Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell ; 177(7): 1814-1826.e15, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31178120

RESUMEN

It is unknown whether the activity of the nervous system can be inherited. In Caenorhabditis elegans nematodes, parental responses can transmit heritable small RNAs that regulate gene expression transgenerationally. In this study, we show that a neuronal process can impact the next generations. Neurons-specific synthesis of RDE-4-dependent small RNAs regulates germline amplified endogenous small interfering RNAs (siRNAs) and germline gene expression for multiple generations. Further, the production of small RNAs in neurons controls the chemotaxis behavior of the progeny for at least three generations via the germline Argonaute HRDE-1. Among the targets of these small RNAs, we identified the conserved gene saeg-2, which is transgenerationally downregulated in the germline. Silencing of saeg-2 following neuronal small RNA biogenesis is required for chemotaxis under stress. Thus, we propose a small-RNA-based mechanism for communication of neuronal processes transgenerationally.


Asunto(s)
Conducta Animal , Caenorhabditis elegans , Neuronas/metabolismo , ARN de Helminto , ARN Pequeño no Traducido , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuronas/citología , ARN de Helminto/biosíntesis , ARN de Helminto/genética , ARN Pequeño no Traducido/biosíntesis , ARN Pequeño no Traducido/genética
2.
EMBO J ; 37(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29769402

RESUMEN

Argonaute proteins and their associated small RNAs (sRNAs) are evolutionarily conserved regulators of gene expression. Gametocyte-specific factor 1 (Gtsf1) proteins, characterized by two tandem CHHC zinc fingers and an unstructured C-terminal tail, are conserved in animals and have been shown to interact with Piwi clade Argonautes, thereby assisting their activity. We identified the Caenorhabditis elegans Gtsf1 homolog, named it gtsf-1 and characterized it in the context of the sRNA pathways of C. elegans We report that GTSF-1 is not required for Piwi-mediated gene silencing. Instead, gtsf-1 mutants show a striking depletion of 26G-RNAs, a class of endogenous sRNAs, fully phenocopying rrf-3 mutants. We show, both in vivo and in vitro, that GTSF-1 interacts with RRF-3 via its CHHC zinc fingers. Furthermore, we demonstrate that GTSF-1 is required for the assembly of a larger RRF-3 and DCR-1-containing complex (ERIC), thereby allowing for 26G-RNA generation. We propose that GTSF-1 homologs may act to drive the assembly of larger complexes that act in sRNA production and/or in imposing sRNA-mediated silencing activities.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Silenciador del Gen , ARN de Helminto/biosíntesis , ARN no Traducido/biosíntesis , ARN Polimerasa Dependiente del ARN/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Mutación , ARN de Helminto/genética , ARN no Traducido/genética , ARN Polimerasa Dependiente del ARN/genética
3.
Genome Res ; 29(12): 2104-2116, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31744903

RESUMEN

3' Untranslated regions (3' UTRs) of mRNAs emerged as central regulators of cellular function because they contain important but poorly characterized cis-regulatory elements targeted by a multitude of regulatory factors. The model nematode Caenorhabditis elegans is ideal to study these interactions because it possesses a well-defined 3' UTRome. To improve its annotation, we have used a genome-wide bioinformatics approach to download raw transcriptome data for 1088 transcriptome data sets corresponding to the entire collection of C. elegans trancriptomes from 2015 to 2018 from the Sequence Read Archive at the NCBI. We then extracted and mapped high-quality 3'-UTR data at ultradeep coverage. Here, we describe and release to the community the updated version of the worm 3' UTRome, which we named 3' UTRome v2. This resource contains high-quality 3'-UTR data mapped at single-base ultraresolution for 23,084 3'-UTR isoform variants corresponding to 14,788 protein-coding genes and is updated to the latest release of WormBase. We used this data set to study and probe principles of mRNA cleavage and polyadenylation in C. elegans The worm 3' UTRome v2 represents the most comprehensive and high-resolution 3'-UTR data set available in C. elegans and provides a novel resource to investigate the mRNA cleavage and polyadenylation reaction, 3'-UTR biology, and miRNA targeting in a living organism.


Asunto(s)
Regiones no Traducidas 3' , Caenorhabditis elegans , MicroARNs , Poliadenilación , ARN de Helminto , Secuencias Reguladoras de Ácidos Nucleicos , Transcriptoma , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN de Helminto/biosíntesis , ARN de Helminto/genética
4.
Genome Res ; 27(12): 2001-2014, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29118011

RESUMEN

Programmed DNA elimination is a developmentally regulated process leading to the reproducible loss of specific genomic sequences. DNA elimination occurs in unicellular ciliates and a variety of metazoans, including invertebrates and vertebrates. In metazoa, DNA elimination typically occurs in somatic cells during early development, leaving the germline genome intact. Reference genomes for metazoa that undergo DNA elimination are not available. Here, we generated germline and somatic reference genome sequences of the DNA eliminating pig parasitic nematode Ascaris suum and the horse parasite Parascaris univalens. In addition, we carried out in-depth analyses of DNA elimination in the parasitic nematode of humans, Ascaris lumbricoides, and the parasitic nematode of dogs, Toxocara canis. Our analysis of nematode DNA elimination reveals that in all species, repetitive sequences (that differ among the genera) and germline-expressed genes (approximately 1000-2000 or 5%-10% of the genes) are eliminated. Thirty-five percent of these eliminated genes are conserved among these nematodes, defining a core set of eliminated genes that are preferentially expressed during spermatogenesis. Our analysis supports the view that DNA elimination in nematodes silences germline-expressed genes. Over half of the chromosome break sites are conserved between Ascaris and Parascaris, whereas only 10% are conserved in the more divergent T. canis. Analysis of the chromosomal breakage regions suggests a sequence-independent mechanism for DNA breakage followed by telomere healing, with the formation of more accessible chromatin in the break regions prior to DNA elimination. Our genome assemblies and annotations also provide comprehensive resources for analysis of DNA elimination, parasitology research, and comparative nematode genome and epigenome studies.


Asunto(s)
ADN de Helmintos , Nematodos/genética , Empalme Alternativo , Animales , Ascaridoidea/genética , Ascaris suum/genética , Rotura Cromosómica , Puntos de Rotura del Cromosoma , Evolución Molecular , Femenino , Genoma , Mutación de Línea Germinal , Masculino , Anotación de Secuencia Molecular , ARN de Helminto/biosíntesis , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN , Cromosomas Sexuales , Telómero , Toxocara canis/genética , Transcriptoma
5.
Dev Biol ; 433(2): 448-460, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28757111

RESUMEN

Temporal and spatial characterization of gene expression is a prerequisite for the understanding of cell-, tissue-, and organ-differentiation. In a multifaceted approach to investigate gene expression in the tail plate of the free-living marine flatworm Macrostomum lignano, we performed a posterior-region-specific in situ hybridization screen, RNA sequencing (RNA-seq) of regenerating animals, and functional analyses of selected tail-specific genes. The in situ screen revealed transcripts expressed in the antrum, cement glands, adhesive organs, prostate glands, rhabdite glands, and other tissues. Next we used RNA-seq to characterize temporal expression in the regenerating tail plate revealing a time restricted onset of both adhesive organs and copulatory apparatus regeneration. In addition, we identified three novel previously unannotated genes solely expressed in the regenerating stylet. RNA interference showed that these genes are required for the formation of not only the stylet but the whole male copulatory apparatus. RNAi treated animals lacked the stylet, vesicula granulorum, seminal vesicle, false seminal vesicle, and prostate glands, while the other tissues of the tail plate, such as adhesive organs regenerated normally. In summary, our findings provide a large resource of expression data during homeostasis and regeneration of the morphologically complex tail regeneration and pave the way for a better understanding of organogenesis in M. lignano.


Asunto(s)
Regulación de la Expresión Génica , Genes de Helminto , Proteínas del Helminto/genética , Platelmintos/fisiología , Regeneración/genética , Cola (estructura animal)/fisiología , Animales , Proteínas del Helminto/biosíntesis , Organismos Hermafroditas , Hibridación in Situ , Microvellosidades , Especificidad de Órganos , Platelmintos/genética , Interferencia de ARN , ARN de Helminto/biosíntesis , ARN de Helminto/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Regeneración/fisiología , Transcriptoma , Cicatrización de Heridas/genética
6.
Dev Biol ; 419(2): 250-261, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27634571

RESUMEN

Gene regulatory networks orchestrate the assembly of functionally related cells within a cellular network. Subtle differences often exist among functionally related cells within such networks. How differences are created among cells with similar functions has been difficult to determine due to the complexity of both the gene and the cellular networks. In Caenorhabditis elegans, the DD and VD motor neurons compose a cross-inhibitory, GABAergic network that coordinates dorsal and ventral muscle contractions during locomotion. The Pitx2 homologue, UNC-30, acts as a terminal selector gene to create similarities and the Coup-TFII homologue, UNC-55, is necessary for creating differences between the two motor neuron classes. What is the organizing gene regulatory network responsible for initiating the expression of UNC-55 and thus creating differences between the DD and VD motor neurons? We show that the unc-55 promoter has modules that contain Meis/UNC-62 binding sites. These sites can be subdivided into regions that are capable of activating or repressing UNC-55 expression in different motor neurons. Interestingly, different isoforms of UNC-62 are responsible for the activation and the stabilization of unc-55 transcription. Furthermore, specific isoforms of UNC-62 are required for proper synaptic patterning of the VD motor neurons. Isoform specific regulation of differentiating neurons is a relatively unexplored area of research and presents a mechanism for creating differences among functionally related cells within a network.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/genética , Neuronas GABAérgicas/citología , Proteínas de Homeodominio/fisiología , Neuronas Motoras/citología , Receptores de Superficie Celular/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes/genética , Genes Reporteros , Neuronas Motoras/clasificación , Neurogénesis/genética , Regiones Promotoras Genéticas/genética , Isoformas de Proteínas/fisiología , ARN Guía de Kinetoplastida/genética , ARN de Helminto/biosíntesis , ARN de Helminto/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores de Superficie Celular/biosíntesis , Receptores Citoplasmáticos y Nucleares/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción , Transcripción Genética/genética
7.
Nature ; 465(7301): 1097-101, 2010 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-20543824

RESUMEN

Eukaryotic cells express a wide variety of endogenous small regulatory RNAs that regulate heterochromatin formation, developmental timing, defence against parasitic nucleic acids and genome rearrangement. Many small regulatory RNAs are thought to function in nuclei. For instance, in plants and fungi, short interfering RNA (siRNAs) associate with nascent transcripts and direct chromatin and/or DNA modifications. To understand further the biological roles of small regulatory RNAs, we conducted a genetic screen to identify factors required for RNA interference (RNAi) in Caenorhabditis elegans nuclei. Here we show that the gene nuclear RNAi defective-2 (nrde-2) encodes an evolutionarily conserved protein that is required for siRNA-mediated silencing in nuclei. NRDE-2 associates with the Argonaute protein NRDE-3 within nuclei and is recruited by NRDE-3/siRNA complexes to nascent transcripts that have been targeted by RNAi. We find that nuclear-localized siRNAs direct an NRDE-2-dependent silencing of pre-messenger RNAs (pre-mRNAs) 3' to sites of RNAi, an NRDE-2-dependent accumulation of RNA polymerase (RNAP) II at genomic loci targeted by RNAi, and NRDE-2-dependent decreases in RNAP II occupancy and RNAP II transcriptional activity 3' to sites of RNAi. These results define NRDE-2 as a component of the nuclear RNAi machinery and demonstrate that metazoan siRNAs can silence nuclear-localized RNAs co-transcriptionally. In addition, these results establish a novel mode of RNAP II regulation: siRNA-directed recruitment of NRDE factors that inhibit RNAP II during the elongation phase of transcription.


Asunto(s)
Caenorhabditis elegans/genética , Interferencia de ARN , ARN Polimerasa II/antagonistas & inhibidores , ARN de Helminto/metabolismo , ARN Interferente Pequeño/metabolismo , Transcripción Genética , Animales , Caenorhabditis elegans/enzimología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Secuencia Conservada , Genes de Helminto/genética , Unión Proteica , ARN Polimerasa II/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN de Helminto/biosíntesis , ARN de Helminto/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transcripción Genética/genética
8.
Exp Parasitol ; 162: 35-42, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26778819

RESUMEN

The aim of this study was to investigate the functions of Trichinella spiralis Nudix hydrolase (TsNd) during the larval invasion of intestinal epithelial cells (IECs), development and survival in host by RNAi. The TsNd-specific double-stranded RNA (dsRNA) was designed to silence the expression of TsNd in T. spiralis larvae. DsRNA were delivered to the larvae by soaking incubation or electroporation. Silencing effect of TsNd transcription and expression was determined by real-time PCR and Western blotting, respectively. The infectivity of larvae treated with dsRNA was investigated by the in vitro larval invasion of IECs and experimental infection in mice. After being soaked with 40 ng/µl of dsRNA-TsNd, the transcription and expression level of TsNd gene was inhibited 65.8% and 56.4%, respectively. After being electroporated with 40 ng/µl of dsRNA-TsNd, the transcription and expression level of TsNd gene was inhibited 74.2% and 58.2%, respectively. Silencing TsNd expression by both soaking and electroporation inhibited significantly the larval invasion of IECs in a dose-dependent manner (r1 = -0.96798, r2 = -0.98707). Compared with the mice inoculated with untreated larvae, mice inoculated with larvae soaked with TsNd dsRNA displayed a 49.9% reduction in adult worms and 39.9% reduction in muscle larvae, while mice inoculated with larvae electroporated with TsNd dsRNA displayed a 83.4% reduction in adult worms and 69.5% reduction in muscle larvae, indicating that electroporation has a higher efficiency than soaking in inhibiting the larval development and survival in mice. Our results showed that silencing TsNd expression in T. spiralis inhibited significantly the larval invasion and survival in host.


Asunto(s)
Pirofosfatasas/antagonistas & inhibidores , Interferencia de ARN/fisiología , ARN Bicatenario/fisiología , Trichinella spiralis/fisiología , Animales , Electroporación , Femenino , Fertilidad/fisiología , Mucosa Intestinal/citología , Mucosa Intestinal/parasitología , Larva/enzimología , Larva/genética , Larva/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , ARN Bicatenario/biosíntesis , ARN Bicatenario/aislamiento & purificación , ARN de Helminto/biosíntesis , ARN de Helminto/aislamiento & purificación , ARN de Helminto/fisiología , Organismos Libres de Patógenos Específicos , Porcinos , Transcripción Genética , Trichinella spiralis/enzimología , Trichinella spiralis/genética , Hidrolasas Nudix
9.
Elife ; 102021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34323215

RESUMEN

The translation initiation complex eIF3 imparts specialized functions to regulate protein expression. However, understanding of eIF3 activities in neurons remains limited despite widespread dysregulation of eIF3 subunits in neurological disorders. Here, we report a selective role of the C. elegans RNA-binding subunit EIF-3.G in shaping the neuronal protein landscape. We identify a missense mutation in the conserved Zinc-Finger (ZF) of EIF-3.G that acts in a gain-of-function manner to dampen neuronal hyperexcitation. Using neuron-type-specific seCLIP, we systematically mapped EIF-3.G-mRNA interactions and identified EIF-3.G occupancy on GC-rich 5'UTRs of a select set of mRNAs enriched in activity-dependent functions. We demonstrate that the ZF mutation in EIF-3.G alters translation in a 5'UTR-dependent manner. Our study reveals an in vivo mechanism for eIF3 in governing neuronal protein levels to control neuronal activity states and offers insights into how eIF3 dysregulation contributes to neurological disorders.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Factor 3 de Iniciación Eucariótica/genética , Neuronas/fisiología , Biosíntesis de Proteínas , ARN de Helminto/biosíntesis , ARN Mensajero/biosíntesis , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo
10.
J Cell Biol ; 140(6): 1321-9, 1998 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-9508766

RESUMEN

Regulation of ribosome synthesis is an essential aspect of growth control. Thus far, little is known about the factors that control and coordinate these processes. We show here that the Caenorhabditis elegans gene ncl-1 encodes a zinc finger protein and may be a repressor of RNA polymerase I and III transcription and an inhibitor of cell growth. Loss of function mutations in ncl-1, previously shown to result in enlarged nucleoli, result in increased rates of rRNA and 5S RNA transcription and enlarged cells. Furthermore, ncl-1 adult worms are larger, have more protein, and have twice as much rRNA as wild-type worms. Localization studies show that the level of NCL-1 protein is independently regulated in different cells of the embryo. In wild-type embryos, cells with the largest nucleoli have the lowest level of NCL-1 protein. Based on these results we propose that ncl-1 is a repressor of ribosome synthesis and cell growth.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/genética , Proteínas Portadoras/genética , ARN de Helminto/biosíntesis , ARN Ribosómico 5S/biosíntesis , Proteínas Ribosómicas/genética , Dedos de Zinc/fisiología , Secuencia de Aminoácidos , Animales , Elementos sin Sentido (Genética) , Caenorhabditis elegans/citología , Caenorhabditis elegans/enzimología , Proteínas Portadoras/metabolismo , División Celular/genética , Nucléolo Celular/fisiología , Tamaño de la Célula/genética , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Mutación/fisiología , ARN Polimerasa I/metabolismo , ARN Polimerasa III/metabolismo , Proteínas de Unión al ARN , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Transcripción Genética/genética
11.
Sci Rep ; 9(1): 17594, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772378

RESUMEN

Parasitic nematodes transition between dramatically different free-living and parasitic stages, with correctly timed development and migration crucial to successful completion of their lifecycle. However little is known of the mechanisms controlling these transitions. microRNAs (miRNAs) negatively regulate gene expression post-transcriptionally and regulate development of diverse organisms. Here we used microarrays to determine the expression profile of miRNAs through development and in gut tissue of the pathogenic nematode Haemonchus contortus. Two miRNAs, mir-228 and mir-235, were enriched in infective L3 larvae, an arrested stage analogous to Caenorhabditis elegans dauer larvae. We hypothesized that these miRNAs may suppress development and maintain arrest. Consistent with this, inhibitors of these miRNAs promoted H. contortus development from L3 to L4 stage, while genetic deletion of C. elegans homologous miRNAs reduced dauer arrest. Epistasis studies with C. elegans daf-2 mutants showed that mir-228 and mir-235 synergise with FOXO transcription factor DAF-16 in the insulin signaling pathway. Target prediction suggests that these miRNAs suppress metabolic and transcription factor activity required for development. Our results provide novel insight into the expression and functions of specific miRNAs in regulating nematode development and identify miRNAs and their target genes as potential therapeutic targets to limit parasite survival within the host.


Asunto(s)
Haemonchus/genética , MicroARNs/biosíntesis , ARN de Helminto/biosíntesis , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Colestenos/farmacología , Femenino , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Haemonchus/efectos de los fármacos , Haemonchus/crecimiento & desarrollo , Larva , Masculino , MicroARNs/genética , ARN de Helminto/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor de Insulina/genética , Especificidad de la Especie
12.
Methods Mol Biol ; 1823: 153-165, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29959680

RESUMEN

MicroRNAs (miRNAs) regulate gene expression by directing Argonaute proteins to target RNAs, which usually results in destabilization and translational inhibition of the target RNA. The prediction of animal miRNA target sites has remained a challenge due to the ability of miRNAs to bind target RNAs through imperfect base pairing. Recently, several labs have established methods to produce biochemical evidence of miRNA-target interactions by generating chimeric reads where the miRNA is ligated to its target RNA. Despite the insights that can be gained from chimera producing methods, the current approaches are inefficient, labor intensive and require computational expertise. Here we describe a method, called Chimera PCR (ChimP), for the validation or testing of specific miRNA-target interactions. This method allows for focused experiments to analyze miRNA targeting in a variety of conditions.


Asunto(s)
Caenorhabditis elegans , MicroARNs , Reacción en Cadena de la Polimerasa/métodos , ARN de Helminto , Animales , Emparejamiento Base , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , MicroARNs/biosíntesis , MicroARNs/genética , ARN de Helminto/biosíntesis , ARN de Helminto/genética
13.
Mol Biol Cell ; 11(8): 2743-56, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10930467

RESUMEN

In the nematode Caenorhabditis elegans, there exist two micro1 medium chains of the AP-1 clathrin-associated protein complex. Mutations of unc-101, the gene that encodes one of the micro1 chains, cause pleiotropic effects (). In this report, we identified and analyzed the second mu1 chain gene, apm-1. Unlike the mammalian homologs, the two medium chains are expressed ubiquitously throughout development. RNA interference (RNAi) experiments with apm-1 showed that apm-1 and unc-101 were redundant in embryogenesis and in vulval development. Consistent with this, a hybrid protein containing APM-1, when overexpressed, rescued the phenotype of an unc-101 mutant. However, single disruptions of apm-1 or unc-101 have distinct phenotypes, indicating that the two medium chains may have distinct functions. RNAi of any one of the small or large chains of AP-1 complex (sigma1, beta1, or gamma) showed a phenotype identical to that caused by the simultaneous disruption of unc-101 and apm-1, but not that by single disruption of either gene. This suggests that the two medium chains may share large and small chains in the AP-1 complexes. Thus, apm-1 and unc-101 encode two highly related micro1 chains that share redundant and distinct functions within AP-1 clathrin-associated protein complexes of the same tissue.


Asunto(s)
Complejo 1 de Proteína Adaptadora , Complejo 2 de Proteína Adaptadora , Subunidades mu de Complejo de Proteína Adaptadora , Subunidades sigma de Complejo de Proteína Adaptadora , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/fisiología , Clatrina/fisiología , Proteínas del Helminto/fisiología , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Fosfoproteínas/genética , Fosfoproteínas/fisiología , Subunidades alfa de Complejo de Proteína Adaptadora , Proteínas Adaptadoras del Transporte Vesicular , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/embriología , Clonación Molecular , Embrión no Mamífero/fisiología , Evolución Molecular , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas del Helminto/efectos de los fármacos , Proteínas del Helminto/genética , Larva/fisiología , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Mutación , Proteínas del Tejido Nervioso/efectos de los fármacos , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Fenotipo , Fosfoproteínas/efectos de los fármacos , ARN Bicatenario/farmacología , ARN de Helminto/biosíntesis , ARN de Helminto/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Vulva/citología , Vulva/embriología , Vulva/metabolismo
14.
PLoS One ; 12(6): e0178829, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28622369

RESUMEN

Once inside a vertebrate host after infection, individual schistosomula of the parasite Schistosoma mansoni find a new and complex environment, which requires quick adjustments for survival, such as those that allow it to avoid the innate immune response of the host. Thus, it is very important for the parasite to remain within the skin after entering the host for a period of about 3 days, at which time it can then reach the venous system, migrate to the lungs and, by the end of eighth day post-infection, it reach the portal venous system, while undergoing minimal changes in morphology. However, after just a few days in the portal blood system, the parasite experiences an extraordinary increase in biomass and significant morphological alterations. Therefore, determining the constituents of the portal venous system that may trigger these changes that causes the parasite to consolidate its development inside the vertebrate host, thus causing the disease schistosomiasis, is essential. The present work simulated the conditions found in the portal venous system of the vertebrate host by exposing schistosomula of S. mansoni to in vitro culture in the presence of portal serum of the hamster, Mesocricetus auratus. Two different incubation periods were evaluated, one of 3 hours and one of 12 hours. These time periods were used to mimic the early contact of the parasite with portal serum during the course of natural infection. As a control, parasites were incubated in presence of hamster peripheral serum, in order to compare gene expression signatures between the two conditions. The mRNA obtained from parasites cultured under both conditions were submitted to a whole transcriptome library preparation and sequenced with a next generation platform. On average, nearly 15 million reads were produced per sample and, for the purpose of gene expression quantification, only reads mapped to one location of the transcriptome were considered. After statistical analysis, we found 103 genes differentially expressed by schistosomula cultured for 3 hours and 12 hours in the presence of hamster portal serum. After the subtraction of a second list of genes, also differentially expressed between schistosomula cultured for 3 hours and 12 hours in presence of peripheral serum, a set of 58 genes was finally established. This pattern was further validated for a subset of 17 genes, by measuring gene expression through quantitative real time polymerase chain reaction (qPCR). Processes that were activated by the portal serum stimulus include response to stress, membrane transport, protein synthesis and folding/degradation, signaling, cytoskeleton arrangement, cell adhesion and nucleotide synthesis. Additionally, a smaller number of genes down-regulated under the same condition act on cholinergic signaling, inorganic cation and organic anion membrane transport, cell adhesion and cytoskeleton arrangement. Considering the role of these genes in triggering processes that allow the parasite to quickly adapt, escape the immune response of the host and start maturation into an adult worm after contact with the portal serum, this work may point to unexplored molecular targets for drug discovery and vaccine development against schistosomiasis.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , ARN de Helminto , ARN Mensajero , Schistosoma mansoni , Análisis de Secuencia de ARN/métodos , Suero/química , Transcriptoma/efectos de los fármacos , Animales , Cricetinae , Mesocricetus , ARN de Helminto/biosíntesis , ARN de Helminto/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Schistosoma mansoni/genética , Schistosoma mansoni/metabolismo
15.
Sci Rep ; 6: 32214, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27558892

RESUMEN

Recently, several dysregulated microRNAs (miRNAs) have been identified in organisms exposed to graphene oxide (GO). However, their biological functions and mechanisms of the action are still largely unknown. Here, we investigated the molecular mechanism of mir-231 in the regulation of GO toxicity using in vivo assay system of Caenorhabditis elegans. We found that GO exposure inhibited the expression of mir-231::GFP in multiple tissues, in particular in the intestine. mir-231 acted in intestine to regulate the GO toxicity, and overexpression of mir-231 in intestine caused a susceptible property of nematodes to GO toxicity. smk-1 encoding a homologue to mammalian SMEK functioned as a targeted gene for mir-231, and was also involved in the intestinal regulation of GO toxicity. Mutation of smk-1 gene induced a susceptible property to GO toxicity, whereas the intestinal overexpression of smk-1 resulted in a resistant property to GO toxicity. Moreover, mutation of smk-1 gene suppressed the resistant property of mir-231 mutant to GO toxicity. In nematodes, SMK-1 further acted upstream of the transcriptional factor DAF-16/FOXO in insulin signaling pathway to regulate GO toxicity. Therefore, mir-231 may encode a GO-responsive protection mechanism against the GO toxicity by suppressing the function of the SMK-1 - DAF-16 signaling cascade in nematodes.


Asunto(s)
Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Grafito/toxicidad , Mucosa Intestinal/metabolismo , MicroARNs/biosíntesis , ARN de Helminto/biosíntesis , Animales , Caenorhabditis elegans/genética , Intestinos/patología , MicroARNs/genética , ARN de Helminto/genética
16.
Aging Cell ; 2(2): 111-21, 2003 04.
Artículo en Inglés | MEDLINE | ID: mdl-12882324

RESUMEN

In Caenorhabditis elegans, the forkhead protein DAF-16 transduces insulin-like signals that regulate larval development and adult lifespan. To identify DAF-16-dependent transcriptional alterations that occur in a long-lived C. elegans strain, we used cDNA microarrays and genomic analysis to identify putative direct and indirect DAF-16 transcriptional target genes. Our analysis suggests that DAF-16 action regulates a wide range of physiological responses by altering the expression of genes involved in metabolism, energy generation and cellular stress responses. Furthermore, we observed a large overlap between DAF-16-dependent transcription and genes normally expressed in the long-lived dauer larval stage. Finally, we examined the in vivo role of 35 of these target genes by RNA-mediated interference and identified one gene encoding a putative protease that is necessary for the daf-2 Age phenotype.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Longevidad/genética , Factores de Transcripción/fisiología , Transcripción Genética , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas de Caenorhabditis elegans/genética , ADN de Helmintos/genética , Factores de Transcripción Forkhead , Larva , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Regiones Promotoras Genéticas/genética , Interferencia de ARN , ARN de Helminto/biosíntesis , ARN de Helminto/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Secuencias Reguladoras de Ácidos Nucleicos
17.
Mol Biochem Parasitol ; 126(1): 25-33, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12554081

RESUMEN

Differences in mRNA expression between immature adult worms (IAW) and mature adult worms (MAW) of Echinococcus granulosus were determined using polymerase chain reaction-based differential display (DDRT-PCR). Twenty-eight putative differential cDNA fragments were isolated, cloned and sequenced. mRNAs from IAW and MAW were probed with the labelled fragments. Six cDNA fragments (coded as egM12, egM13, egM22, egM26, egM30 and egM34) were putatively determined to be specific to MAW by Northern hybridisation. The stage-specificity of egM12, egM13 and egM34 was confirmed by RT-PCR. RNAs of IAW, MAW, protoscoleces and oncospheres, probed with egM13 and egM30, showed that the mRNAs were expressed exclusively in MAW, which implied involvement in the regulation of egg development. Using the labelled fragments to screen a cDNA library of MAW, 99 clones were identified and analysed. An alignment of selected clones showed that the MAW-specific mRNAs belonged to a family. Examination of the deduced amino acid sequence of three of the corresponding cDNAs (egM4, egM9 and egM123) indicated they were cysteine-rich and contained a 24 amino acid repeat sequence, repeated four to six times. The repeat regions were predominantly alpha helical in nature with interspersed turns, forming alternating zones of positive and negative charge. The functional significance of each of the cDNAs identified is unclear as none had significant sequence similarity to genes of known function. However, polypeptides encoded by egM4 and egM123 were recognised by antibodies in a serum pool from dogs experimentally infected with E. granulosus, suggesting they could prove of value in serodiagnosis of definitive hosts.


Asunto(s)
Echinococcus/genética , ARN de Helminto/biosíntesis , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Enfermedades de los Perros/parasitología , Perros , Equinococosis/parasitología , Echinococcus/embriología , Echinococcus/crecimiento & desarrollo , Echinococcus/metabolismo , Expresión Génica , Genes de Helminto , Estadios del Ciclo de Vida , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , ARN Mensajero/análisis , Proteínas Recombinantes/análisis , Proteínas Recombinantes/inmunología , Secuencias Repetitivas de Aminoácido , Alineación de Secuencia , Ovinos
18.
Brain Res Mol Brain Res ; 58(1-2): 103-11, 1998 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-9685599

RESUMEN

Many organisms, including mammals, use short peptides as neurotransmitters. The family of FMRFamide (Phe-Met-Arg-Phe-NH2)-like neuropeptides, which all share an -RFamide sequence at their C-termini, has been shown to have diverse functions, including neuromodulation and stimulation or inhibition of muscle contraction. In the nematode, Caenorhabditis elegans, FMRFamide-like peptides (FaRPs) are expressed in approximately 10% of the neurons, including motor, sensory, and interneurons that are involved in movement, feeding, defecation, and reproduction. At least 14 genes, designated flp-1 through flp-14, encode FaRPs in C. elegans. Here, we present data that all 14 flp genes are transcribed in C. elegans, and several of these genes are alternatively spliced. Each flp gene encodes a different set of FaRPs, yielding a predicted total of 44 distinct FaRPs. Using staged RNA for reverse-transcription/polymerase chain reactions (RT/PCR), we determined that most flp genes are expressed throughout development. These results suggest that a complex family of FaRPs have varied roles through all stages of development and in adulthood in C. elegans.


Asunto(s)
Caenorhabditis elegans/genética , FMRFamida/genética , Genes de Helminto , Familia de Multigenes , Neuropéptidos/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa/métodos , Biosíntesis de Proteínas , ARN de Helminto/biosíntesis , Alineación de Secuencia , Homología de Secuencia de Aminoácido
19.
DNA Cell Biol ; 14(11): 951-60, 1995 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-7576182

RESUMEN

In this report we present the sequences of four new cct chaperonin genes from the nematode Caenorhabditis elegans. The four genes, cct-2, cct-4, cct-5, and cct-6 are orthologs of the mouse chaperonin genes Cctb, Cctd, Ccte, and Cctz, sharing 66%, 63%, 68%, and 67% deduced amino acid sequence identity, respectively. The C. elegans multigene family includes these four genes as well as cct-1 (tcp-1), and displays 23-35% pairwise predicted amino acid sequence identity between members, and 31-35% identity to the closely related archaebacterial chaperonin TF55. The five C. elegans cct genes are expressed in all life stages (egg, four larval stages, and adult). Members of the multigene family occur as a loosely associated group of three genes on chromosome II, and two widely separated genes on chromosome III. The predicted secondary structures of all five C. elegans CCT deduced protein sequences are nearly identical. Moreover, all chaperonins examined had comparable predicted secondary structures. Algorithmic predictions of the secondary structures of GroEL, Hsp60, and Rubisco subunit-binding protein (RuBP) are almost identical, and are very similar to the known GroEL secondary structure. The CCT/TF55 family predicted secondary structures are essentially identical to each other and are also related to GroEL, Hsp60, and RuBP. The most notable difference between the CCT/TF55 and the GroEL/Hsp60/RuBP families is in the presumed polypeptide binding domain.


Asunto(s)
Caenorhabditis elegans/genética , Chaperoninas/genética , Genes de Helminto/genética , Proteínas del Helminto/genética , Chaperonas Moleculares/genética , Secuencia de Aminoácidos , Animales , Chaperonina con TCP-1 , Chaperoninas/química , Mapeo Cromosómico , Regulación del Desarrollo de la Expresión Génica , Proteínas del Helminto/química , Ratones , Datos de Secuencia Molecular , Familia de Multigenes/genética , Estructura Secundaria de Proteína , ARN de Helminto/biosíntesis , ARN Mensajero/biosíntesis , Alineación de Secuencia , Homología de Secuencia de Aminoácido
20.
Mol Cells ; 9(5): 535-41, 1999 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-10597043

RESUMEN

The Caenorhabditis elegans ELT-1 protein, a homolog of the vertebrate GATA transcription factor family, is a transcription activator that can recognize the GATA motif. We previously showed that the elt-1 mRNA was primarily expressed in C. elegans embryos. To examine whether the elt-1 mRNA in embryos is maternal, paternal or zygotic, Northern blot analysis was performed with RNA isolated from the C. elegans germ-line mutant strains, fem-2 (b245)lf, fem-3 (q20)gf, him-8 (e1489), and glp-4 (bn2). This analysis revealed that the high level of elt-1 mRNA in the C. elegans embryos resulted from either the maternal or the paternal transcription, rather than from the zygotic expression. These results further demonstrated that elt-1 was highly expressed in the germ-line of both sexes. To investigate the possible target genes for the ELT-1 protein in the germ line, the ELT-1 protein was expressed and tested for its binding specificity to the GATA motif that is present in the promoter region of the C. elegans major sperm protein genes. It was found that two conserved cis-elements, AGATCT and AGATAA, in the proximal promoter region of the msp-113 gene provided the best recognition site for ELT-1. Mutational analysis showed that the GATC core sequence was necessary for strong transactivation of the reporter gene, and that the combination of GATC and GATA motif resulted in a stronger transactivation by ELT-1 than either the duplicated GATC or GATA motif. These results suggest that the potential target for the ELT-1 protein in the germ-line may be one of the major sperm protein gene family.


Asunto(s)
Caenorhabditis elegans/genética , Proteínas de Unión al ADN/biosíntesis , Células Germinativas/metabolismo , Proteínas del Helminto/biosíntesis , Transactivadores/biosíntesis , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Femenino , Factores de Transcripción GATA , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas del Helminto/genética , Masculino , Regiones Promotoras Genéticas , ARN de Helminto/biosíntesis , ARN de Helminto/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Transactivadores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA