-related chemicals, amongst which we confirmed orotic acid to induce hepatotoxicity. This strategy addresses needs of next generation risk assessment and can be used as a first chemical prioritization hazard screening step in a tiered approach to identify chemical risk factors for steatosis and hepatotoxicity-associated events.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Hígado Graso , Humanos , Ácido Orótico , Hígado Graso/inducido químicamente , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Lípidos
3.
Proc Natl Acad Sci U S A ; 117(18): 9973-9980, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32303657

RESUMEN

When transitioning from the environment, pathogenic microorganisms must adapt rapidly to survive in hostile host conditions. This is especially true for environmental fungi that cause opportunistic infections in immunocompromised patients since these microbes are not well adapted human pathogens. Cryptococcus species are yeastlike fungi that cause lethal infections, especially in HIV-infected patients. Using Cryptococcus deneoformans in a murine model of infection, we examined contributors to drug resistance and demonstrated that transposon mutagenesis drives the development of 5-fluoroorotic acid (5FOA) resistance. Inactivation of target genes URA3 or URA5 primarily reflected the insertion of two transposable elements (TEs): the T1 DNA transposon and the TCN12 retrotransposon. Consistent with in vivo results, increased rates of mutagenesis and resistance to 5FOA and the antifungal drugs rapamycin/FK506 (rap/FK506) and 5-fluorocytosine (5FC) were found when Cryptococcus was incubated at 37° compared to 30° in vitro, a condition that mimics the temperature shift that occurs during the environment-to-host transition. Inactivation of the RNA interference (RNAi) pathway, which suppresses TE movement in many organisms, was not sufficient to elevate TE movement at 30° to the level observed at 37°. We propose that temperature-dependent TE mobilization in Cryptococcus is an important mechanism that enhances microbial adaptation and promotes pathogenesis and drug resistance in the human host.


Asunto(s)
Antifúngicos/farmacología , Cryptococcus neoformans/efectos de los fármacos , Micosis/genética , Retroelementos/genética , Animales , Antifúngicos/efectos adversos , Cryptococcus neoformans/patogenicidad , Farmacorresistencia Fúngica/genética , Interacciones Huésped-Patógeno/genética , Humanos , Ratones , Mutagénesis/genética , Micosis/microbiología , Ácido Orótico/efectos adversos , Ácido Orótico/análogos & derivados , Ácido Orótico/farmacología , Sirolimus/farmacología , Tacrolimus/farmacología , Virulencia/genética
4.
Sensors (Basel) ; 23(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36904710

RESUMEN

Orotate phosphoribosyltransferase (OPRT) exists as a bifunctional enzyme, uridine 5'-monophosphate synthase, in mammalian cells and plays an important role in pyrimidine biosynthesis. Measuring OPRT activity has been considered important for understanding biological events and development of molecular-targeting drugs. In this study, we demonstrate a novel fluorescence method for measuring OPRT activity in living cells. The technique utilizes 4-trifluoromethylbenzamidoxime (4-TFMBAO) as a fluorogenic reagent, which produces selective fluorescence for orotic acid. To perform the OPRT reaction, orotic acid was added to HeLa cell lysate, and a portion of the enzyme reaction mixture was heated at 80 °C for 4 min in the presence of 4-TFMBAO under basic conditions. The resulting fluorescence was measured using a spectrofluorometer, which reflects the consumption of orotic acid by the OPRT. After optimization of the reaction conditions, the OPRT activity was successfully determined in 15 min of enzyme reaction time without further procedures such as purification of OPRT or deproteination for the analysis. The activity obtained was compatible with the value measured by the radiometric method with [3H]-5-FU as the substrate. The present method provides a reliable and facile measurement of OPRT activity and could be useful for a variety of research fields targeting pyrimidine metabolism.


Asunto(s)
Orotato Fosforribosiltransferasa , Ácido Orótico , Humanos , Células HeLa , Orotato Fosforribosiltransferasa/metabolismo , Pirimidinas
5.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37373177

RESUMEN

Alzheimer's disease (AD) is characterized by excessive formation of beta-amyloid peptides (Aß), mitochondrial dysfunction, enhanced production of reactive oxygen species (ROS), and altered glycolysis. Since the disease is currently not curable, preventive and supportive approaches are in the focus of science. Based on studies of promising single substances, the present study used a mixture (cocktail, SC) of compounds consisting of hesperetin (HstP), magnesium-orotate (MgOr), and folic acid (Fol), as well as the combination (KCC) of caffeine (Cof), kahweol (KW) and cafestol (CF). For all compounds, we showed positive results in SH-SY5Y-APP695 cells-a model of early AD. Thus, SH-SY5Y-APP695 cells were incubated with SC and the activity of the mitochondrial respiration chain complexes were measured, as well as levels of ATP, Aß, ROS, lactate and pyruvate. Incubation of SH-SY5Y-APP695 cells with SC significantly increased the endogenous respiration of mitochondria and ATP levels, while Aß1-40 levels were significantly decreased. Incubation with SC showed no significant effects on oxidative stress and glycolysis. In summary, this combination of compounds with proven effects on mitochondrial parameters has the potential to improve mitochondrial dysfunction in a cellular model of AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Micronutrientes , Mitocondrias , Fragmentos de Péptidos , Metabolismo Secundario , Micronutrientes/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedad de Alzheimer/metabolismo , Fragmentos de Péptidos/metabolismo , Péptidos beta-Amiloides/metabolismo , Hesperidina/farmacología , Ácido Orótico/farmacología , Ácido Fólico/farmacología , Cafeína/farmacología , Diterpenos/farmacología , Humanos , Línea Celular Tumoral
6.
Am J Med Genet C Semin Med Genet ; 190(2): 178-186, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-36097743

RESUMEN

The purpose of this pilot project was to evaluate the efficacy of the Collaborative Integrated Laboratory Reports (CLIR) postanalytical tools from Mayo Clinic for detection of newborns with proximal urea cycle disorders (PUCD) in the Georgia newborn screening program that uses the underivatized Neobase2 kit (Perkin Elmer). We evaluated 138,560 newborn screening (NBS) samples (between 125,000 and 130,000 children) and used the CLIR result interpretation guidelines to stratify results. Children at higher risk of having a PUCD received follow-up services including confirmatory lab testing (ammonia, plasma amino acids, urine orotic acid) or a repeat NBS sample. We made multiple adjustments to our CLIR PUCD tool and to our follow-up algorithms in order to reduce false positives. Regardless, a high number of NBS samples resulted with false positives in part due to the glutamine peak also containing lysine. No children were diagnosed with a PUCD during our study period, and the Emory Genetics Metabolic Center is unaware of any children diagnosed outside of the NBS system during that time. Based on our experience, PUCD is not suitable for statewide NBS using Neobase2 and CLIR. Other methodologies that can separate glutamine from other amino acids may have better performance.


Asunto(s)
Tamizaje Neonatal , Ácido Orótico , Recién Nacido , Humanos , Tamizaje Neonatal/métodos , Proyectos Piloto , Estudios Prospectivos , Glutamina , Lisina , Amoníaco , Aminoácidos , Urea
7.
Yeast ; 39(3): 230-240, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34648204

RESUMEN

Orotic acid (OA) is an intermediate of the pyrimidine biosynthesis with high industrial relevance due to its use as precursor for production of biochemical pyrimidines or its use as carrier molecule in drug formulations. It can be produced by fermentation of microorganisms with engineered pyrimidine metabolism. In this study, we surprisingly discovered the yeast Yarrowia lipolytica as a powerful producer of OA. The overproduction of OA in the Y. lipolytica strain PO1f was found to be caused by the deletion of the URA3 gene which prevents the irreversible decarboxylation of OA to uridine monophosphate. It was shown that the lack of orotidine-5'-phosphate decarboxylase was the reason for the accumulation of OA inside the cell since a rescue mutant of the URA3 deletion in Y. lipolytica PO1f completely prevented the OA secretion into the medium. In addition, pyrimidine limitation in the cell massively enhanced the OA accumulation followed by secretion due to intense overflow metabolism during bioreactor cultivations. Accordingly, supplementation of the medium with 200 mg/L uracil drastically decreased the OA overproduction by 91%. OA productivity was further enhanced in fed-batch cultivation with glucose and ammonium sulfate feed to a maximal yield of 9.62 ± 0.21 g/L. Y. lipolytica is one of three OA overproducing yeasts described in the literature so far, and in this study, the highest productivity was shown. This work demonstrates the potential of Y. lipolytica as a possible production organism for OA and provides a basis for further metabolic pathway engineering to optimize OA productivity.


Asunto(s)
Yarrowia , Ingeniería Metabólica , Ácido Orótico , Pirimidinas/metabolismo , Yarrowia/genética , Yarrowia/metabolismo
8.
J Chem Inf Model ; 62(1): 116-128, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34793155

RESUMEN

Despite the recent availability of vaccines against the acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the search for inhibitory therapeutic agents has assumed importance especially in the context of emerging new viral variants. In this paper, we describe the discovery of a novel noncovalent small-molecule inhibitor, MCULE-5948770040, that binds to and inhibits the SARS-Cov-2 main protease (Mpro) by employing a scalable high-throughput virtual screening (HTVS) framework and a targeted compound library of over 6.5 million molecules that could be readily ordered and purchased. Our HTVS framework leverages the U.S. supercomputing infrastructure achieving nearly 91% resource utilization and nearly 126 million docking calculations per hour. Downstream biochemical assays validate this Mpro inhibitor with an inhibition constant (Ki) of 2.9 µM (95% CI 2.2, 4.0). Furthermore, using room-temperature X-ray crystallography, we show that MCULE-5948770040 binds to a cleft in the primary binding site of Mpro forming stable hydrogen bond and hydrophobic interactions. We then used multiple µs-time scale molecular dynamics (MD) simulations and machine learning (ML) techniques to elucidate how the bound ligand alters the conformational states accessed by Mpro, involving motions both proximal and distal to the binding site. Together, our results demonstrate how MCULE-5948770040 inhibits Mpro and offers a springboard for further therapeutic design.


Asunto(s)
COVID-19 , Inhibidores de Proteasas , Antivirales , Proteasas 3C de Coronavirus , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ácido Orótico/análogos & derivados , Piperazinas , SARS-CoV-2
9.
Mol Ther ; 29(5): 1903-1917, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33484963

RESUMEN

Ornithine transcarbamylase deficiency (OTCD) is a monogenic disease of ammonia metabolism in hepatocytes. Severe disease is frequently treated by orthotopic liver transplantation. An attractive approach is the correction of a patient's own cells to regenerate the liver with gene-repaired hepatocytes. This study investigates the efficacy and safety of ex vivo correction of primary human hepatocytes. Hepatocytes isolated from an OTCD patient were genetically corrected ex vivo, through the deletion of a mutant intronic splicing site achieving editing efficiencies >60% and the restoration of the urea cycle in vitro. The corrected hepatocytes were transplanted into the liver of FRGN mice and repopulated to high levels (>80%). Animals transplanted and liver repopulated with genetically edited patient hepatocytes displayed normal ammonia, enhanced clearance of an ammonia challenge and OTC enzyme activity, as well as lower urinary orotic acid when compared to mice repopulated with unedited patient hepatocytes. Gene expression was shown to be similar between mice transplanted with unedited or edited patient hepatocytes. Finally, a genome-wide screening by performing CIRCLE-seq and deep sequencing of >70 potential off-targets revealed no unspecific editing. Overall analysis of disease phenotype, gene expression, and possible off-target editing indicated that the gene editing of a severe genetic liver disease was safe and effective.


Asunto(s)
Edición Génica/métodos , Hepatocitos/trasplante , Mutación , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia , Ornitina Carbamoiltransferasa/genética , Adulto , Anciano , Amoníaco/metabolismo , Animales , Células Cultivadas , Niño , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Hepatocitos/química , Hepatocitos/citología , Humanos , Intrones , Masculino , Ratones , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Ácido Orótico/orina , Empalme del ARN
10.
Mar Drugs ; 20(11)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36355027

RESUMEN

The sulfated echinoside A (EA) and holothurin A (HA) are two prominent saponins in sea cucumber with high hemolytic activity but also superior lipid-lowering activity. Deglycosylated derivatives EA2 and HA2 exhibit low hemolysis compared to EA and HA, but their efficacies on lipid metabolism regulation remains unknown. In this study, fatty acids-treated HepG2 cells and orotic acid-treated rats were used to investigate the lipid-lowering effects of sea cucumber saponin derivatives. Both the saponin and derivatives could effectively alleviate lipid accumulation in HepG2 model, especially EA and EA2. Moreover, though the lipid-lowering effect of EA2 was not equal with EA at the same dosage of 0.05% in diet, 0.15% dosage of EA2 significantly reduced hepatic steatosis rate, liver TC and TG contents by 76%, 41.5%, and 63.7%, respectively, compared to control and reversed liver histopathological features to normal degree according to H&E stained sections. Possible mechanisms mainly included enhancement of fatty acids ß-oxidation and cholesterol catabolism through bile acids synthesis and excretion, suppression of lipogenesis and cholesterol uptake. It revealed that the efficacy of EA2 on lipid metabolism regulation was dose-dependent, and 0.15% dosage of EA2 possessed better efficacy with lower toxicity compared to 0.05% dosage of EA.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Saponinas , Pepinos de Mar , Ratas , Animales , Humanos , Pepinos de Mar/metabolismo , Ácido Orótico/metabolismo , Ácido Orótico/farmacología , Saponinas/farmacología , Saponinas/metabolismo , Ácidos Grasos/metabolismo , Células Hep G2 , Hígado , Metabolismo de los Lípidos , Colesterol/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo
11.
PLoS Genet ; 15(2): e1007957, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30742617

RESUMEN

Mucormycosis-an emergent, deadly fungal infection-is difficult to treat, in part because the causative species demonstrate broad clinical antifungal resistance. However, the mechanisms underlying drug resistance in these infections remain poorly understood. Our previous work demonstrated that one major agent of mucormycosis, Mucor circinelloides, can develop resistance to the antifungal agents FK506 and rapamycin through a novel, transient RNA interference-dependent mechanism known as epimutation. Epimutations silence the drug target gene and are selected by drug exposure; the target gene is re-expressed and sensitivity is restored following passage without drug. This silencing process involves generation of small RNA (sRNA) against the target gene via core RNAi pathway proteins. To further elucidate the role of epimutation in the broad antifungal resistance of Mucor, epimutants were isolated that confer resistance to another antifungal agent, 5-fluoroorotic acid (5-FOA). We identified epimutant strains that exhibit resistance to 5-FOA without mutations in PyrF or PyrG, enzymes which convert 5-FOA into the active toxic form. Using sRNA hybridization as well as sRNA library analysis, we demonstrate that these epimutants harbor sRNA against either pyrF or pyrG, and further show that this sRNA is lost after reversion to drug sensitivity. We conclude that epimutation is a mechanism capable of targeting multiple genes, enabling Mucor to develop resistance to a variety of antifungal agents. Elucidation of the role of RNAi in epimutation affords a fuller understanding of mucormycosis. Furthermore, it improves our understanding of fungal pathogenesis and adaptation to stresses, including the evolution of drug resistance.


Asunto(s)
Farmacorresistencia Fúngica Múltiple/genética , Mucor/efectos de los fármacos , Mucor/patogenicidad , Antifúngicos/farmacología , Epigénesis Genética , Genes Fúngicos , Humanos , Mucor/genética , Mucormicosis/tratamiento farmacológico , Mucormicosis/microbiología , Mutación , Orotato Fosforribosiltransferasa/genética , Ácido Orótico/análogos & derivados , Ácido Orótico/farmacología , Orotidina-5'-Fosfato Descarboxilasa/genética , Interferencia de ARN , ARN de Hongos/genética , Sirolimus/farmacología , Tacrolimus/farmacología
12.
J Dairy Sci ; 105(11): 8650-8663, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36175222

RESUMEN

The purpose of this study was to evaluate the effect of 6 different feeding systems (based on corn silage as the main ingredient) on the chemical composition of milk and to highlight the potential of untargeted metabolomics to find discriminant marker compounds of different nutritional strategies. Interestingly, the multivariate statistical analysis discriminated milk samples mainly according to the high-moisture ear corn (HMC) included in the diet formulation. Overall, the most discriminant compounds, identified as a function of the HMC, belonged to AA (10 compounds), peptides (71 compounds), pyrimidines (38 compounds), purines (15 compounds), and pyridines (14 compounds). The discriminant milk metabolites were found to significantly explain the metabolic pathways of pyrimidines and vitamin B6. Interestingly, pathway analyses revealed that the inclusion of HMC in the diet formulation strongly affected the pyrimidine metabolism in milk, determining a significant up-accumulation of pyrimidine degradation products, such as 3-ureidopropionic acid, 3-ureidoisobutyric acid, and 3-aminoisobutyric acid. Also, some pyrimidine intermediates (such as l-aspartic acid, N-carbamoyl-l-aspartic acid, and orotic acid) were found to possess a high discrimination degree. Additionally, our findings suggested that the inclusion of alfalfa silage in the diet formulation was potentially correlated with the vitamin B6 metabolism in milk, being 4-pyridoxic acid (a pyridoxal phosphate degradation product) the most significant and up-accumulated compound. Taken together, the accumulation trends of different marker compounds revealed that both pyrimidine intermediates and degradation products are potential marker compounds of HMC-based diets, likely involving a complex metabolism of microbial nitrogen based on total splanchnic fluxes from the rumen to mammary gland in dairy cows. Also, our findings highlight the potential of untargeted metabolomics in both foodomics and foodomics-based studies involving dairy products.


Asunto(s)
Leche , Ensilaje , Bovinos , Femenino , Animales , Leche/química , Zea mays/metabolismo , Ácido Orótico/análisis , Ácido Aspártico/análisis , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacología , Fosfato de Piridoxal/análisis , Fosfato de Piridoxal/metabolismo , Fosfato de Piridoxal/farmacología , Ácido Piridóxico/análisis , Ácido Piridóxico/metabolismo , Ácido Piridóxico/farmacología , Lactancia , Fermentación , Rumen/metabolismo , Pirimidinas/análisis , Pirimidinas/metabolismo , Pirimidinas/farmacología , Medicago sativa/metabolismo , Dieta/veterinaria , Nitrógeno/metabolismo , Metaboloma , Purinas , Vitaminas/análisis
13.
J Korean Med Sci ; 37(11): e92, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35315603

RESUMEN

BACKGROUND: Tenofovir disoproxil fumarate (TDF, Viread®) had been used as a standard treatment option of chronic hepatitis B (CHB). This clinical trial was conducted to evaluate the efficacy and safety of DA-2802 (tenofovir disoproxil orotate) compared to TDF. METHODS: The present study was a double blind randomized controlled trial. Patients with CHB were recruited from 25 hospitals in Korea and given DA-2802 at a dose of 319 mg once daily or Viread® at a dose of 300 mg once daily for 48 weeks from March 2017 to January 2019. Change in hepatitis B virus (HBV) DNA level at week 48 after dosing compared to baseline was the primary efficacy endpoint. Secondary efficacy endpoints were proportions of subjects with undetectable HBV DNA, those with normal alanine aminotransferase (ALT) levels, and those with loss of hepatitis B envelop antigen (HBeAg), those with loss of hepatitis B surface antigen (HBsAg). Adverse events (AEs) were also investigated. RESULTS: A total of 122 patients (DA-2802 group: n = 61, Viread® group: n = 61) were used as full analysis set for efficacy analysis. Mean age, proportion of males, laboratory results and virologic characteristics were not different between the two groups. The change in HBV DNA level at week 48 from baseline was -5.13 ± 1.40 in the DA-2802 group and -4.97 ± 1.40 log10 copies/mL in the Viread® group. The analysis of primary endpoint using the nonparametric analysis of covariance showed statistically significant results (P < 0.001), which confirmed non-inferiority of DA-2802 to Viread® by a prespecified noninferiority margin of 1. The proportion of undetectable HBV DNA was 78.7% in the DA-2802 group and 75.4% in the Viread® group (P = 0.698). The proportion of subjects who had normal ALT levels was 75.4% in the DA-2802 group and 73.3% in the Viread® group (P = 0.795). The proportion of those with HBeAg loss was 8.1% in the DA-2802 group and 10.8% in the Viread® group (P = 1.000). No subject showed HBsAg loss. The frequency of AEs during treatment was similar between the two groups. Most AEs were mild to moderate in severity. CONCLUSION: DA-2802 is considered an effective and safe treatment for patients with CHB. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02967939.


Asunto(s)
Antivirales/uso terapéutico , Hepatitis B Crónica/tratamiento farmacológico , Ácido Orótico/uso terapéutico , Tenofovir/uso terapéutico , Adulto , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , República de Corea , Resultado del Tratamiento
14.
Angew Chem Int Ed Engl ; 61(11): e202112572, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35007387

RESUMEN

A reaction between two prebiotically plausible building blocks, hydantoin and glyoxylate, generates both the nucleobase orotate, a precursor of biological pyrimidines, and pyruvate, a core metabolite in the citric acid cycle and amino acid biosynthesis. The reaction proceeds in water to provide significant yields of the two widely divergent chemical motifs. Additionally, the reaction of thiohydantoin and glyoxylate produces thioorotate in high yield under neutral aqueous conditions. The use of an open-chain thiohydantoin derivative also enables the potential pre-positioning of a nucleosidic bond prior to the synthesis of an orotate nucleoside. The observation that diverse building blocks of modern metabolism can be produced in a single reaction pot, from common reactants under mild conditions, supports the plausibility of orthogonal chemistries operating at the origins of chemical evolution.


Asunto(s)
Origen de la Vida , Ácido Orótico/metabolismo , Ácido Pirúvico/metabolismo , Ácido Orótico/química , Ácido Pirúvico/química
15.
Biochemistry ; 60(45): 3362-3373, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34726391

RESUMEN

The role of a global, substrate-driven, enzyme conformational change in enabling the extraordinarily large rate acceleration for orotidine 5'-monophosphate decarboxylase (OMPDC)-catalyzed decarboxylation of orotidine 5'-monophosphate (OMP) is examined in experiments that focus on the interactions between OMPDC and the ribosyl hydroxyl groups of OMP. The D37 and T100' side chains of OMPDC interact, respectively, with the C-3' and C-2' hydroxyl groups of enzyme-bound OMP. D37G and T100'A substitutions result in 1.4 kcal/mol increases in the activation barrier ΔG⧧ for catalysis of decarboxylation of the phosphodianion-truncated substrate 1-(ß-d-erythrofuranosyl)orotic acid (EO) but result in larger 2.1-2.9 kcal/mol increases in ΔG⧧ for decarboxylation of OMP and for phosphite dianion-activated decarboxylation of EO. This shows that these substitutions reduce transition-state stabilization by the Q215, Y217, and R235 side chains at the dianion binding site. The D37G and T100'A substitutions result in <1.0 kcal/mol increases in ΔG⧧ for activation of OMPDC-catalyzed decarboxylation of the phosphoribofuranosyl-truncated substrate FO by phosphite dianions. Experiments to probe the effect of D37 and T100' substitutions on the kinetic parameters for d-glycerol 3-phosphate and d-erythritol 4-phosphate activators of OMPDC-catalyzed decarboxylation of FO show that ΔG⧧ for sugar phosphate-activated reactions is increased by ca. 2.5 kcal/mol for each -OH interaction eliminated by D37G or T100'A substitutions. We conclude that the interactions between the D37 and T100' side chains and ribosyl or ribosyl-like hydroxyl groups are utilized to activate OMPDC for catalysis of decarboxylation of OMP, EO, and FO.


Asunto(s)
Orotidina-5'-Fosfato Descarboxilasa/metabolismo , Uridina Monofosfato/análogos & derivados , Sitios de Unión , Fenómenos Biofísicos , Catálisis , Comunicación Celular , Eritritol/análogos & derivados , Hidróxidos/química , Cinética , Ácido Orótico/química , Orotidina-5'-Fosfato Descarboxilasa/química , Orotidina-5'-Fosfato Descarboxilasa/fisiología , Fagocitosis , Fosfitos , Dominios Proteicos , Ribosa/química , Fosfatos de Azúcar , Uridina Monofosfato/química , Uridina Monofosfato/metabolismo
16.
Biochem Biophys Res Commun ; 585: 191-195, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34813979

RESUMEN

Impairment of pancreatic ß cells is a principal driver of the development of diabetes. Restoring normal insulin release from the ß cells depends on the ATP produced by the intracellular mitochondria. In maintaining mitochondrial function, the tumor suppressor p53 has emerged as a novel regulator of metabolic homeostasis and participates in adaptations to nutritional changes. In this study, we used orotic acid, an intermediate in the pathway for de novo synthesis of the pyrimidine nucleotide, to reduce genotoxicity. Administration of orotic acid reduced p53 activation of MIN6 ß cells and subsequently reduced ß cell death in the db/db mouse. Orotic acid intake helped to maintain the islet size, number of ß cells, and protected insulin secretion in the db/db mouse. In conclusion, orotic acid treatment maintained ß cell function and reduced cell death, and may therefore, be a future therapeutic strategy for the prevention and treatment of diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Células Secretoras de Insulina/efectos de los fármacos , Ácido Orótico/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/efectos de los fármacos , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Línea Celular Tumoral , Citosol/efectos de los fármacos , Citosol/metabolismo , Diabetes Mellitus Tipo 2/sangre , Humanos , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones Endogámicos C57BL , Ácido Orótico/administración & dosificación , Ácido Orótico/sangre , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/farmacología
17.
Am J Obstet Gynecol ; 224(2): 215.e1-215.e7, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32739399

RESUMEN

BACKGROUND: Aberrant fetal programming in gestational diabetes mellitus seems to increase the risk of obesity, type 2 diabetes, and cardiovascular disease. The inability to accurately identify gestational diabetes mellitus in the first trimester of pregnancy has thwarted ascertaining whether early therapeutic interventions reduce the predisposition to these prevalent medical disorders. OBJECTIVE: A metabolomics study was conducted to determine whether advanced analytical methods could identify accurate predictors of gestational diabetes mellitus in early pregnancy. STUDY DESIGN: This nested observational case-control study was composed of 92 gravidas (46 in the gestational diabetes mellitus group and 46 in the control group) in early pregnancy, who were matched by maternal age, body mass index, and gestational age at urine collection. Gestational diabetes mellitus was diagnosed according to community standards. A comprehensive metabolomics platform measured 626 endogenous metabolites in randomly collected urine. Consensus multivariate criteria or the most important by 1 method identified low-molecular weight metabolites independently associated with gestational diabetes mellitus, and a classification tree selected a subset most predictive of gestational diabetes mellitus. RESULTS: Urine for both groups was collected at a mean gestational age of 12 weeks (range, 6-19 weeks' gestation). Consensus multivariate analysis identified 11 metabolites independently linked to gestational diabetes mellitus. Classification tree analysis selected a 7-metabolite subset that predicted gestational diabetes mellitus with an accuracy of 96.7%, independent of maternal age, body mass index, and time of urine collection. CONCLUSION: Validation of this high-accuracy model by a larger study is now needed to support future studies to determine whether therapeutic interventions in the first trimester of pregnancy for gestational diabetes mellitus reduce short- and long-term morbidity.


Asunto(s)
Diabetes Gestacional/orina , Edad Gestacional , Metabolómica , Adulto , Alanina/análogos & derivados , Alanina/orina , Arginina/análogos & derivados , Arginina/orina , Carnitina/análogos & derivados , Carnitina/orina , Estudios de Casos y Controles , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/terapia , Dietoterapia , Dopamina/orina , Diagnóstico Precoz , Epigénesis Genética , Femenino , Desarrollo Fetal/genética , Prueba de Tolerancia a la Glucosa , Glucurónidos/orina , Humanos , Hipoglucemiantes/uso terapéutico , Lactonas/orina , Lisina/análogos & derivados , Lisina/orina , Meglutol/análogos & derivados , Meglutol/orina , Neopterin/análogos & derivados , Neopterin/orina , Ácido Orótico/análogos & derivados , Ácido Orótico/orina , Fenoles/orina , Embarazo , Ribonucleósidos/orina , Sulfuros/orina
18.
J Inherit Metab Dis ; 44(3): 618-628, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33336822

RESUMEN

Ornithine transcarbamylase deficiency (OTCD) is a metabolic and genetic disease caused by dysfunction of the hepatocytic urea cycle. To develop new drugs or therapies for OTCD, it is ideal to use models that are more closely related to human metabolism and pathology. Primary human hepatocytes (HHs) isolated from two patients (a 6-month-old boy and a 5-year-old girl) and a healthy donor were transplanted into host mice (hemi-, hetero-OTCD mice, and control mice, respectively). HHs were isolated from these mice and used for serial transplantation into the next host mouse or for in vitro experiments. Histological, biochemical, and enzyme activity analyses were performed. Cultured HHs were treated with ammonium chloride or therapeutic drugs. Replacement rates exceeded 80% after serial transplantation in both OTCD mice. These highly humanized OTCD mice showed characteristics similar to OTCD patients that included increased blood ammonia levels and urine orotic acid levels enhanced by allopurinol. Hemi-OTCD mice showed defects in OTC expression and significantly low enzymatic activities, while hetero-OTCD mice showed residual OTC expression and activities. A reduction in ammonium metabolism was observed in cultured HHs from OTCD mice, and treatment with the therapeutic drug reduced the ammonia levels in the culture medium. In conclusion, we established in vivo OTC mouse models with hemi- and hetero-patient HHs. HHs isolated from the mice were useful as an in vitro model of OTCD. These OTC models could be a source of valuable patient-derived hepatocytes that would enable large scale and reproducible experiments using the same donor.


Asunto(s)
Hepatocitos/trasplante , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia , Ornitina Carbamoiltransferasa/genética , Amoníaco/sangre , Animales , Preescolar , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Hepatocitos/química , Hepatocitos/citología , Humanos , Lactante , Masculino , Ratones , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Ácido Orótico/orina
19.
J Inherit Metab Dis ; 44(3): 606-617, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33190319

RESUMEN

Urea cycle disorders (UCDs), including OTC deficiency (OTCD), are life-threatening diseases with a broad clinical spectrum. Early diagnosis and initiation of treatment based on a newborn screening (NBS) test for OTCD with high specificity and sensitivity may contribute to reduction of the significant complications and high mortality. The efficacy of incorporating orotic acid determination into routine NBS was evaluated. Combined measurement of orotic acid and citrulline in archived dried blood spots from newborns with urea cycle disorders and normal controls was used to develop an algorithm for routine NBS for OTCD in Israel. Clinical information and genetic confirmation results were obtained from the follow-up care providers. About 1147986 newborns underwent routine NBS including orotic acid determination, 25 of whom were ultimately diagnosed with a UCD. Of 11 newborns with OTCD, orotate was elevated in seven but normal in two males with early-onset and two males with late-onset disease. Orotate was also elevated in archived dried blood spots of all seven retrospectively tested historical OTCD patients, only three of whom had originally been identified by NBS with low citrulline and elevated glutamine. Among the other UCDs emerge, three CPS1D cases and additional three retrospective CPS1D cases otherwise reported as a very rare condition. Combined levels of orotic acid and citrulline in routine NBS can enhance the detection of UCD, especially increasing the screening sensitivity for OTCD and differentiate it from CPS1D. Our data and the negligible extra cost for orotic acid determination might contribute to the discussion on screening for proximal UCDs in routine NBS.


Asunto(s)
Citrulina/sangre , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/diagnóstico , Ácido Orótico/sangre , Trastornos Innatos del Ciclo de la Urea/diagnóstico , Pruebas con Sangre Seca , Femenino , Humanos , Recién Nacido , Israel/epidemiología , Masculino , Tamizaje Neonatal , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/epidemiología , Estudios Retrospectivos , Trastornos Innatos del Ciclo de la Urea/epidemiología
20.
Inorg Chem ; 60(7): 4342-4346, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33711231
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA