Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Chem Senses ; 45(2): 97-109, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-31844905

RESUMEN

Chemotherapy patients often experience chemosensory changes during and after drug therapy. The chemotherapy drug, cyclophosphamide (CYP), has known cytotoxic effects on sensory and proliferating cells of the taste system. Like the taste system, cells in the olfactory epithelia undergo continuous renewal. Therefore, we asked if a single injection of 75 mg/kg CYP would affect cell proliferation in the anterior dorsomedial region of the main olfactory epithelium (MOE) and the vomeronasal organ (VNO) from 0 to 125 days after injection. Both epithelia showed a decrease in Ki67-labeled cells compared to controls at day 1 and no Ki67+ cells at day 2 postinjection. In the sensory layer of the MOE, cell proliferation began to recover 4 days after CYP injection and by 6 days, the rate of proliferation was significantly greater than controls. Ki67+ cells peaked 30 days postinjection, then declined to control levels at day 45. Similar temporal sequences of initial CYP-induced suppression of cell proliferation followed by elevated rates peaking 30-45 days postinjection were seen in the sustentacular layer of the MOE and all 3 areas (sensory, sustentacular, marginal) of the VNO. CYP affected proliferation in the sensory layer of the MOE more than the sustentacular layer and all 3 areas of the VNO. These findings suggest that chemotherapy involving CYP is capable of affecting cell renewal of the olfactory system and likely contributes to clinical loss of function during and after chemotherapy.


Asunto(s)
Antineoplásicos Alquilantes/efectos adversos , Ciclofosfamida/efectos adversos , Mucosa Olfatoria/efectos de los fármacos , Órgano Vomeronasal/efectos de los fármacos , Animales , Antineoplásicos Alquilantes/administración & dosificación , Proliferación Celular/efectos de los fármacos , Ciclofosfamida/administración & dosificación , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos C57BL , Mucosa Olfatoria/patología , Órgano Vomeronasal/patología
2.
Biosci Biotechnol Biochem ; 83(4): 705-708, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30516446
3.
Chem Senses ; 42(1): 13-24, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27651427

RESUMEN

Chemosensory stimuli from same species (conspecific) and different species (heterospecific) elicit categorically different immediate-early gene (IEG) response patterns in medial amygdala in male hamsters and mice. All heterospecific stimuli activate anterior medial amygdala (MeA) but only especially salient heterospecific stimuli, such as those from predators activate posterior medial amygdala (MeP). We previously reported that characteristic patterns of response in separate populations of cells in MeA and MeP distinguish between different conspecific stimuli. Both gamma aminobutyric acid (GABA)-immunoreactive (ir) cells and GABA-receptor-ir cells make this distinction. Here, using zinc sulfate lesions of the main olfactory epithelium, we show evidence that main olfactory input does not contribute to the characteristic patterns of response in GABA-ir cells of male hamster amygdala, either for conspecific or heterospecific stimuli. Some GABAergic cells are output neurons carrying information from medial amygdala to behavioral executive regions of basal forebrain. Thus, the differential response to different conspecific signals can lead to differential activation of downstream circuits based on nonolfactory input. Finally, we show that an intact vomeronasal organ is necessary and sufficient to produce the characteristic patterns of response to conspecific and heterospecific chemosensory stimuli in hamster medial amygdala. Although main olfactory input may be critical in species with less prominent vomeronasal input for equivalent medial amygdala responses, work presented here suggests that hamster medial amygdala uses primarily vomeronasal input to discriminate between important unlearned conspecific social signals, to distinguish them from the social signals of other species, and may convey that information to brain circuits eliciting appropriate social behavior.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Neuronas GABAérgicas/metabolismo , Vías Olfatorias/metabolismo , Órgano Vomeronasal/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/patología , Animales , Conducta Animal , Cricetinae , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/patología , Masculino , Vías Olfatorias/efectos de los fármacos , Órgano Vomeronasal/efectos de los fármacos , Sulfato de Zinc/farmacología
4.
Nature ; 478(7368): 241-5, 2011 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-21937988

RESUMEN

The vomeronasal organ (VNO) has a key role in mediating the social and defensive responses of many terrestrial vertebrates to species- and sex-specific chemosignals. More than 250 putative pheromone receptors have been identified in the mouse VNO, but the nature of the signals detected by individual VNO receptors has not yet been elucidated. To gain insight into the molecular logic of VNO detection leading to mating, aggression or defensive responses, we sought to uncover the response profiles of individual vomeronasal receptors to a wide range of animal cues. Here we describe the repertoire of behaviourally and physiologically relevant stimuli detected by a large number of individual vomeronasal receptors in mice, and define a global map of vomeronasal signal detection. We demonstrate that the two classes (V1R and V2R) of vomeronasal receptors use fundamentally different strategies to encode chemosensory information, and that distinct receptor subfamilies have evolved towards the specific recognition of certain animal groups or chemical structures. The association of large subsets of vomeronasal receptors with cognate, ethologically and physiologically relevant stimuli establishes the molecular foundation of vomeronasal information coding, and opens new avenues for further investigating the neural mechanisms underlying behaviour specificity.


Asunto(s)
Células Quimiorreceptoras/metabolismo , Órgano Vomeronasal/fisiología , Animales , Aves , Células Quimiorreceptoras/citología , Células Quimiorreceptoras/efectos de los fármacos , Señales (Psicología) , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Mamíferos , Ratones , Feromonas/metabolismo , Feromonas/farmacología , Conducta Predatoria/fisiología , Receptores Odorantes/metabolismo , Caracteres Sexuales , Especificidad de la Especie , Órgano Vomeronasal/efectos de los fármacos
5.
Nature ; 459(7246): 574-7, 2009 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-19387439

RESUMEN

Mammals rely heavily on olfaction to interact adequately with each other and with their environment. They make use of seven-transmembrane G-protein-coupled receptors to identify odorants and pheromones. These receptors are present on dendrites of olfactory sensory neurons located in the main olfactory or vomeronasal sensory epithelia, and pertain to the odorant, trace amine-associated receptor and vomeronasal type 1 (ref. 4) or 2 (refs 5-7) receptor superfamilies. Whether these four sensor classes represent the complete olfactory molecular repertoire used by mammals to make sense of the outside world is unknown. Here we report the expression of formyl peptide receptor-related genes by vomeronasal sensory neurons, in multiple mammalian species. Similar to the four known olfactory receptor gene classes, these genes encode seven-transmembrane proteins, and are characterized by monogenic transcription and a punctate expression pattern in the sensory neuroepithelium. In vitro expression of mouse formyl peptide receptor-like 1, 3, 4, 6 and 7 provides sensitivity to disease/inflammation-related ligands. Establishing an in situ approach that combines whole-mount vomeronasal preparations with dendritic calcium imaging in the intact neuroepithelium, we show neuronal responses to the same molecules, which therefore represent a new class of vomeronasal agonists. Taken together, these results suggest that formyl peptide receptor-like proteins have an olfactory function associated with the identification of pathogens, or of pathogenic states.


Asunto(s)
Enfermedad , Percepción Olfatoria/fisiología , Neuronas Receptoras Olfatorias/metabolismo , Receptores de Formil Péptido/metabolismo , Olfato/fisiología , Órgano Vomeronasal/citología , Animales , Señalización del Calcio , Línea Celular , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Perfilación de la Expresión Génica , Humanos , Inflamación/patología , Ligandos , Ratones , Percepción Olfatoria/efectos de los fármacos , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/efectos de los fármacos , Especificidad de Órganos , Receptores de Formil Péptido/genética , Olfato/efectos de los fármacos , Órgano Vomeronasal/efectos de los fármacos , Órgano Vomeronasal/fisiología
6.
Eur J Neurosci ; 40(10): 3422-35, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25195871

RESUMEN

We investigated the role of voltage-activated calcium (Cav) channels for synaptic transmission at mouse olfactory and vomeronasal nerve terminals at the first synapse of the main and accessory olfactory pathways, respectively. We provided evidence for a central role of the N-type Cav channel subunit Cav2.2 in presynaptic transmitter release at these synapses. Striking Cav2.2 immunoreactivity was localised to the glomerular neuropil of the main olfactory bulb (MOB) and accessory olfactory bulb (AOB), and co-localised with presynaptic molecules such as bassoon. Voltage-clamp recordings of sensory nerve-evoked, excitatory postsynaptic currents (EPSCs) in mitral/tufted (M/T) and superficial tufted cells of the MOB and mitral cells of the AOB, in combination with established subtype-specific Cav channel toxins, indicated a predominant role of N-type channels in transmitter release at these synapses, whereas L-type, P/Q-type, and R-type channels had either no or only relatively minor contributions. In Cacna1b mutant mice lacking the Cav2.2 (α1B) subunit of N-type channels, olfactory nerve-evoked M/T cell EPSCs were not reduced but became blocker-resistant, thus indicating a major reorganisation and compensation of Cav channel subunits as a result of the Cav2.2 deletion at this synapse. Cav2.2-deficient mice also revealed that Cav2.2 was critically required for paired-pulse depression of olfactory nerve-evoked EPSCs in M/T cells of the MOB, and they demonstrated an essential requirement for Cav2.2 in vomeronasal nerve-evoked EPSCs of AOB mitral cells. Thus, Cacna1b loss-of-function mutations are unlikely to cause general anosmia but Cacna1b emerges as a strong candidate in the search for mutations causing altered olfactory perception, such as changes in general olfactory sensitivity and altered social responses to chemostimuli.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Bulbo Olfatorio/fisiología , Transmisión Sináptica/fisiología , Órgano Vomeronasal/fisiología , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo N/genética , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/metabolismo , Bulbo Olfatorio/efectos de los fármacos , Proteína Marcadora Olfativa/metabolismo , Nervio Olfatorio/efectos de los fármacos , Nervio Olfatorio/fisiología , Técnicas de Placa-Clamp , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/fisiología , Transmisión Sináptica/efectos de los fármacos , Técnicas de Cultivo de Tejidos , Tirosina 3-Monooxigenasa/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Órgano Vomeronasal/efectos de los fármacos , Órgano Vomeronasal/inervación
7.
Nature ; 450(7171): 899-902, 2007 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-18064011

RESUMEN

Mice use pheromones, compounds emitted and detected by members of the same species, as cues to regulate social behaviours such as pup suckling, aggression and mating. Neurons that detect pheromones are thought to reside in at least two separate organs within the nasal cavity: the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). Each pheromone ligand is thought to activate a dedicated subset of these sensory neurons. However, the nature of the pheromone cues and the identity of the responding neurons that regulate specific social behaviours are largely unknown. Here we show, by direct activation of sensory neurons and analysis of behaviour, that at least two chemically distinct ligands are sufficient to promote male-male aggression and stimulate VNO neurons. We have purified and analysed one of these classes of ligand and found its specific aggression-promoting activity to be dependent on the presence of the protein component of the major urinary protein (MUP) complex, which is known to comprise specialized lipocalin proteins bound to small organic molecules. Using calcium imaging of dissociated vomeronasal neurons (VNs), we have determined that the MUP protein activates a sensory neuron subfamily characterized by the expression of the G-protein Galpha(o) subunit (also known as Gnao) and Vmn2r putative pheromone receptors (V2Rs). Genomic analysis indicates species-specific co-expansions of MUPs and V2Rs, as would be expected among pheromone-signalling components. Finally, we show that the aggressive behaviour induced by the MUPs occurs exclusively through VNO neuronal circuits. Our results substantiate the idea of MUP proteins as pheromone ligands that mediate male-male aggression through the accessory olfactory neural pathway.


Asunto(s)
Agresión/efectos de los fármacos , Feromonas/análisis , Feromonas/farmacología , Proteínas/análisis , Proteínas/farmacología , Agresión/fisiología , Animales , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Humanos , Lipocalinas/análisis , Lipocalinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/metabolismo , Orquiectomía , Feromonas/metabolismo , Proteínas/metabolismo , Receptores de Feromonas/metabolismo , Canales Catiónicos TRPC/deficiencia , Canales Catiónicos TRPC/genética , Orina/química , Órgano Vomeronasal/citología , Órgano Vomeronasal/efectos de los fármacos , Órgano Vomeronasal/metabolismo
8.
Adv Exp Med Biol ; 739: 93-106, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22399397

RESUMEN

Evolutionally, chemosensation is an ancient but yet enigmatic sense. All organisms ranging from the simplest unicellular form to the most advanced multicellular creature possess the capability to detect chemicals in the surroundings. Conversely, all living things emit some forms of smells, either as communicating signals or as by-products of metabolism. Many species (from worms, insects to mammals) rely on the olfactory systems which express a large number of chemoreceptors to locate food and mates and to avoid danger. Most chemoreceptors expressed in olfactory organs are G-protein coupled receptors (GPCRs) and can be classified into two major categories: odorant receptors (ORs) and pheromone receptors, which principally detect general odors and pheromones, respectively. In vertebrates, these two types of receptors are often expressed in two distinct apparatuses: The main olfactory epithelium (MOE) and the vomeronasal organ (VNO), respectively. Each olfactory sensory neuron (OSN) in the MOE typically expresses one type of OR from a large repertoire. General odors activate ORs and their host OSNs (ranging from narrowly- to broadly-tuned) in a combinatorial manner and the information is sent to the brain via the main olfactory system leading to perception of smells. In contrast, pheromones stimulate relatively narrowly-tuned receptors and their host VNO neurons and the information is sent to the brain via the accessory olfactory system leading to behavioral and endocrinological changes. Recent studies indicate that the functional separation between these two systems is blurred in some cases and there are more subsystems serving chemosensory roles. This chapter focuses on the molecular and cellular mechanisms underlying odor and pheromone sensing in rodents, the best characterized vertebrate models.


Asunto(s)
Células Quimiorreceptoras/efectos de los fármacos , Odorantes , Feromonas/farmacología , Animales , Células Quimiorreceptoras/citología , Células Quimiorreceptoras/metabolismo , Humanos , Percepción Olfatoria/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Órgano Vomeronasal/citología , Órgano Vomeronasal/efectos de los fármacos , Órgano Vomeronasal/metabolismo , Órgano Vomeronasal/fisiología
9.
J Neurosci ; 30(22): 7473-83, 2010 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-20519522

RESUMEN

In mammalian species, detection of pheromone cues by the vomeronasal organ (VNO) at different concentrations can elicit distinct behavioral responses and endocrine changes. It is not well understood how concentration-dependent activation of the VNO impacts innate behaviors. In this study, we find that, when mice investigate the urogenital areas of a conspecific animal, the urinary pheromones can reach the VNO at a concentration of approximately 1% of that in urine. At this level, urinary pheromones elicit responses from a subset of cells that are tuned to sex-specific cues and provide unambiguous identification of the sex and strain of animals. In contrast, low concentrations of urine do not activate these cells. Strikingly, we find a population of neurons that is only activated by low concentrations of urine. The properties of these neurons are not found in neurons responding to putative single-compound pheromones. Additional analyses show that these neurons are masked by high-concentration pheromones. Thus, an antagonistic interaction in natural pheromones results in the activation of distinct populations of cells at different concentrations. The differential activation is likely to trigger different downstream circuitry and underlies the concentration-dependent pheromone perception.


Asunto(s)
Señales (Psicología) , Neuronas/fisiología , Feromonas/orina , Órgano Vomeronasal/citología , Órgano Vomeronasal/fisiología , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Relación Dosis-Respuesta a Droga , Potenciales Evocados/fisiología , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Lectinas/genética , Lectinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/clasificación , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Feromonas/farmacología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Órgano Vomeronasal/efectos de los fármacos
10.
J Neurosci ; 29(24): 7658-66, 2009 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-19535577

RESUMEN

It was recently reported that female mice lacking a functional vomeronasal organ (VNO) displayed male-typical sexual behavior indiscriminately toward female and male conspecifics. These results have been cited as showing that a circuit controlling male-typical sex behavior exists in both sexes, with its activation in females being tonically inhibited by VNO signaling, independent of adult sex hormones. We further assessed this hypothesis while controlling the endocrine status of female mice in which VNO function was surgically disrupted. In experiment 1, VNO-lesioned (VNOx) female mice showed no more mounting or pelvic-thrusting behavior toward an estrous female or a castrated, urine-swabbed male (presented simultaneously) than sham-operated (VNOi) females. This was true when subjects were either ovary-intact or ovariectomized and treated with estradiol, estradiol plus progesterone, or testosterone. In experiment 2, female mice given accessory olfactory bulb lesions or a sham lesion displayed equivalent frequencies of male sex behaviors when given testosterone after ovariectomy. In experiment 3, VNOx and VNOi females displayed equivalent frequencies of male sex behaviors toward an estrous female or a castrated male (presented in separate tests), again, when given testosterone after ovariectomy. Our results confirm early reports that adult testosterone can stimulate appreciable male-typical sex behavior in female mice. However, we failed to corroborate the recent claim that VNO signaling normally inhibits the activity of neural circuitry controlling the expression of male-typical mating behavior by female mice.


Asunto(s)
Andrógenos/farmacología , Caracteres Sexuales , Conducta Sexual Animal/fisiología , Testosterona/farmacología , Órgano Vomeronasal/efectos de los fármacos , Órgano Vomeronasal/fisiología , Animales , Conducta Animal , Estradiol/farmacología , Femenino , Masculino , Ratones , Ratones Noqueados , Odorantes , Bulbo Olfatorio/lesiones , Bulbo Olfatorio/fisiología , Ovariectomía/métodos , Progesterona/farmacología , Conducta Sexual Animal/efectos de los fármacos , Olfato/genética , Olfato/fisiología , Estadísticas no Paramétricas , Canales Catiónicos TRPC/deficiencia , Órgano Vomeronasal/cirugía
11.
Chem Senses ; 35(3): 221-8, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20080804

RESUMEN

Propylene glycol (PG) is commonly used as a solvent for odorous chemicals employed in studies of the olfactory system because PG has been considered to be odorless for humans and other animals. However, if laboratory rats can detect the vapor of PG and if exposure to this influences behaviors, such effects might confound data obtained from experiments exposing conscious rats to odorants dissolved in PG. Therefore, we examined this issue using differences in the acoustic startle reflex (ASR) as an index. We also conducted a habituation/dishabituation test to assess the ability of rats to detect the vapor of PG. In addition, we observed Ca(2+) responses of vomeronasal neurons (VNs) in rats exposed to PG using the confocal Ca(2+)-imaging approach. Pure PG vapor significantly enhanced the ASR at a dose of 1 x 10(-4) M, which was much lower than the dose for efficiently detecting. In Ca(2+) imaging, VNs were activated by PG at a dose of 1 x 10(-4) M or lower. These results suggest that PG vapor acts as an aversive stimulus to rats at very low doses, even lower than those required for its detection, indicating that we should consider such effect of PG when it is employed as a solvent for odorants in studies using conscious rats. In addition, our study suggests that some non-pheromonal volatile odorants might affect animal behaviors via the vomeronasal system.


Asunto(s)
Gases/química , Glicoles de Propileno/farmacología , Animales , Calcio/metabolismo , Masculino , Ratas , Ratas Wistar , Filtrado Sensorial/fisiología , Órgano Vomeronasal/efectos de los fármacos , Órgano Vomeronasal/fisiología
12.
Cell Biol Toxicol ; 26(4): 309-17, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19924548

RESUMEN

Nasal epitheliums are the first sites of the respiratory tract in contact with the external environment and may therefore be susceptible to damage from exposure to many toxic volatile substances (i.e., volatile organic components, vapors, and gases). In the field of inhalation toxicology, a number of studies have considered the main olfactory epithelium, but few have dealt with the epithelium of the vomeronasal organ (VNO). However, in several species such as in rodents, the VNO (an organ of pheromone detection) plays an important role in social interactions, and alterations of this organ are known to induce adaptative behavioral disturbances. Among volatile toxicants, health effects of inhaled gases have been thoroughly investigated, especially during CO(2) inhalation because of its increasing atmospheric concentration. Therefore, this work was designed to examine the effects of 3% CO(2) inhalation on VNO in two different exposure conditions (5 h/day and 12 h/day) in mice. Behavioral sensitivity tests to urine of congener and histological measurements of VNO were conducted before, during (weeks 1-4), and after (weeks 5-8) CO(2) inhalation exposures. Results showed no significant modifications of behavioral responses to urine, but there were significant changes of both cell number and thickness of the VNO epithelium. Moreover, the findings indicated a selectively dose-dependent effect of CO(2), and further research could use other gases in the same manner for comparison.


Asunto(s)
Dióxido de Carbono/administración & dosificación , Dióxido de Carbono/farmacología , Exposición por Inhalación/análisis , Mucosa Olfatoria/efectos de los fármacos , Órgano Vomeronasal/efectos de los fármacos , Animales , Dióxido de Carbono/toxicidad , Recuento de Células , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Mucosa Olfatoria/citología , Factores de Tiempo , Órgano Vomeronasal/citología
13.
Sci Rep ; 10(1): 19943, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203885

RESUMEN

Behaviors are shaped by hormones, which may act either by changing brain circuits or by modifying sensory detection of relevant cues. Pup-directed behaviors have been previously shown to change via action of hormones at the brain level. Here, we investigated hormonal control of pup-induced activity in the vomeronasal organ, an olfactory sensory structure involved in the detection of non-volatile chemosignals. Vomeronasal activity decreases as males switch from a pup-aggressive state to a non-aggressive parenting state, after they socially contact a female. RNA sequencing, qPCR, and in situ hybridization were used to identify expression, in the vomeronasal sensory epithelium, of candidate GPCR hormone receptors chosen by in silico analyses and educated guesses. After identifying that oxytocin and vasopressin receptors are expressed in the vomeronasal organ, we injected the corresponding hormones in mice and showed that oxytocin administration reduced both pup-induced vomeronasal activity and aggressive behavior. Conversely, injection of an oxytocin receptor antagonist in female-primed male animals, which normally exhibit reduced vomeronasal activity, significantly increased the number of active vomeronasal neurons. These data link oxytocin to the modulation of olfactory sensory activity, providing a possible mechanism for changes in male behavior after social experience with females.


Asunto(s)
Agresión/fisiología , Biomarcadores/análisis , Oxitócicos/farmacología , Oxitocina/farmacología , Receptores de Oxitocina/metabolismo , Órgano Vomeronasal/fisiología , Agresión/efectos de los fármacos , Animales , Animales Recién Nacidos , Femenino , Masculino , Ratones , Oxitócicos/administración & dosificación , Oxitocina/administración & dosificación , RNA-Seq , Órgano Vomeronasal/efectos de los fármacos
14.
Am J Physiol Lung Cell Mol Physiol ; 297(6): L1073-81, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19801453

RESUMEN

Asthma needs continuous treatment often for years. In humans, some drugs are administered via aerosol, therefore they come in contact with both respiratory and olfactory mucosa. We explored the possibility that antiasthma corticosteroid treatment could influence the olfactory function by passage through the nose. A group of mice was exposed twice daily for 42 days to fluticasone propionate aerosol and was compared with a control group. Olfactory behavior, respiratory mechanics, histology, and immunoreactivity in the olfactory system were assessed. Fluticasone-treated mice were slower in retrieving a piece of hidden food, but both groups were similarly fast when the food was visible. When a clearly detectable odor was present in the environment, all mice behaved in a similar way. Respiratory mechanics indices were similar in all mice except for the viscose resistance, which was reduced in fluticasone-treated mice. Olfactory mucosa of fluticasone-treated mice was thicker than that of controls. Slight but consistent differences in staining were present for Olfactory Marker Protein but not for other proteins. A mild impairment of olfactory function is present in mice chronically treated with fluticasone aerosol, apparently accompanied by slight modifications of the olfactory receptor cells, and suggests monitoring of olfactory function modifications in long-term steroid users.


Asunto(s)
Aerosoles/administración & dosificación , Aerosoles/farmacología , Bulbo Olfatorio/efectos de los fármacos , Esteroides/administración & dosificación , Esteroides/farmacología , Androstadienos/administración & dosificación , Androstadienos/farmacología , Animales , Conducta Animal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Femenino , Fluticasona , Inmunohistoquímica , Ratones , Bulbo Olfatorio/patología , Mucosa Olfatoria/efectos de los fármacos , Mucosa Olfatoria/patología , Tamaño de los Órganos/efectos de los fármacos , Mecánica Respiratoria/efectos de los fármacos , Órgano Vomeronasal/efectos de los fármacos , Órgano Vomeronasal/patología
15.
J Neurochem ; 110(4): 1263-75, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19519663

RESUMEN

In mouse, sexual, aggressive, and social behaviors are influenced by G protein-coupled vomeronasal receptor signaling in two distinct subsets of vomeronasal sensory neurons (VSNs): apical and basal VSNs. In addition, G protein-signaling by these receptors inhibits developmental death of VSNs. We show that cells of the vomeronasal nerve express the retinoic acid (RA) synthesizing enzyme retinal dehydrogenase 2. Analyses of transgenic mice with VSNs expressing a dominant-negative RA receptor indicate that basal VSNs differ from apical VSNs with regard to a transient wave of RA-regulated and caspase 3-mediated cell death during the first postnatal week. Analyses of G-protein subunit deficient mice indicate that RA and vomeronasal receptor signaling combine to regulate postnatal expression of Kirrel-2 (Kin of IRRE-like), a cell adhesion molecule regulating neural activity-dependent formation of precise axonal projections in the main olfactory system. Collectively, the results indicate a novel connection between pre-synaptic RA receptor signaling and neural activity-dependent events that together regulate neuronal survival and maintenance of synaptic contacts.


Asunto(s)
Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Tretinoina/metabolismo , Órgano Vomeronasal/embriología , Órgano Vomeronasal/metabolismo , Animales , Caspasa 3/efectos de los fármacos , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/fisiopatología , Degeneración Nerviosa/prevención & control , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/embriología , Vías Nerviosas/metabolismo , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Neuronas/efectos de los fármacos , Vías Olfatorias/efectos de los fármacos , Vías Olfatorias/embriología , Vías Olfatorias/metabolismo , Feromonas/fisiología , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Acoplados a Proteínas G/genética , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Retinal-Deshidrogenasa/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Tretinoina/farmacología , Órgano Vomeronasal/efectos de los fármacos
16.
Hum Brain Mapp ; 30(9): 3057-65, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19235878

RESUMEN

Because humans seem to lack neuronal elements in the vomeronasal organ (VNO), many scientists believe that humans are unable to detect pheromones. This view is challenged by the observations that pheromone-like compounds, 4,16-androstadien-3-one (AND) and oestra-1,3,5(10),16-tetraen-3-ol (EST), activate the human hypothalamus. Whether these activations are mediated via VNO, venous blood or olfactory mucosa is presently unknown. To disentangle between the three alternatives, we conducted activation studies in 12 heterosexual males with chronic anosmia because of nasal polyps. Polyposis hampers signal transduction via the olfactory mucosa without interfering with the VNO or the pheromone transport via venous blood. Twelve healthy men served as controls. Subjects were investigated with (15)O-H(2)O PET during smelling of odorless air (base line), AND, EST, vanillin, and acetone. Smelling of EST activated the anterior hypothalamus in controls, but not anosmics. Neither did the anosmics display cerebral activations with AND or vanillin. Clusters were detected only with the trigeminal odorant acetone, and only in the thalamus, brainstem, the anterior cingulate, and parts of the sensorimotor cortex. Direct comparisons with controls (controls-anosmics) showed clusters in the olfactory cortex (amygdala and piriform cortex) with AND, vanillin, and acetone, and in the anterior hypothalamus with EST. The observed absence of olfactory and presence of trigeminal activations in anosmics indicates that polyposis primarily affected signal processing via the olfactory mucosa. The anosmics inability to activate the hypothalamus with EST, therefore, suggests that in healthy men EST signals were primarily transmitted via the olfactory system.


Asunto(s)
Trastornos del Olfato/fisiopatología , Feromonas Humanas/fisiología , Transducción de Señal/fisiología , Olfato/fisiología , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Mapeo Encefálico , Fenómenos Fisiológicos Cardiovasculares/efectos de los fármacos , Estrógenos/farmacología , Estrógenos/fisiología , Humanos , Hipotálamo/diagnóstico por imagen , Hipotálamo/efectos de los fármacos , Hipotálamo/fisiología , Masculino , Mucosa Nasal/efectos de los fármacos , Mucosa Nasal/fisiología , Pólipos Nasales/complicaciones , Odorantes , Trastornos del Olfato/etiología , Vías Olfatorias/diagnóstico por imagen , Vías Olfatorias/efectos de los fármacos , Vías Olfatorias/fisiología , Feromonas Humanas/farmacología , Tomografía de Emisión de Positrones , Olfato/efectos de los fármacos , Órgano Vomeronasal/efectos de los fármacos , Órgano Vomeronasal/fisiología , Adulto Joven
17.
Trends Neurosci ; 29(1): 1-7, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16271402

RESUMEN

Many academics, clinicians and lay readers of science incorrectly assume that vomeronasal processing is equivalent to pheromone processing. We review the abundant data concerning the roles of both the olfactory and the vomeronasal systems in the processing of both pheromones and other odorants, demonstrating that this "equivalency hypothesis" is untenable. This conclusion has important implications for the design and interpretation of experiments examining vomeronasal and olfactory system function. We describe some of the problems that arise from assuming that this equivalency holds. Two alternative hypotheses have been offered, but the available data do not enable us to accept or reject either one. Perhaps no single functional description can adequately characterize the role of the vomeronasal system.


Asunto(s)
Células Quimiorreceptoras/efectos de los fármacos , Células Quimiorreceptoras/fisiología , Feromonas/administración & dosificación , Olfato/fisiología , Vertebrados/fisiología , Órgano Vomeronasal/efectos de los fármacos , Órgano Vomeronasal/fisiología , Animales , Especificidad de Órganos/fisiología , Olfato/efectos de los fármacos , Órgano Vomeronasal/inervación
18.
Nat Neurosci ; 6(5): 519-25, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12665798

RESUMEN

It is commonly assumed that odorants are detected by the main olfactory epithelium (MOE) and pheromones are sensed through the vomeronasal organ (VNO). The complete loss of MOE-mediated olfaction in type-3 adenylyl cyclase knockout mice (AC3-/-) allowed us to examine chemosensory functions of the VNO in the absence of signaling through the MOE. Here we report that AC3-/- mice are able to detect certain volatile odorants via the VNO. These same odorants elicited electro-olfactogram transients in the VNO and MOE of wild-type mice, but only VNO responses in AC3-/- mice. This indicates that some odorants are detected through an AC3-independent pathway in the VNO.


Asunto(s)
Odorantes , Mucosa Olfatoria/fisiología , Transducción de Señal/fisiología , Olfato/fisiología , Órgano Vomeronasal/fisiología , Adenilil Ciclasas/deficiencia , Adenilil Ciclasas/genética , Animales , Isoenzimas/deficiencia , Isoenzimas/genética , Ratones , Ratones Noqueados , Mucosa Olfatoria/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Olfato/efectos de los fármacos , Órgano Vomeronasal/efectos de los fármacos
19.
Sci Rep ; 8(1): 8490, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29855521

RESUMEN

In most mammals, the vomeronasal system has a pivotal role in mediating socio-sexual behaviours. The vomeronasal organ senses pheromones through the activation of specific receptors. Pheromone binding to cognate receptors activates Ca-influx via the gating of a cation channel that generates membrane depolarisation. The ex-vivo activation of vomeronasal neurons (VSNs) by pheromonal stimuli has been largely investigated by electrophysiological and imaging techniques; however, few studies have been carried out to determine the physiological responses of VSNs, in-vivo. By tracking the phosphorylation of S6 ribosomal protein as a marker of neuronal activity, we show that S6 becomes phosphorylated (pS6) in mouse VSNs stimulated by intraspecific and heterospecific pheromonal cues. We observed that female scent induces pS6 immunoreactivity in the apical VSNs of male vomeronasal epithelium, whereas male cues stimulate S6 phosphorylation in both the basal and apical VSNs of females. We also show that this dimorphic pattern of pS6 immunoreactivity is reproduced when heterospecific stimuli are used. Moreover, we found that a consistent proportion of VSNs is activated by both heterospecific and intraspecific pheromones. Additionally, we have evidence of adaptive responses to S6 phosphorylation when stimulation with cues of the same and opposite sex and of different species is sustained.


Asunto(s)
Neuronas/metabolismo , Feromonas/farmacología , Órgano Vomeronasal/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Cricetinae , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Neuronas/citología , Neuronas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Ratas , Proteína S6 Ribosómica/metabolismo , Suelo/química , Órgano Vomeronasal/citología , Órgano Vomeronasal/metabolismo
20.
Physiol Behav ; 91(1): 1-8, 2007 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-17316716

RESUMEN

This study investigated the effects of gonadal steroids on sexual motivation in male Syrian hamsters, using partner preference as a model. Male hamsters were assigned to 5 groups: control (n=4), Intact-->Orchx (n=8), Orchx-->Orchx+T (n=7), olfactory bulbectomy (BulbX, n=5), and vomeronasal organ lesion (VnoX, n=8). Each male was tested for partner preference before and after sexual experience. Unlike rats, sexually-inexperienced gonad-intact male hamsters preferred the receptive female to a stimulus male. However, sexual experience did not enhance preference for the stimulus female. Castration (Orchx) reduced sexual motivation: Orchx males showed no significant preference for the stimulus female. Subsequently, intact males were castrated (Intact-->Orchx) and Orchx males received a testosterone implant (Orchx-->Orchx+T) to determine the time course of gonadal hormones on partner preference and mating behavior. Partner preference changed significantly in both groups within 6 weeks. In Intact-->Orchx males, preference for the stimulus female decreased while Orchx-->Orchx+T males increased their preference for the stimulus female. However, significant changes in mating behavior preceded the alterations in partner preference. Chemosensory cues are also important for partner preference. After BulbX, preference for the stimulus female significantly decreased. However, VnoX failed to block partner preference. These results show that partner preference may be even more dependent on testosterone than is sexual behavior. Furthermore, while chemosensory cues are essential for sexual motivation, the vomeronasal organ is not required for partner preference.


Asunto(s)
Señales (Psicología) , Conducta Sexual Animal/efectos de los fármacos , Conducta Sexual Animal/fisiología , Olfato/fisiología , Esteroides/fisiología , Animales , Copulación/efectos de los fármacos , Copulación/fisiología , Cricetinae , Femenino , Masculino , Mesocricetus , Motivación , Bulbo Olfatorio/fisiología , Orquiectomía , Ovariectomía , Testosterona/farmacología , Órgano Vomeronasal/efectos de los fármacos , Órgano Vomeronasal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA