Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nature ; 594(7862): 223-226, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34040260

RESUMEN

The second integument of the angiosperm ovule is unique among seed plants, with developmental genetics that are distinct from those of the inner integument1. Understanding how the second integument should be compared to structures in other seed plants is therefore crucial to resolving the long-standing question of the origin of angiosperms2-6. Attention has focused on several extinct plants with recurved cupules that are reminiscent of the anatropous organization of the basic bitegmic ovules of angiosperms1-6, but interpretations have been hampered by inadequate information on the relevant fossils. Here we describe abundant exceptionally well-preserved recurved cupules from a newly discovered silicified peat dating to the Early Cretaceous epoch (around 125.6 million years ago) in Inner Mongolia, China. The new material, combined with re-examination of potentially related fossils, indicates that the recurved cupules of several groups of Mesozoic plants are all fundamentally comparable, and that their structure is consistent with the recurved form and development of the second integument in the bitegmic anatropous ovules of angiosperms. Recognition of these angiosperm relatives (angiophytes) provides a partial answer to the question of angiosperm origins, will help to focus future work on seed plant phylogenetics and has important implications for ideas on the origin of the angiosperm carpel.


Asunto(s)
Evolución Biológica , Extinción Biológica , Fósiles , Integumento Común/anatomía & histología , Magnoliopsida/anatomía & histología , Óvulo Vegetal/anatomía & histología , China , Historia Antigua , Magnoliopsida/ultraestructura , Mongolia , Óvulo Vegetal/ultraestructura , Filogenia
2.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884791

RESUMEN

In seed-bearing plants, the ovule ("small egg") is the organ within the gynoecium that develops into a seed after fertilization. The gynoecium located in the inner compartment of the flower turns into a fruit. The number of ovules in the ovary determines the upper limit or the potential of seed number per fruit in plants, greatly affecting the final seed yield. Ovule number is an important adaptive characteristic for plant evolution and an agronomic trait for crop improvement. Therefore, understanding the mechanism and pathways of ovule number regulation becomes a significant research aspect in plant science. This review summarizes the ovule number regulators and their regulatory mechanisms and pathways. Specially, an integrated molecular network for ovule number regulation is constructed, in which phytohormones played a central role, followed by transcription factors, enzymes, other protein and micro-RNA. Of them, AUX, BR and CK are positive regulator of ovule number, whereas GA acts negatively on it. Interestingly, many ovule number regulators have conserved functions across several plant taxa, which should be the targets of genetic improvement via breeding or gene editing. Many ovule number regulators identified to date are involved in the diverse biological process, such as ovule primordia formation, ovule initiation, patterning, and morphogenesis. The relations between ovule number and related characteristics/traits especially of gynoecium/fruit size, ovule fertility, and final seed number, as well as upcoming research questions, are also discussed. In summary, this review provides a general overview of the present finding in ovule number regulation, which represents a more comprehensive and in-depth cognition on it.


Asunto(s)
Arabidopsis/anatomía & histología , Óvulo Vegetal/anatomía & histología , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Óvulo Vegetal/genética , Reguladores del Crecimiento de las Plantas/genética , Semillas/citología , Factores de Transcripción/metabolismo
3.
BMC Evol Biol ; 17(1): 149, 2017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28651518

RESUMEN

BACKGROUND: The earliest seed plants in the Late Devonian (Famennian) are abundant and well known. However, most of them lack information regarding the frond system and reconstruction. Cosmosperma polyloba represents the first Devonian ovule in China and East Asia, and its cupules, isolated synangiate pollen organs and pinnules have been studied in the preceding years. RESULTS: New fossils of Cosmosperma were obtained from the type locality, i.e. the Leigutai Member of the Wutong Formation in Fanwan Village, Changxing County, Zhejiang Province, South China. The collection illustrates stems and fronds extensively covered in prickles, as well as fertile portions including uniovulate cupules and anisotomous branches bearing synangiate pollen organs. The stems are unbranched and bear fronds helically. Fronds are dimorphic, displaying bifurcate and trifurcate types, with the latter possibly connected to fertile rachises terminated by pollen organs. Tertiary and quaternary rachises possessing pinnules are arranged alternately (pinnately). The cupule is uniovulate and the ovule has four linear integumentary lobes fused in basal 1/3. The striations on the stems and rachises may indicate a Sparganum-type cortex. CONCLUSIONS: Cosmosperma further demonstrates diversification of frond branching patterns in the earliest seed plants. The less-fused cupule and integument of this plant are considered primitive among Devonian spermatophytes with uniovulate cupules. We tentatively reconstructed Cosmosperma with an upright, semi-self-supporting habit, and the prickles along stems and frond rachises were interpreted as characteristics facilitating supporting rather than defensive structures.


Asunto(s)
Evolución Biológica , Plantas/genética , Asia Oriental , Fósiles , Óvulo Vegetal/anatomía & histología , Óvulo Vegetal/fisiología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Fenómenos Fisiológicos de las Plantas , Tallos de la Planta/anatomía & histología , Plantas/anatomía & histología , Plantas/clasificación , Polen/anatomía & histología , Polen/fisiología
4.
Ann Bot ; 120(4): 529-538, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28961769

RESUMEN

Background and Aims: Cellular morphogenesis in land plants and brown algae is typically a slow process involving growth established by an interplay of turgor pressure and cell wall rigidity. However, a recent study showed that zygotes of the brown alga Dictyota dichotoma undergo a rapid shape change from a sphere to an elongated spheroid in about 90 s, establishing the first body axis. Methods: Using a combination of pharmacology, staining techniques, membrane depolarization and microscopy techniques (brightfield, transmission electron microscopy and confocal laser scanning microscopy), egg activation and the shape change of the egg cell of D. dichotoma was studied. Key Results: It was established that elongation of the zygote does not involve growth, i.e. a positive change in size. The elongation is dependent on F-actin and myosin but independent of microtubules. Secretion was also found to be necessary for elongation after addition of brefeldin A. Moreover, a temporal correlation between extracellular matrix secretion and elongation was observed. Ionomycin and high potassium seawater are capable of triggering the onset of elongation, suggesting a role for membrane depolarization and calcium influx in the signalling mechanism. The elongated cells are shorter in the presence of ionomycin, suggesting a role for calcium in elongation. Conclusions: A model is proposed in which the fast elongation of the fertilized egg in Dictyota is accomplished by a force generated by F-actin and myosin, regulated by cytoplasmic calcium concentrations and by secretion during elongation lowering the antagonistic force. The finding of early extracellular matrix secretion, membrane depolarization and ionophore-triggered egg activation suggest significant differences in the mechanism of egg activation signalling between D. dichotoma and the oogamous brown algal model system Fucus .


Asunto(s)
Actinas/fisiología , Miosinas/fisiología , Óvulo Vegetal/fisiología , Phaeophyceae/fisiología , Semillas/fisiología , Microscopía Confocal , Microscopía Electrónica de Transmisión , Óvulo Vegetal/anatomía & histología , Óvulo Vegetal/ultraestructura , Phaeophyceae/metabolismo , Phaeophyceae/ultraestructura , Semillas/anatomía & histología , Semillas/ultraestructura
5.
New Phytol ; 210(4): 1418-29, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26840646

RESUMEN

Corystosperms, a key extinct group of Late Permian to Early Cretaceous plants, are important for understanding seed plant phylogeny, including the evolution of the angiosperm carpel and anatropous bitegmic ovule. Here, we describe a new species of corystosperm seed-bearing organ, Umkomasia mongolica sp. nov., based on hundreds of three-dimensionally preserved mesofossils from the Early Cretaceous of Mongolia. Individual seed-bearing units of U. mongolica consist of a bract subtending an axis that bifurcates, with each fork (cupule stalk) bearing a cupule near the tip. Each cupule is formed by the strongly reflexed cupule stalk and two lateral flaps that partially enclose an erect seed. The seed is borne at, or close to, the tip of the reflexed cupule stalk, with the micropyle oriented towards the stalk base. The corystosperm cupule is generally interpreted as a modified leaf that bears a seed on its abaxial surface. However, U. mongolica suggests that an earlier interpretation, in which the seed is borne directly on an axis (shoot), is equally likely. The 'axial' interpretation suggests a possible relationship of corystosperms to Ginkgo. It also suggests that the cupules of corystosperms may be less distinct from those of Caytonia than has previously been supposed.


Asunto(s)
Helechos/anatomía & histología , Fósiles/anatomía & histología , Mongolia , Óvulo Vegetal/anatomía & histología , Hojas de la Planta/anatomía & histología , Semillas/anatomía & histología
6.
New Phytol ; 208(2): 584-95, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25991552

RESUMEN

While gymnosperm ovules have one integument, in most angiosperms two integuments surround the ovules. Unitegmic ovules have arisen independently several times during the evolution of angiosperms, but the ultimate genetic cause of the presence of a single integument remains elusive. We compared species of the genus Prunus that have different numbers of integuments: bitegmic species, such as Prunus armeniaca (apricot) and Prunus persica (peach), and unitegmic species, such as Prunus incisa, analyzing the expression pattern of genes that are involved in integument development in Arabidopsis thaliana: INNER NO OUTER (INO), ABERRANT TESTA SHAPE (ATS) and ETTIN (ETT). Bitegmic and unitegmic species showed similar INO expression patterns, indicative of the conservation of an outer integument. However, expression of ETT, which occurs in the boundary of the outer and inner integuments, was altered in unitegmic ovules, which showed lack of ETT expression. These results strongly suggest that the presence of a single integument could be attributable to the amalgamation of two integuments and support the role of ETT in the fusion of the outer and inner integuments in unitegmic ovules, a situation that could be widespread in other unitegmic species of angiosperms.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Prunus/crecimiento & desarrollo , Prunus/genética , Teorema de Bayes , Regulación del Desarrollo de la Expresión Génica , Genes de Plantas , Hibridación in Situ , Óvulo Vegetal/anatomía & histología , Óvulo Vegetal/genética , Óvulo Vegetal/crecimiento & desarrollo , Filogenia , Proteínas de Plantas/metabolismo , Haz Vascular de Plantas/metabolismo , Especificidad de la Especie
7.
Ann Bot ; 114(8): 1769-78, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25326647

RESUMEN

BACKGROUND AND AIMS: Gynodioecy, the co-occurrence of female and hermaphroditic individuals, is thought to be an intermediate step between hermaphroditism and separate sexes, a major transition in flowering plants. Because retaining females in a population requires that they have increased seed fitness (to compensate for the lack of pollen fitness), factors that affect seed fitness are of great importance to the evolution of this mating system and have often been studied. However, factors negatively affecting female fitness are equally important and have been largely neglected. One such factor stems from female flowers being less attractive to insects than hermaphrodite flowers, thereby decreasing their relative fitness. METHODS: To test the severity and consequences of this type of pollinator discrimination in Geranium maculatum, experimental populations with the range of sex ratios observed in nature were created, ranging from 13 % to 42 % females. Pollinators were observed in order to measure the strength of discrimination, and pollen deposition and seed production of both sexes were measured to determine the fitness consequences of this discrimination. Additionally a comparison was made across the sex ratios to determine whether discrimination was frequency-dependent. KEY RESULTS: It was found that female flowers, on average, were visited at half of the rate of hermaphrodite flowers, which decreased their pollen receipt and seed production. Additionally, females were most discriminated against when rare, due to both changes in the pollinators' behaviour and a shift in pollinator composition. CONCLUSIONS: The results suggest that pollinator discrimination negatively affects females' relative fitness when they are rare. Thus, the initial spread of females in a population, the first step in the evolution of gynodioecy, may be made more difficult due to pollinator discrimination.


Asunto(s)
Abejas/fisiología , Geranium/fisiología , Óvulo Vegetal/fisiología , Polinización/fisiología , Animales , Geranium/anatomía & histología , Óvulo Vegetal/anatomía & histología , Polen/fisiología , Reproducción , Razón de Masculinidad
8.
Ann Bot ; 114(1): 167-77, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24854170

RESUMEN

BACKGROUND AND AIMS: Adaptive explanations for variation in sex allocation centre on variation in resource status and variation in the mating environment. The latter can occur when dichogamy causes siring opportunity to vary across the flowering season. In this study, it is hypothesized that the widespread tendency towards declining fruit-set from first to last flowers on plants can similarly lead to a varying mating environment by causing a temporal shift in the quality (not quantity) of siring opportunities. METHODS: A numerical model was developed to examine the effects of declining fruit-set on the expected male versus female reproductive success (functional gender) of first and last flowers on plants, and of early- and late-flowering plants. Within- and among-plant temporal variation in pollen production, ovule production and fruit-set in 70 Brassica rapa plants was then characterized to determine if trends in male and female investment mirror expected trends in functional gender. KEY RESULTS: Under a wide range of model conditions, functional femaleness decreased sharply in the last flowers on plants, and increased from early- to late-flowering plants in the population. In B. rapa, pollen production decreased more rapidly than ovule production from first to last flowers, leading to a within-plant increase in phenotypic femaleness. Among plants, ovule production decreased from early- to late-flowering plants, causing a temporal decrease in phenotypic femaleness. CONCLUSIONS: The numerical model confirmed that declining fruit-set can drive temporal variation in functional gender, especially among plants. The discrepancy between observed trends in phenotypic gender in B. rapa and expected functional gender predicted by the numerical model does not rule out the possibility that male reproductive success decreases with later flowering onset. If so, plants may experience selection for early flowering through male fitness.


Asunto(s)
Brassica rapa/fisiología , Flores/fisiología , Brassica rapa/anatomía & histología , Flores/anatomía & histología , Frutas/anatomía & histología , Frutas/fisiología , Modelos Teóricos , Óvulo Vegetal/anatomía & histología , Óvulo Vegetal/fisiología , Fenotipo , Polen/anatomía & histología , Polen/fisiología , Reproducción , Factores de Tiempo
9.
Ann Bot ; 114(5): 945-59, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25139428

RESUMEN

BACKGROUND AND AIMS: Icacinaceae sensu stricto consist of a group of early branching lineages of lamiids whose relationships are not yet resolved and whose detailed floral morphology is poorly known. The most bizarre flowers occur in Emmotum: the gynoecium has three locules on one side and none on the other. It has been interpreted as consisting of three fertile and two sterile carpels or of one fertile carpel with two longitudinal septa and two sterile carpels. This study focused primarily on the outer and inner morphology of the gynoecium to resolve its disputed structure, and ovule structure was also studied. In addition, the perianth and androecium were investigated. METHODS: Flowers and floral buds of two Emmotum species, E. harleyi and E. nitens, were collected and fixed in the field, and then studied by scanning electron microscopy. Microtome section series were used to reconstruct their morphology. KEY RESULTS: The gynoecium in Emmotum was confirmed as pentamerous, consisting of three fertile and two sterile carpels. Each of the three locules behaves as the single locule in other Icacinaceae, with the placenta of the two ovules being identical, which shows that three fertile carpels are present. In addition, it was found that the ovules are bitegmic, which is almost unique in lamiids, and that the stamens have monosporangiate thecae, which also occurs in the closely related family Oncothecaceae, but is not known from any other Icacinaceae sensu lato so far. CONCLUSIONS: The flowers of Emmotum have unique characters at different evolutionary levels: the pseudotrimerous gynoecium at angiosperm level, the bitegmic ovules at lamiid level and the monosporangiate thecae at family or family group level. However, in general, the floral morphology of Emmotum fits well in Icacinaceae. More comparative research on flower structure is necessary in Icacinaceae and other early branching lineages of lamiids to better understand the initial evolution of this large lineage of asterids.


Asunto(s)
Evolución Biológica , Flores/anatomía & histología , Magnoliopsida/anatomía & histología , Flores/genética , Magnoliopsida/genética , Microscopía Electrónica de Rastreo , Óvulo Vegetal/anatomía & histología , Óvulo Vegetal/genética , Filogenia
10.
Ann Bot ; 114(7): 1483-95, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25006179

RESUMEN

BACKGROUND AND AIMS: Sexual dimorphism, at both the flower and plant level, is widespread in the palm family (Arecaceae), in contrast to the situation in angiosperms as a whole. The tribe Chamaedoreeae is of special interest for studies of the evolution of sexual expression since dioecy appears to have evolved independently twice in this group from a monoecious ancestor. In order to understand the underlying evolutionary pathways, it is important to obtain detailed information on flower structure and development in each of the main clades. METHODS: Dissection and light and scanning electron microscopy were performed on developing flowers of Gaussia attenuata, a neotropical species belonging to one of the three monoecious genera of the tribe. KEY RESULTS: Like species of the other monoecious genera of the Chamaedoreeae (namely Hyophorbe and Synechanthus), G. attenuata produces a bisexual flower cluster known as an acervulus, consisting of a row of male flowers with a basal female flower. Whereas the sterile androecium of female flowers terminated its development at an early stage of floral ontogeny, the pistillode of male flowers was large in size but with no recognizable ovule, developing for a longer period of time. Conspicuous nectary differentiation in the pistillode suggested a possible role in pollinator attraction. CONCLUSIONS: Gaussia attenuata displays a number of floral characters that are likely to be ancestral to the tribe, notably the acervulus flower cluster, which is conserved in the other monoecious genera and also (albeit in a unisexual male form) in the dioecious genera (Wendlandiella and a few species of Chamaedorea). Comparison with earlier data from other genera suggests that large nectariferous pistillodes and early arrest in staminode development might also be regarded as ancestral characters in this tribe.


Asunto(s)
Arecaceae/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Arecaceae/anatomía & histología , Arecaceae/genética , Evolución Biológica , Flores/anatomía & histología , Flores/genética , Microscopía Electrónica de Rastreo , Óvulo Vegetal/anatomía & histología , Óvulo Vegetal/genética , Óvulo Vegetal/crecimiento & desarrollo , Filogenia , Reproducción , Especificidad de la Especie
11.
Ann Bot ; 111(5): 969-85, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23486341

RESUMEN

BACKGROUND AND AIMS: Malpighiales are one of the largest angiosperm orders and have undergone radical systematic restructuring based on molecular phylogenetic studies. The clade has been recalcitrant to molecular phylogenetic reconstruction, but has become much more resolved at the suprafamilial level. It now contains so many newly identified clades that there is an urgent need for comparative studies to understand their structure, biology and evolution. This is especially true because the order contains a disproportionally large diversity of rain forest species and includes numerous agriculturally important plants. This study is a first broad systematic step in this endeavour. It focuses on a comparative structural overview of the flowers across all recently identified suprafamilial clades of Malpighiales, and points towards areas that desperately need attention. METHODS: The phylogenetic comparative analysis of floral structure for the order is based on our previously published studies on four suprafamilial clades of Malpighiales, including also four related rosid orders (Celastrales, Crossosomatales, Cucurbitales, Oxalidales). In addition, the results are compiled from a survey of over 3000 publications on macrosystematics, floral structure and embryology across all orders of the core eudicots. KEY RESULTS: Most new suprafamilial clades within Malpighiales are well supported by floral structural features. Inner morphological structures of the gynoecium (i.e. stigmatic lobes, inner shape of the locules, placentation, presence of obturators) and ovules (i.e. structure of the nucellus, thickness of the integuments, presence of vascular bundles in the integuments, presence of an endothelium in the inner integument) appear to be especially suitable for characterizing suprafamilial clades within Malpighiales. CONCLUSIONS: Although the current phylogenetic reconstruction of Malpighiales is much improved compared with earlier versions, it is incomplete, and further focused phylogenetic and morphological studies are needed. Once all major subclades of Malpighiales are elucidated, more in-depth studies on promising structural features can be conducted. In addition, once the phylogenetic tree of Malpighiales, including closely related orders, is more fully resolved, character optimization studies will be possible to reconstruct evolution of structural and biological features within the order.


Asunto(s)
Flores/anatomía & histología , Flores/fisiología , Malpighiaceae/anatomía & histología , Filogenia , Óvulo Vegetal/anatomía & histología , Reproducción
12.
BMC Plant Biol ; 12: 82, 2012 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-22676293

RESUMEN

BACKGROUND: Breeding programs for the water lotus (Nelumbo nucifera) are hampered by an inability to account for variation in seed set associated with crosses between different cultivars. We studied seed set in two reciprocal crosses between lotus cultivars ('Guili' × 'Aijiangnan' and 'Molingqiuse' × 'Qinhuaiyanzhi') to obtain insights into factors that govern fecundity in these experimental hybrids. Pollen viability, stigma receptivity and embryo development were compared for each hybrid and reciprocal cross. RESULTS: Pollen viability of the individual cultivars ranged from 4.1% to 20.2%, with the highest level (>11.9%) for all cultivars observed from the earliest collected grains (05:00-06:00 a.m.). Stigmatic pollen germination peaked at 4 h after pollination and varied from 4.8 to 60.6 grains per stigma among the crosses. Production of normal embryos ranged from 7.6% to 58.8% at 1 d after pollination and from 0 to 25% by 11 d after pollination. Seed set in crosses (0.2-23.3%) was generally lower than in open-pollinated plants (8.4-26.5%). Similar to the germination results, seed set was substantially reduced in both reciprocal crosses. CONCLUSIONS: These results suggested that poor pollen fertility, low stigma receptivity, and embryo abortion were responsible for the failure of the crosses 'Molingqiuse' × 'Qinhuaiyanzhi', 'Qinhuaiyanzhi' × 'Molingqiuse', and 'Aijiangnan' × 'Guili'.


Asunto(s)
Cruzamientos Genéticos , Nelumbo/embriología , Óvulo Vegetal/fisiología , Cruzamiento/métodos , Supervivencia Celular , Fertilidad , Germinación , Nelumbo/anatomía & histología , Nelumbo/fisiología , Óvulo Vegetal/anatomía & histología , Óvulo Vegetal/embriología , Polen/fisiología , Polinización , Semillas/embriología , Semillas/fisiología , Especificidad de la Especie
13.
Am J Bot ; 99(9): 1531-40, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22922397

RESUMEN

PREMISE OF THE STUDY: The glossopterids are a group of plants that thrived during a time of global warming similar to what is happening on the Earth today as well as the transition from archaic plant groups to the ancestors of modern groups. The diversity of the glossopterid clade is based on the megasporangiate structures assigned to the group, because the vegetative and pollen-bearing structures vary little. The presence of numerous reproductive genera from a single Upper Permian locality in the central Transantarctic Mountains provides important data on local glossopterid diversity in Antarctica. METHODS: Impression/compression fossils were imaged with a Leica 5000C digital camera on a dissecting microscope or a Fujifilm FinePix S1pro digital camera. KEY RESULTS: Two megasporangiate taxa are described: Scutum leiophyllum, which represents the first confirmed record of the genus in Antarctica, and Lidgettoniopsis ramulus, a new morphology consisting of a pinnate structure with oppositely attached megasporophylls. Plumsteadia ovata specimens indicate that this genus can be larger than previously recorded and illustrate the vegetative surface with a distinct midrib. CONCLUSIONS: The presence of a laminar, multiovulate structure and a pinnate structure at the same site indicates that local-level glossopterid diversity in Antarctica is greater than previously hypothesized. The discovery of a new megasporophyll morphology in Antarctica (confirming the presence of three distinctive morphologies on the continent) shows that Antarctic glossopterid heterogeneity is on a par with other Gondwanan continents. The diversity of the Antarctic landscape reveals that high polar latitudes can sustain a diverse ecosystem during times of global warming.


Asunto(s)
Biodiversidad , Óvulo Vegetal/anatomía & histología , Plantas/anatomía & histología , Plantas/clasificación , Regiones Antárticas , Ecosistema , Fósiles , Factores de Tiempo
14.
Am J Bot ; 99(6): 1069-82, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22623610

RESUMEN

PREMISE OF STUDY: Sequence analyses for Pinaceae have suggested that extant genera diverged in the late Mesozoic. While the fossil record indicates that Pinaceae was highly diverse during the Cretaceous, there are few records of living genera. This description of an anatomically preserved seed cone extends the fossil record for Picea A. Dietrich (Pinaceae) by ∼75 Ma. METHODS: The specimen was collected from the Apple Bay locality of Vancouver Island (Lower Cretaceous, Valanginian) and is described from anatomical sections prepared using cellulose acetate peels. Cladistic analyses of fossil and extant pinaceous seed cones employed parsimony ratchet searches of an anatomical and morphological matrix. KEY RESULTS: This new seed cone has a combination of characters shared only with the genus Picea A. Dietr. and is thus described as Picea burtonii Klymiuk et Stockey sp. nov. Bisaccate pollen attributable to Picea is found in the micropyles of several ovules, corroborating the designation of this cone as an early spruce. Cladistic analyses place P. burtonii with extant Picea and an Oligocene representative of the genus. Furthermore, our analyses indicate that Picea is sister to Cathaya Chun et Kuang, and P. burtonii helps to establish a minimum date for this node in hypotheses of conifer phylogeny. CONCLUSIONS: As an early member of the extant genus Picea, this seed cone extends the fossil record of Picea to the Valanginian Stage of the Early Cretaceous, ca. 136 Ma, thereby resolving a ghost lineage predicted by molecular divergence analyses, and offers new insight into the evolution of Pinaceae.


Asunto(s)
Fósiles , Picea/anatomía & histología , Semillas/anatomía & histología , Evolución Biológica , Colombia Británica , Óvulo Vegetal/anatomía & histología , Filogenia , Picea/clasificación , Picea/genética , Polen/anatomía & histología , Factores de Tiempo
15.
BMC Plant Biol ; 11: 9, 2011 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-21223576

RESUMEN

BACKGROUND: Genetically unreduced (2n) embryo sacs (ES) form in ovules of gametophytic apomicts, the 2n eggs of which develop into embryos parthenogenetically. In many apomicts, 2n ES form precociously during ovule development. Whether meiosis and sexual ES formation also occur precociously in facultative apomicts (capable of apomictic and sexual reproduction) has not been studied. We determined onset timing of meiosis and sexual ES formation for 569 Sorghum bicolor genotypes, many of which produced 2n ES facultatively. RESULTS: Genotype differences for onset timing of meiosis and sexual ES formation, relative to ovule development, were highly significant. A major source of variation in timing of sexual germline development was presence or absence of apomictic ES, which formed from nucellar cells (apospory) in some genotypes. Genotypes that produced these aposporous ES underwent meiosis and sexual ES formation precociously. Aposporous ES formation was most prevalent in subsp. verticilliflorum and in breeding lines of subsp. bicolor. It was uncommon in land races. CONCLUSIONS: The present study adds meiosis and sexual ES formation to floral induction, apomictic ES formation, and parthenogenesis as processes observed to occur precociously in apomictic plants. The temporally diverse nature of these events suggests that an epigenetic memory of the plants' apomixis status exists throughout its life cycle, which triggers, during multiple life cycle phases, temporally distinct processes that accelerate reproduction.


Asunto(s)
Meiosis , Óvulo Vegetal/citología , Óvulo Vegetal/embriología , Semillas/citología , Semillas/embriología , Sorghum/citología , Sorghum/embriología , Análisis de Varianza , Núcleo Celular/metabolismo , Mapeo Cromosómico , Cruzamientos Genéticos , Diploidia , Fluorescencia , Endogamia , Óvulo Vegetal/anatomía & histología , Hojas de la Planta/metabolismo , Reproducción , Tetraploidía
16.
Ann Bot ; 108(5): 847-65, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21852278

RESUMEN

BACKGROUND AND AIMS: Within Chenopodioideae, Atripliceae have been distinguished by two bracteoles enveloping the female flowers/fruits, whereas in other tribes flowers are described as ebracteolate with persistent perianth. Molecular phylogenetic hypotheses suggest 'bracteoles' to be homoplastic. The origin of the bracteoles was explained by successive inflorescence reductions. Flower reduction was used to explain sex determination. Therefore, floral ontogeny was studied to evaluate the nature of the bracteoles and sex determination in Atripliceae. METHODS: Inflorescences of species of Atriplex, Chenopodium, Dysphania and Spinacia oleracea were investigated using light microscopy and scanning electron microscopy. KEY RESULTS: The main axis of the inflorescence is indeterminate with elementary dichasia as lateral units. Flowers develop centripetally, with first the formation of a perianth primordium either from a ring primordium or from five individual tepal primordia fusing post-genitally. Subsequently, five stamen primordia originate, followed by the formation of an annular ovary primordium surrounding a central single ovule. Flowers are either initially hermaphroditic remaining bisexual and/or becoming functionally unisexual at later stages, or initially unisexual. In the studied species of Atriplex, female flowers are strictly female, except in A. hortensis. In Spinacia, female and male flowers are unisexual at all developmental stages. Female flowers of Atriplex and Spinacia are protected by two accrescent fused tepal lobes, whereas the other perianth members are absent. CONCLUSIONS: In Atriplex and Spinacia modified structures around female flowers are not bracteoles, but two opposite accrescent tepal lobes, parts of a perianth persistent on the fruit. Flowers can achieve sexuality through many different combinations; they are initially hermaphroditic, subsequently developing into bisexual or functionally unisexual flowers, with the exception of Spinacia and strictly female flowers in Atriplex, which are unisexual from the earliest developmental stages. There may be a relationship between the formation of an annular perianth primordium and flexibility in floral sex determination.


Asunto(s)
Chenopodiaceae/anatomía & histología , Chenopodiaceae/clasificación , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Atriplex/anatomía & histología , Atriplex/ultraestructura , Chenopodiaceae/crecimiento & desarrollo , Chenopodiaceae/ultraestructura , Chenopodium/anatomía & histología , Chenopodium/ultraestructura , Flores/ultraestructura , Organismos Hermafroditas/crecimiento & desarrollo , México , Óvulo Vegetal/anatomía & histología , Óvulo Vegetal/ultraestructura , Análisis para Determinación del Sexo , Spinacia oleracea/anatomía & histología , Spinacia oleracea/ultraestructura
17.
J Plant Res ; 124(3): 339-47, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21042926

RESUMEN

The tribe Forsythieae comprises 2 genera (Forsythia and Abeliophyllum) and 14 species distributed mostly in the Far East. Although Forsythieae is considered monophyletic, with many symplesiomorphic characters, the phylogenetic status of Abeliophyllum remains controversial. We assessed the phylogenetic relationships of Forsythieae, based on a 3.3-kb plastid fragment (trnL-F region and matK gene) and nuclear internal transcribed spacer (ITS) region DNA sequences. We obtained a highly resolved and strongly supported topology with possible outgroups. The topology of the combined tree was congruent with those of the ITS region and matK gene. Maximum parsimony, maximum likelihood, and Bayesian inference tree analyses for the combined data also yielded identical relationships. Combined sequence data strongly supported the monophyly of Forsythieae and the close relationship between Fontanesia and Jasminum. Oleaceae, not Fontanesia, was found to be a sister group to Forsythieae. Moreover, the genus Abeliophyllum was distinctly independent of Forsythia. Three Forsythia lineages were suggested: (a) ONJ (ovata-nakaii-japonica clade), (b) VGE (viridissima-giraldiana-europaea), and (c) KISS (koreana-intermedia-saxatilis-suspensa). Our results indicated that F. × intermedia is not a hybrid between F. suspensa and F. viridissima, but further studies are needed to determine its taxonomic identity. Furthermore, the diverse fruit shapes in Oleaceae are assumed to be the result of parallelism or convergence.


Asunto(s)
ADN de Plantas/genética , Forsythia/genética , Filogenia , Plastidios/genética , Teorema de Bayes , Núcleo Celular/genética , ADN Espaciador Ribosómico/genética , Evolución Molecular , Forsythia/clasificación , Frutas/anatomía & histología , Genes de Plantas , Óvulo Vegetal/anatomía & histología , Análisis de Secuencia de ADN
18.
Sex Plant Reprod ; 22(4): 229-34, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20033444

RESUMEN

Much of our current understanding of ovule development in flowering pants is derived from genetic and molecular studies performed on Arabidopsis thaliana. Arabidopsis has bitegmic, anatropous ovules, representing both the most common and the putative ancestral state among angiosperms. These studies show that key genetic determinants that act to control morphogenesis during ovule development also play roles in vegetative organ formation, consistent with Goethe's "everything is a leaf" concept. Additionally, the existence of a common set of genetic factors that underlie laminar growth in angiosperms fits well with hypotheses of homology between integuments and leaves. Utilizing Arabidopsis as a reference, researchers are now investigating taxa with varied ovule morphologies to uncover common and diverged mechanisms of ovule development.


Asunto(s)
Evolución Biológica , Óvulo Vegetal/crecimiento & desarrollo , Óvulo Vegetal/genética , Arabidopsis/anatomía & histología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Óvulo Vegetal/anatomía & histología , Óvulo Vegetal/metabolismo
19.
An Acad Bras Cienc ; 81(4): 701-5, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19893896

RESUMEN

Araucaria angustifolia (Bert.) O. Kuntze is a dioecious conifer species native of Brazil. The rare occurrence of monoiceous specimens have been attributed to pathogenic infections or other injuries in adult trees. Here, the morphological characteristics of male and female cones and pollen grains of a monoiceous A. angustifolia are described. Male and female cones and pollen grains presented normal morphology, lacking any sort of injuries or infection and suggesting the existence of further grounds for the occurrence of monoicy in this conifer species.


Asunto(s)
Óvulo Vegetal/anatomía & histología , Polen/anatomía & histología , Tracheophyta/anatomía & histología , Brasil , Polinización , Reproducción/fisiología , Tracheophyta/fisiología
20.
Protoplasma ; 256(4): 1133-1144, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30953173

RESUMEN

We analyzed the gynoecium morphology and anatomy of Tricomaria usillo in young and mature flowers from diverse populations in order to analyze the differentiation of structure and function of the parts of the carpel. We also aimed to find the potential pollinators and associate the morphology of the gynoecium with its role. We compare the characteristics of the gynoecium of T. usillo and discuss the carpel dimorphism with other genera within the Carolus clade in relation with their pollination syndromes. Carpels were processed according to classic techniques for scanning electron microscopy and bright field microscopy. We conducted field observation in different populations of T. usillo and captured the insects that were identified to specific level. The gynoecium of T. usillo shows inter-population and intra-individual variability. Some have three well-developed carpels, while most of them present two posterior carpels with differentiated styles and stigmas and the anterior one with a shorter style with or without stigma. The ovary has three locules with one ovule each. A compitum is formed and all ovules may be fecundated. However, fruits have generally one seed that develops in the anterior locule. Centris brethesi is the potential pollinator. The gynoecium of T. usillo reflects part of the variation in the carpel dimorphism that probably arose in the branch of the Carolus clade, and evolved in diverse ways in the lineages of this group. Tricomaria usillo seems to represent a recent transition towards reaching a stable form of carpel dimorphism and definitive division of labors of the carpels.


Asunto(s)
Flores/anatomía & histología , Malpighiaceae/anatomía & histología , Flores/fisiología , Malpighiaceae/fisiología , Microscopía Electrónica de Rastreo , Óvulo Vegetal/anatomía & histología , Óvulo Vegetal/fisiología , Polinización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA