Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Neurooncol ; 166(1): 39-49, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38160230

RESUMEN

PURPOSE: Genomic alterations are fundamental for molecular-guided therapy in patients with breast and lung cancer. However, the turn-around time of standard next-generation sequencing assays is a limiting factor in the timely delivery of genomic information for clinical decision-making. METHODS: In this study, we evaluated genomic alterations in 54 cerebrospinal fluid samples from 33 patients with metastatic lung cancer and metastatic breast cancer to the brain using the Oncomine Precision Assay on the Genexus sequencer. There were nine patients with samples collected at multiple time points. RESULTS: Cell-free total nucleic acids (cfTNA) were extracted from CSF (0.1-11.2 ng/µl). Median base coverage was 31,963× with cfDNA input ranging from 2 to 20 ng. Mutations were detected in 30/54 CSF samples. Nineteen (19/24) samples with no mutations detected had suboptimal DNA input (< 20 ng). The EGFR exon-19 deletion and PIK3CA mutations were detected in two patients with increasing mutant allele fraction over time, highlighting the potential of CSF-cfTNA analysis for monitoring patients. Moreover, the EGFR T790M mutation was detected in one patient with prior EGFR inhibitor treatment. Additionally, ESR1 D538G and ESR1::CCDC170 alterations, associated with endocrine therapy resistance, were detected in 2 mBC patients. The average TAT from cfTNA-to-results was < 24 h. CONCLUSION: In summary, our results indicate that CSF-cfTNA analysis with the Genexus-OPA can provide clinically relevant information in patients with brain metastases with short TAT.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Mutación , Receptores ErbB/genética , Inhibidores de Proteínas Quinasas
2.
J Neurooncol ; 168(2): 215-224, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38755519

RESUMEN

PURPOSE: Clinical sequencing of tumor DNA is necessary to render an integrated diagnosis and select therapy for children with primary central nervous system (CNS) tumors, but neurosurgical biopsy is not without risk. In this study, we describe cell-free DNA (cfDNA) in blood and cerebrospinal fluid (CSF) as sources for "liquid biopsy" in pediatric brain tumors. METHODS: CSF samples were collected by lumbar puncture, ventriculostomy, or surgery from pediatric patients with CNS tumors. Following extraction, CSF-derived cfDNA was sequenced using UW-OncoPlex™, a clinically validated next-generation sequencing platform. CSF-derived cfDNA results and paired plasma and tumor samples concordance was also evaluated. RESULTS: Seventeen CSF samples were obtained from 15 pediatric patients with primary CNS tumors. Tumor types included medulloblastoma (n = 7), atypical teratoid/rhabdoid tumor (n = 2), diffuse midline glioma with H3 K27 alteration (n = 4), pilocytic astrocytoma (n = 1), and pleomorphic xanthoastrocytoma (n = 1). CSF-derived cfDNA was detected in 9/17 (53%) of samples, and sufficient for sequencing in 8/10 (80%) of extracted samples. All somatic mutations and copy-number variants were also detected in matched tumor tissue, and tumor-derived cfDNA was absent in plasma samples and controls. Tumor-derived cfDNA alterations were detected in the absence of cytological evidence of malignant cells in as little as 200 µl of CSF. Several clinically relevant alterations, including a KIAA1549::BRAF fusion were detected. CONCLUSIONS: Clinically relevant genomic alterations are detectable using CSF-derived cfDNA across a range of pediatric brain tumors. Next-generation sequencing platforms are capable of producing a high yield of DNA alterations with 100% concordance rate with tissue analysis.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , ADN Tumoral Circulante , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Niño , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/líquido cefalorraquídeo , Neoplasias Encefálicas/diagnóstico , Masculino , Femenino , Preescolar , Adolescente , Lactante , ADN Tumoral Circulante/líquido cefalorraquídeo , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/sangre , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/líquido cefalorraquídeo , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Ácidos Nucleicos Libres de Células/genética , Ácidos Nucleicos Libres de Células/sangre , Biopsia Líquida/métodos , Mutación
3.
Mol Biol Rep ; 51(1): 1035, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39361107

RESUMEN

BACKGROUND: Central nervous system lymphoma (CNSL) is a devastating disease with a poor prognosis. Early diagnosis, monitoring of the treatment response, and outcome prediction carry the utmost importance in the management of patients with CNSL. Surgical biopsy is the gold standard for tissue diagnosis, however, this procedure has potential complications. Therefore, there is a need for a method that provides information about diagnosis and patient monitoring to avoid surgical risks. The study aimed to investigate potential diagnostic biomarkers for patients with CNSL. METHODS AND RESULTS: Patients with secondary CNSL were included in this study. Serum and cerebrospinal fluid (CSF) samples were collected before treatment and after completion of the treatment. Cell-free DNA (cfDNA), exosomes, free and exosomal microRNA (miR)-15a, miR-21, miR-155, miR-210, and miR-19b in both serum and CSF were examined, and they were compared with the controls. Also, their levels before and after treatment were compared. Nine patients with the diagnosis of secondary CNSL were reviewed. cfDNA, miR-15a, and miR-155 in serum, and exosome in CSF were found to be significantly higher in CNSL patients compared to the controls. Exosomal miR-15a, miR-21, miR-155, miR-210, and miR-19b in CSF were found to be significantly higher in CNSL patients compared to controls, whereas their levels in serum were not significantly high. CONCLUSIONS: Our findings suggested that exosomes and exosomal miR-15a, miR-21, miR-155, miR-210 and miR-19b in CSF would be promising biomarkers for the diagnosis of patients with CNSL. Further studies are needed to confirm our findings.


Asunto(s)
Biomarcadores de Tumor , Neoplasias del Sistema Nervioso Central , Exosomas , Linfoma , MicroARNs , Humanos , Exosomas/metabolismo , Exosomas/genética , MicroARNs/genética , MicroARNs/líquido cefalorraquídeo , MicroARNs/sangre , Biopsia Líquida/métodos , Masculino , Femenino , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/genética , Persona de Mediana Edad , Biomarcadores de Tumor/líquido cefalorraquídeo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Adulto , Linfoma/líquido cefalorraquídeo , Linfoma/diagnóstico , Linfoma/genética , Linfoma/sangre , Anciano , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Ácidos Nucleicos Libres de Células/genética , Ácidos Nucleicos Libres de Células/sangre
4.
Neurol Sci ; 44(9): 3271-3277, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37067723

RESUMEN

INTRODUCTION: The differential diagnosis of brain diseases becomes challenging in cases where imaging is not sufficiently informative, and surgical biopsy is impossible or unacceptable to the patient. METHODS: An elderly patient with progressive short-term memory loss and cognitive impairment presented with a normal brain CT scan, a brain FDG-PET that indicated symmetrical deterioration of the white matter in the frontal lobes, and inconclusive results of a molecular marker analysis of suspected dementia in cerebrospinal fluid (CSF). Brain MRI suggested the diagnosis of lower grade glioma. The patient refused surgical biopsy. In order to investigate whether somatic mutations associated with gliomas existed, we performed a "liquid biopsy" by the targeted sequencing of cell-free DNA (cfDNA) from his CSF. RESULTS: Deep sequencing of the cfDNA from CSF revealed somatic mutations characteristically found in gliomas, including mutations of the TP53 (Arg282Trp), BRAF (Val600Glu), and IDH1 (Arg132His) genes. The patient is currently treated with temozolomide, and his clinical and MRI findings suggest the stabilization of his disease. CONCLUSION: Neurological patients may benefit from liquid biopsy diagnostic work-up as it can reveal therapeutically targetable mutations.


Asunto(s)
Neoplasias Encefálicas , Ácidos Nucleicos Libres de Células , Glioma , Enfermedades Neurodegenerativas , Humanos , Anciano , Glioma/diagnóstico , Glioma/diagnóstico por imagen , Biopsia Líquida/métodos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/diagnóstico por imagen , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Mutación/genética
5.
Ann Neurol ; 89(6): 1248-1252, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33834539

RESUMEN

Brain mosaic mutations are a major cause of refractory focal epilepsies with cortical malformations such as focal cortical dysplasia, hemimegalencephaly, malformation of cortical development with oligodendroglial hyperplasia in epilepsy, and ganglioglioma. Here, we collected cerebrospinal fluid (CSF) during epilepsy surgery to search for somatic variants in cell-free DNA (cfDNA) using targeted droplet digital polymerase chain reaction. In 3 of 12 epileptic patients with known somatic mutations previously identified in brain tissue, we here provide evidence that brain mosaicism can be detected in the CSF-derived cfDNA. These findings suggest future opportunities for detecting the mutant allele driving epilepsy in CSF. ANN NEUROL 2021;89:1248-1252.


Asunto(s)
Encéfalo , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Epilepsia Refractaria/genética , Adolescente , Niño , Preescolar , Epilepsia Refractaria/líquido cefalorraquídeo , Femenino , Humanos , Lactante , Masculino , Mutación
6.
Cancer Sci ; 112(11): 4702-4710, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34523186

RESUMEN

The current standard of diagnosing central nervous system (CNS) lymphoma is stereotactic biopsy, however the procedure has a risk of surgical complication. Liquid biopsy of the CSF is a less invasive, non-surgical method that can be used for diagnosing CNS lymphoma. In this study, we established a clinically applicable protocol for determining mutations in MYD88 in the CSF of patients with CNS lymphoma. CSF was collected prior to the start of chemotherapy from 42 patients with CNS lymphoma and matched tumor specimens. Mutations in MYD88 in 33 tumor samples were identified using pyrosequencing. Using 10 ng each of cellular DNA and cell-free DNA (cfDNA) extracted from the CSF, the MYD88 L265P mutation was detected using digital PCR. The conditions to judge mutation were rigorously determined. The median Target/Total value of cases with MYD88 mutations in the tumors was 5.1% in cellular DNA and 22.0% in cfDNA. The criteria to judge mutation were then determined, with a Target/Total value of 0.25% as the cutoff. When MYD88 mutations were determined based on these criteria, the sensitivity and specificity were 92.2% and 100%, respectively, with cellular DNA; and the sensitivity and specificity were 100% with cfDNA. Therefore, the DNA yield, mutated allele fraction, and accuracy were significantly higher in cfDNA compared with that in cellular DNA. Taken together, this study highlights the importance of detecting the MYD88 L265P mutation in cfDNA of the CSF for diagnosing CNS lymphoma using digital PCR, a highly accurate and clinically applicable method.


Asunto(s)
Neoplasias del Sistema Nervioso Central/genética , Biopsia Líquida/métodos , Linfoma/genética , Mutación , Factor 88 de Diferenciación Mieloide/genética , Adulto , Anciano , Anciano de 80 o más Años , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Ácidos Nucleicos Libres de Células/genética , Ácidos Nucleicos Libres de Células/aislamiento & purificación , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/diagnóstico , ADN de Neoplasias/líquido cefalorraquídeo , ADN de Neoplasias/genética , ADN de Neoplasias/aislamiento & purificación , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Linfoma/líquido cefalorraquídeo , Linfoma/diagnóstico , Masculino , Persona de Mediana Edad , Factor 88 de Diferenciación Mieloide/líquido cefalorraquídeo , Reacción en Cadena de la Polimerasa/métodos , Sensibilidad y Especificidad
7.
Neuropathol Appl Neurobiol ; 47(4): 471-487, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33403678

RESUMEN

Gliomas are diffusely growing tumours arising from progenitors within the central nervous system. They encompass a range of different molecular types and subtypes, many of which have a well-defined profile of driver mutations, copy number changes and DNA methylation patterns. A majority of gliomas will require surgical intervention to relieve raised intracranial pressure and reduce tumour burden. A proportion of tumours, however, are located in neurologically sensitive areas and a biopsy poses a significant risk of a deficit. A majority of gliomas recur after surgery, and monitoring tumour burden of the recurrence is currently achieved by imaging. However, most imaging modalities have limitations in assessing tumour burden and infiltration into adjacent brain, and sometimes imaging is unable to discriminate between tumour recurrence and pseudo-progression. Liquid biopsies, obtained from body fluids such as cerebrospinal fluid or blood, contain circulating nucleic acids or extracellular vesicles containing tumour-derived components. The studies for this systematic review were selected according to PRISMA criteria, and suggest that the detection of circulating tumour-derived nucleic acids holds great promises as biomarker to aid diagnosis and prognostication by monitoring tumour progression, and thus can be considered a pathway towards personalized medicine.


Asunto(s)
Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/líquido cefalorraquídeo , Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Glioma/sangre , Glioma/líquido cefalorraquídeo , Glioma/diagnóstico , Humanos , Biopsia Líquida
8.
J Clin Lab Anal ; 34(6): e23238, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32052892

RESUMEN

BACKGROUND: Most studies on cell-free DNA (cfDNA) were only for single body fluids; however, the differences in cfDNA distribution between two body fluids are rarely reported. Hence, in this work, we compared the differences in cfDNA distribution between cerebrospinal fluid (CSF) and serum of patients with brain-related diseases. METHODS: The fragment length of cfDNA was determined by using Agilent 2100 Bioanalyzer. The copy numbers of cell-free mitochondrial DNA (cf-mtDNA) and cell-free nuclear DNA (cf-nDNA) were determined by using real-time quantitative PCR (qPCR) and droplet digital PCR (ddPCR) with three pairs of mitochondrial ND1 and nuclear GAPDH primers, respectively. RESULTS: There were short (~60 bp), medium (~167 bp), and long (>250 bp) cfDNA fragment length distributions totally obtained from CSF and serum using Agilent 2100 Bioanalyzer. The results of both qPCR and ddPCR confirmed the existence of these three cfDNA fragment ranges in CSF and serum. According to qPCR, the copy numbers of long cf-mtDNA, medium, and long cf-nDNA in CSF were significantly higher than in paired serum. In CSF, only long cf-mtDNA's copy numbers were higher than long cf-nDNA. But in serum, the copy numbers of medium and long cf-mtDNA were higher than the corresponding cf-nDNA. CONCLUSION: The cf-nDNA and cf-mtDNA with different fragment lengths differentially distributed in the CSF and serum of patients with brain disorders, which might serve as a biomarker of human brain diseases.


Asunto(s)
Encefalopatías/genética , Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Encefalopatías/sangre , Encefalopatías/líquido cefalorraquídeo , Lesiones Traumáticas del Encéfalo/sangre , Lesiones Traumáticas del Encéfalo/líquido cefalorraquídeo , Lesiones Traumáticas del Encéfalo/genética , Núcleo Celular/genética , Hemorragia Cerebral/sangre , Hemorragia Cerebral/líquido cefalorraquídeo , Hemorragia Cerebral/genética , Variaciones en el Número de Copia de ADN , Cartilla de ADN , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Humanos , Hipertensión Intracraneal/sangre , Hipertensión Intracraneal/líquido cefalorraquídeo , Hipertensión Intracraneal/genética , Metales/sangre , Metales/líquido cefalorraquídeo , NADH Deshidrogenasa/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/instrumentación
9.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339180

RESUMEN

Protein aggregation is classically considered the main cause of neuronal death in neurodegenerative diseases (NDDs). However, increasing evidence suggests that alteration of RNA metabolism is a key factor in the etiopathogenesis of these complex disorders. Non-coding RNAs are the major contributor to the human transcriptome and are particularly abundant in the central nervous system, where they have been proposed to be involved in the onset and development of NDDs. Interestingly, some ncRNAs (such as lncRNAs, circRNAs and pseudogenes) share a common functionality in their ability to regulate gene expression by modulating miRNAs in a phenomenon known as the competing endogenous RNA mechanism. Moreover, ncRNAs are found in body fluids where their presence and concentration could serve as potential non-invasive biomarkers of NDDs. In this review, we summarize the ceRNA networks described in Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and spinocerebellar ataxia type 7, and discuss their potential as biomarkers of these NDDs. Although numerous studies have been carried out, further research is needed to validate these complex interactions between RNAs and the alterations in RNA editing that could provide specific ceRNET profiles for neurodegenerative disorders, paving the way to a better understanding of these diseases.


Asunto(s)
Ácidos Nucleicos Libres de Células/sangre , Redes Reguladoras de Genes , Enfermedades Neurodegenerativas/sangre , Animales , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/orina , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Ácidos Nucleicos Libres de Células/genética , Ácidos Nucleicos Libres de Células/orina , Humanos , Enfermedades Neurodegenerativas/líquido cefalorraquídeo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/orina
11.
BMC Cancer ; 19(1): 192, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30823914

RESUMEN

BACKGROUND: Central nervous system lymphomas (CNSL) is a devastating disease. Currently, a confirmatory biopsy is required prior to treatment. OBJECTIVE: Our investigation aims to prove the feasibility of a minimally-invasive diagnostic approach for the molecular characterization of CNSL. METHODS: Tissue biopsies from 6 patients with suspected CNSL were analyzed using a 649gene next-generation sequencing (NGS) tumor panel (tumor vs. reference tissue (EDTA-blood)). The individual somatic mutation pattern was used as a basis for the digital PCR analyzing circulating tumor DNA (ctDNA) from plasma and cerebrospinal fluid (CSF) samples, identifying one selected tumor mutation during this first step of the feasibility investigation. RESULTS: NGS-analysis of biopsy tissue revealed a specific somatic mutation pattern in all confirmed lymphoma samples (n = 5, NGS-sensitivity 100%) and none in the sample identified as normal brain tissue (NGS-specificity 100%). cfDNA-extraction was dependent on the extraction-kit used and feasible in 3 samples, in all of which somatic mutations were detectable (100%). Analysis of CSF-derived cfDNA was superior to plasma-derived cfDNA and routine microscopic analysis (lymphoma cells: n = 2, 40%). One patient showed a divergent molecular pattern, typical of Burkitt-Lymphoma (HIV+, serologic evidence of EBV-infection). Lumbar puncture was tolerated without complications, whereas biopsy caused 3 hemorrhages. CONCLUSIONS: Our investigation provides evidence that analysis of cfDNA in central nervous system tumors is feasible using the described protocol. Molecular characterization of CNSL could be achieved by analysis of CSF-derived cfDNA. Knowledge of a tumor's specific mutation pattern may allow initiation of targeted therapies, treatment surveillance and could lead to minimally-invasive diagnostics in the future.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , ADN Tumoral Circulante/líquido cefalorraquídeo , Linfoma de Células B/diagnóstico , Adulto , Anciano , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Biopsia Líquida/métodos , Linfoma de Células B/genética , Linfoma de Células B/patología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mutación , Sensibilidad y Especificidad , Análisis de Secuencia de ADN , Técnicas Estereotáxicas , Tomografía Computarizada por Rayos X
12.
Cytopathology ; 30(2): 144-149, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30471155

RESUMEN

BACKGROUND: The cobas® epidermal growth factor receptor (EGFR) Mutation Test v2 designed for cell-free DNA (cfDNA) is approved as a companion diagnostic for osimertinib therapy. The aim of this study was to evaluate the concordance of EGFR mutation detection between paired primary or recurrent samples, and cerebrospinal fluid (CSF) cytology samples of lung cancer patients. METHODS: In total, 26 lung cancer patients with supernatant cytology cfDNA in CSF were analysed for EGFR mutations using the cobas® EGFR Mutation Test v2.0 designed for cfDNA, and the concordance rates between CSF cfDNA and primary or recurrent samples were investigated. RESULTS: Of the 26 CSF cytology cfDNA samples, 46.1% (12/26) were valid and 53.9% (14/26) were invalid. Sensitivity, specificity and accuracy between the valid CSF cfDNA samples and primary or recurrent samples for detection of EGFR mutation, including T790M were 87.5%, 100.0% and 91.7%, respectively. Amounts of both inflammatory cells and tumour cells in CSF cytology were higher in the valid evaluation samples than in the invalid samples (P < .05), and mutant EGFR was detected in 80.0% (4/5) of the valid CSF cytology cfDNA samples with a negative cytology diagnosis. CONCLUSIONS: The cobas® EGFR Mutation Test v2.0 can accurately detect EGFR mutations, including T790M, from supernatant cfDNA of CSF cytology samples. Utilisation of supernatant cytology cfDNA in CSF will allow us to perform both EGFR mutation analysis and cytopathological diagnosis at the same time. This represents a new role of cytology in patient treatment, based on assured sample quality.


Asunto(s)
Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Citodiagnóstico , Neoplasias Pulmonares/líquido cefalorraquídeo , Anciano , Anciano de 80 o más Años , Receptores ErbB/líquido cefalorraquídeo , Receptores ErbB/genética , Femenino , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Mutación/genética
13.
Ann Oncol ; 29(4): 945-952, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29346604

RESUMEN

Background: Leptomeningeal metastases (LM) are more frequent in non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations. Due to limited access to leptomeningeal lesions, the purpose of this study was to explore the potential role of cerebrospinal fluid (CSF) as a source of liquid biopsy in patients with LM. Patients and methods: Primary tumor, CSF, and plasma in NSCLC with LM were tested by next-generation sequencing. In total, 45 patients with suspected LM underwent lumbar puncture, and those with EGFR mutations diagnosed with LM were enrolled. Results: A total of 28 patients were enrolled in this cohort; CSF and plasma were available in 26 patients, respectively. Driver genes were detected in 100% (26/26), 84.6% (22/26), and 73.1% (19/26) of samples comprising CSF cell-free DNA (cfDNA), CSF precipitates, and plasma, respectively; 92.3% (24/26) of patients had much higher allele fractions in CSF cfDNA than the other two media. Unique genetic profiles were captured in CSF cfDNA compared with those in plasma and primary tissue. Multiple copy number variations (CNVs) were mainly identified in CSF cfDNA, and MET copy number gain identified in 47.8% (11/23) of patients was the most frequent one, while other CNVs included ERBB2, KRAS, ALK, and MYC. Moreover, loss of heterozygosity (LOH) of TP53 was identified in 73.1% (19/26) CSF cfDNA, which was much higher than that in plasma (2/26, 7.7%; P < 0.001). There was a trend towards a higher frequency of concomitant resistance mutations in patients with TP53 LOH than those without (70.6% versus 33.3%; P = 0.162). EGFR T790M was identified in CSF cfDNA of 30.4% (7/23) of patients who experienced TKI progression. Conclusion: CSF cfDNA could reveal the unique genetic profiles of LM and should be considered as the most representative liquid biopsy medium for LM in EGFR-mutant NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/líquido cefalorraquídeo , Carcinoma de Pulmón de Células no Pequeñas/genética , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Perfilación de la Expresión Génica , Genes erbB-1 , Biopsia Líquida/métodos , Neoplasias Pulmonares/líquido cefalorraquídeo , Neoplasias Pulmonares/genética , Neoplasias Meníngeas/secundario , Mutación , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/patología , Variaciones en el Número de Copia de ADN , Femenino , Genes p53 , Humanos , Pérdida de Heterocigocidad , Neoplasias Pulmonares/patología , Masculino , Neoplasias Meníngeas/líquido cefalorraquídeo , Neoplasias Meníngeas/patología , Persona de Mediana Edad , Punción Espinal
14.
J Neuroinflammation ; 14(1): 72, 2017 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-28359324

RESUMEN

BACKGROUND: Mitochondria are abundant organelles critical for energy metabolism and brain function. Mitochondrial DNA (mtDNA), released during cellular injury and as part of the innate immune response to viral pathogens, contains CpG motifs that act as TLR-9 ligands. We investigated relationships between cerebrospinal fluid (CSF) cell-free mtDNA levels and HIV viral load (VL), biomarkers of inflammation and iron transport, and neurocognitive (NC) function in the CNS HIV Antiretroviral Therapy Effects Research (CHARTER) cohort. METHODS: We quantified cell-free mtDNA in CSF by droplet digital PCR in 332 CHARTER participants who underwent comprehensive neuropsychiatric evaluation. NC performance was assessed using the global deficit score (GDS) as either a continuous or a binary measure (GDS ≥ 0.5, impaired vs. GDS < 0.5, unimpaired). CSF, clinical, and biomarker data from the earliest available time point were analyzed. Cell-free mtDNA associations with CSF inflammation and iron-related biomarkers [CXCL10, IL-6, IL-8, TNF-a, transferrin (TF), ceruloplasmin (CP), and vascular endothelial growth factor (VEGF)], VL, and GDS were evaluated by multivariable regression. RESULTS: CSF cell-free mtDNA levels were significantly lower in participants with undetectable (vs. detectable) VL in either plasma (p < 0.001) or CSF (p < 0.001) and in those on antiretroviral therapy (ART; p < 0.001). Participants on ART with undetectable VL in both CSF and plasma had lower mtDNA levels than those with detectable VL in both compartments (p = 0.001). Higher mtDNA levels were observed in participants in the highest vs. lowest tertile (T3 vs. T1) of CSF CXCL10 (T3 vs. T1, p < 0.001) and TNF-a (T3 vs. T1, p < 0.05) in unadjusted analyses. MtDNA levels also correlated with CSF leukocyte count. After adjusting for CSF leukocyte count and VL, mtDNA levels were also associated with other inflammation- and iron-related biomarkers in CSF, including TF (T3 vs. T1, p < 0.05) and CP (T3 vs. T1, p < 0.05). With additional correction for ART use, mtDNA was also negatively associated with CSF VEGF (p < 0.05) and IL-6 (p = 0.05). We observed no associations of CSF mtDNA levels with age or GDS-defined NC impairment. CONCLUSIONS: CSF cell-free mtDNA levels were associated with HIV RNA and ART status, as well as with biomarkers of iron transport and VEGF, a growth factor with known effects on mitochondrial integrity and autophagy. CSF mtDNA may be a biomarker of iron dysregulation and/or neuroinflammation during HIV infection.


Asunto(s)
Complejo SIDA Demencia/líquido cefalorraquídeo , Complejo SIDA Demencia/metabolismo , Complejo SIDA Demencia/virología , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , ADN Mitocondrial/líquido cefalorraquídeo , Adulto , Biomarcadores/líquido cefalorraquídeo , Estudios de Cohortes , Estudios Transversales , Femenino , VIH , Humanos , Hierro/metabolismo , Masculino , Persona de Mediana Edad , Carga Viral , Replicación Viral
15.
J Neurooncol ; 135(1): 29-36, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28900844

RESUMEN

Cerebrospinal fluid (CSF) represents a promising source of cell-free DNA (cfDNA) for tumors of the central nervous system. A CSF-based liquid biopsy may obviate the need for riskier tissue biopsies and serve as a means for monitoring tumor recurrence or response to therapy. Spinal ependymomas most commonly occur in adults, and aggressive resection must be delicately balanced with the risk of injury to adjacent normal tissue. In patients with subtotal resection, recurrence commonly occurs. A CSF-based liquid biopsy matched to the patient's spinal ependymoma mutation profile has potential to be more sensitive then surveillance MRI, but the utility has not been well characterized for tumors of the spinal cord. In this study, we collected matched blood, tumor, and CSF samples from three adult patients with WHO grade II intramedullary spinal ependymoma. We performed whole exome sequencing on matched tumor and normal DNA to design Droplet Digital™ PCR (ddPCR) probes for tumor and wild-type mutations. We then interrogated CSF samples for tumor-derived cfDNA by performing ddPCR on extracted cfDNA. Tumor cfDNA was not reliably detected in the CSF of our cohort. Anatomic sequestration and low grade of intramedullary spinal cord tumors likely limits the role of CSF liquid biopsy.


Asunto(s)
Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Ependimoma/genética , Ependimoma/metabolismo , Neoplasias de la Médula Espinal/genética , Neoplasias de la Médula Espinal/metabolismo , Adulto , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Estudios de Cohortes , Ependimoma/patología , Ependimoma/cirugía , Humanos , Biopsia Líquida , Masculino , Persona de Mediana Edad , Mutación , Clasificación del Tumor , Proyectos Piloto , Neoplasias de la Médula Espinal/patología , Neoplasias de la Médula Espinal/cirugía , Secuenciación del Exoma
17.
Clin Epigenetics ; 16(1): 87, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970137

RESUMEN

Pediatric central nervous system tumors remain challenging to diagnose. Imaging approaches do not provide sufficient detail to discriminate between different tumor types, while the histopathological examination of tumor tissue shows high inter-observer variability. Recent studies have demonstrated the accurate classification of central nervous system tumors based on the DNA methylation profile of a tumor biopsy. However, a brain biopsy holds significant risk of bleeding and damaging the surrounding tissues. Liquid biopsy approaches analyzing circulating tumor DNA show high potential as an alternative and less invasive tool to study the DNA methylation pattern of tumors. Here, we explore the potential of classifying pediatric brain tumors based on methylation profiling of the circulating cell-free DNA (cfDNA) in cerebrospinal fluid (CSF). For this proof-of-concept study, we collected cerebrospinal fluid samples from 19 pediatric brain cancer patients via a ventricular drain placed for reasons of increased intracranial pressure. Analyses on the cfDNA showed high variability of cfDNA quantities across patients ranging from levels below the limit of quantification to 40 ng cfDNA per milliliter of CSF. Classification based on methylation profiling of cfDNA from CSF was correct for 7 out of 20 samples in our cohort. Accurate results were mostly observed in samples of high quality, more specifically those with limited high molecular weight DNA contamination. Interestingly, we show that centrifugation of the CSF prior to processing increases the fraction of fragmented cfDNA to high molecular weight DNA. In addition, classification was mostly correct for samples with high tumoral cfDNA fraction as estimated by computational deconvolution (> 40%). In summary, analysis of cfDNA in the CSF shows potential as a tool for diagnosing pediatric nervous system tumors especially in patients with high levels of tumoral cfDNA in the CSF. Further optimization of the collection procedure, experimental workflow and bioinformatic approach is required to also allow classification for patients with low tumoral fractions in the CSF.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias del Sistema Nervioso Central , ADN Tumoral Circulante , Metilación de ADN , Humanos , Metilación de ADN/genética , Niño , Masculino , Femenino , Preescolar , Biopsia Líquida/métodos , ADN Tumoral Circulante/líquido cefalorraquídeo , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/sangre , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Ácidos Nucleicos Libres de Células/genética , Ácidos Nucleicos Libres de Células/sangre , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/diagnóstico , Adolescente , Lactante , Biomarcadores de Tumor/líquido cefalorraquídeo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/líquido cefalorraquídeo , Prueba de Estudio Conceptual
18.
Clin Cancer Res ; 30(14): 2974-2985, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38295147

RESUMEN

PURPOSE: Primary central nervous system (CNS) gliomas can be classified by characteristic genetic alterations. In addition to solid tissue obtained via surgery or biopsy, cell-free DNA (cfDNA) from cerebrospinal fluid (CSF) is an alternative source of material for genomic analyses. EXPERIMENTAL DESIGN: We performed targeted next-generation sequencing of CSF cfDNA in a representative cohort of 85 patients presenting at two neurooncological centers with suspicion of primary or recurrent glioma. Copy-number variation (CNV) profiles, single-nucleotide variants (SNV), and small insertions/deletions (indel) were combined into a molecular-guided tumor classification. Comparison with the solid tumor was performed for 38 cases with matching solid tissue available. RESULTS: Cases were stratified into four groups: glioblastoma (n = 32), other glioma (n = 19), nonmalignant (n = 17), and nondiagnostic (n = 17). We introduced a molecular-guided tumor classification, which enabled identification of tumor entities and/or cancer-specific alterations in 75.0% (n = 24) of glioblastoma and 52.6% (n = 10) of other glioma cases. The overlap between CSF and matching solid tissue was highest for CNVs (26%-48%) and SNVs at predefined gene loci (44%), followed by SNVs/indels identified via uninformed variant calling (8%-14%). A molecular-guided tumor classification was possible for 23.5% (n = 4) of nondiagnostic cases. CONCLUSIONS: We developed a targeted sequencing workflow for CSF cfDNA as well as a strategy for interpretation and reporting of sequencing results based on a molecular-guided tumor classification in glioma. See related commentary by Abdullah, p. 2860.


Asunto(s)
Biomarcadores de Tumor , Ácidos Nucleicos Libres de Células , Variaciones en el Número de Copia de ADN , Glioma , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Glioma/genética , Glioma/líquido cefalorraquídeo , Glioma/patología , Glioma/diagnóstico , Femenino , Persona de Mediana Edad , Masculino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Anciano , Adulto , Biomarcadores de Tumor/líquido cefalorraquídeo , Biomarcadores de Tumor/genética , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Ácidos Nucleicos Libres de Células/genética , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/patología , Polimorfismo de Nucleótido Simple , Adulto Joven , Anciano de 80 o más Años , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/líquido cefalorraquídeo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/diagnóstico
19.
Radiat Oncol ; 18(1): 50, 2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906568

RESUMEN

BACKGROUND: During the last decades, radiotherapy (RT) for non-small cell lung cancer (NSCLC) with brain metastases (BM) has been developed. However, the lack of predictive biomarkers for therapeutic responses has limited the precision treatment in NSCLC-BM. PATIENTS AND METHODS: In order to find the predictive biomarkers for RT, we investigated the influence of RT on the cell-free DNA (cfDNA) from cerebrospinal fluid (CSF) and the frequency of T cell subsets of NSCLC patients with BM. A total of 19 patients diagnosed as NSCLC with BM were enrolled. The CSF from 19 patients and matched plasma samples from 11 patients were collected before RT, during RT, and after RT. The cfDNA from CSF and plasma were extracted, and the cerebrospinal fluid tumor mutation burden (cTMB) was calculated after through next-generation sequencing. The frequency of T cell subsets in peripheral blood was using flow cytometry. RESULTS: The detection rate of cfDNA was higher in CSF compared to plasma in the matched samples. The mutation abundance of cfDNA in CSF was decreased after RT. However, no significant difference was observed in cTMB before and after RT. Although the median intracranial progression-free survival (iPFS) has not yet been reached in patients with decreased or undetectable cTMB, there was a trend that these patients possessed longer iPFS compared to those with stable or increased cTMB (HR 0.28, 95% CI 0.07-1.18, P = 0.067). The proportion of CD4+T cells in peripheral blood was decreased after RT. CONCLUSION: Our study indicates that cTMB can serve as a prognostic biomarker in NSCLC patients with BMs.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Ácidos Nucleicos Libres de Células , Neoplasias Pulmonares , Humanos , Biomarcadores de Tumor/líquido cefalorraquídeo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/secundario , Carcinoma de Pulmón de Células no Pequeñas/patología , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Neoplasias Pulmonares/patología , Mutación , Pronóstico
20.
Neuro Oncol ; 24(10): 1763-1772, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-35148412

RESUMEN

BACKGROUND: Safe sampling of central nervous system tumor tissue for diagnostic purposes may be difficult if not impossible, especially in pediatric patients, and an unmet need exists to develop less invasive diagnostic tests. METHODS: We report our clinical experience with minimally invasive molecular diagnostics using a clinically validated assay for sequencing of cerebrospinal fluid (CSF) cell-free DNA (cfDNA). All CSF samples were collected as part of clinical care, and results reported to both clinicians and patients/families. RESULTS: We analyzed 64 CSF samples from 45 pediatric, adolescent and young adult (AYA) patients (pediatric = 25; AYA = 20) with primary and recurrent brain tumors across 12 histopathological subtypes including high-grade glioma (n = 10), medulloblastoma (n = 10), pineoblastoma (n = 5), low-grade glioma (n = 4), diffuse leptomeningeal glioneuronal tumor (DLGNT) (n = 4), retinoblastoma (n = 4), ependymoma (n = 3), and other (n = 5). Somatic alterations were detected in 30/64 samples (46.9%) and in at least one sample per unique patient in 21/45 patients (46.6%). CSF cfDNA positivity was strongly associated with the presence of disseminated disease at the time of collection (81.5% of samples from patients with disseminated disease were positive). No association was seen between CSF cfDNA positivity and the timing of CSF collection during the patient's disease course. CONCLUSIONS: We identified three general categories where CSF cfDNA testing provided additional relevant diagnostic, prognostic, and/or therapeutic information, impacting clinical assessment and decision making: (1) diagnosis and/or identification of actionable alterations; (2) monitor response to therapy; and (3) tracking tumor evolution. Our findings support broader implementation of clinical CSF cfDNA testing in this population to improve care.


Asunto(s)
Neoplasias Encefálicas , Ácidos Nucleicos Libres de Células , Neoplasias del Sistema Nervioso Central , Glioma , Adolescente , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Niño , Glioma/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , Patología Molecular , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA