Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
RNA ; 27(1): 27-39, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33008837

RESUMEN

Viruses commonly use specifically folded RNA elements that interact with both host and viral proteins to perform functions important for diverse viral processes. Examples are found at the 3' termini of certain positive-sense ssRNA virus genomes where they partially mimic tRNAs, including being aminoacylated by host cell enzymes. Valine-accepting tRNA-like structures (TLSVal) are an example that share some clear homology with canonical tRNAs but have several important structural differences. Although many examples of TLSVal have been identified, we lacked a full understanding of their structural diversity and phylogenetic distribution. To address this, we undertook an in-depth bioinformatic and biochemical investigation of these RNAs, guided by recent high-resolution structures of a TLSVal We cataloged many new examples in plant-infecting viruses but also in unrelated insect-specific viruses. Using biochemical and structural approaches, we verified the secondary structure of representative TLSVal substrates and tested their ability to be valylated, confirming previous observations of structural heterogeneity within this class. In a few cases, large stem-loop structures are inserted within variable regions located in an area of the TLS distal to known host cell factor binding sites. In addition, we identified one virus whose TLS has switched its anticodon away from valine, causing a loss of valylation activity; the implications of this remain unclear. These results refine our understanding of the structural and functional mechanistic details of tRNA mimicry and how this may be used in viral infection.


Asunto(s)
Variación Genética , Virus de Insectos/genética , Filogenia , Virus de Plantas/genética , ARN de Transferencia de Valina/química , ARN Viral/química , Anticodón/química , Anticodón/metabolismo , Secuencia de Bases , Sitios de Unión , Biología Computacional , Virus de Insectos/clasificación , Virus de Insectos/metabolismo , Modelos Moleculares , Imitación Molecular , Virus de Plantas/clasificación , Virus de Plantas/metabolismo , Pliegue del ARN , ARN de Transferencia de Valina/genética , ARN de Transferencia de Valina/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Homología de Secuencia de Ácido Nucleico , Valina/metabolismo
2.
RNA ; 27(11): 1330-1338, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34315814

RESUMEN

During protein synthesis on ribosome, tRNA recognizes its cognate codon of mRNA through base-pairing with the anticodon. The 5'-end nucleotide of the anticodon is capable of wobble base-pairing, offering a molecular basis for codon degeneracy. The wobble nucleotide is often targeted for post-transcriptional modification, which affects the specificity and fidelity of the decoding process. Flipping-out of a wobble nucleotide in the anticodon loop has been proposed to be necessary for modifying enzymes to access the target nucleotide, which has been captured in selective structures of protein-bound complexes. Meanwhile, all other structures of free or ribosome-bound tRNA display anticodon bases arranged in stacked conformation. We report the X-ray crystal structure of unbound tRNAVal1 to a 2.04 Å resolution showing two different conformational states of wobble uridine in the anticodon loop, one stacked on the neighboring base and the other swiveled out toward solvent. In addition, the structure reveals a rare magnesium ion coordination to the nitrogen atom of a nucleobase, which has been sampled very rarely among known structures of nucleic acids.


Asunto(s)
Anticodón/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN de Transferencia de Valina/metabolismo , Ribosomas/metabolismo , Anticodón/química , Anticodón/genética , Emparejamiento Base , Escherichia coli/genética , Escherichia coli/metabolismo , Metales/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Mensajero/química , ARN Mensajero/genética , ARN de Transferencia de Valina/química , ARN de Transferencia de Valina/genética , Ribosomas/genética
3.
Nucleic Acids Res ; 49(22): 13045-13061, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34871455

RESUMEN

Dnmt2, a member of the DNA methyltransferase superfamily, catalyzes the formation of 5-methylcytosine at position 38 in the anticodon loop of tRNAs. Dnmt2 regulates many cellular biological processes, especially the production of tRNA-derived fragments and intergenerational transmission of paternal metabolic disorders to offspring. Moreover, Dnmt2 is closely related to human cancers. The tRNA substrates of mammalian Dnmt2s are mainly detected using bisulfite sequencing; however, we lack supporting biochemical data concerning their substrate specificity or recognition mechanism. Here, we deciphered the tRNA substrates of human DNMT2 (hDNMT2) as tRNAAsp(GUC), tRNAGly(GCC) and tRNAVal(AAC). Intriguingly, for tRNAAsp(GUC) and tRNAGly(GCC), G34 is the discriminator element; whereas for tRNAVal(AAC), the inosine modification at position 34 (I34), which is formed by the ADAT2/3 complex, is the prerequisite for hDNMT2 recognition. We showed that the C32U33(G/I)34N35 (C/U)36A37C38 motif in the anticodon loop, U11:A24 in the D stem, and the correct size of the variable loop are required for Dnmt2 recognition of substrate tRNAs. Furthermore, mammalian Dnmt2s possess a conserved tRNA recognition mechanism.


Asunto(s)
5-Metilcitosina/metabolismo , Anticodón/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ARN de Transferencia/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Animales , Anticodón/genética , Secuencia de Bases , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/genética , Células HEK293 , Células HeLa , Humanos , Inosina/metabolismo , Ratones , Modelos Moleculares , Células 3T3 NIH , Conformación de Ácido Nucleico , Unión Proteica , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia de Aspártico/química , ARN de Transferencia de Aspártico/genética , ARN de Transferencia de Aspártico/metabolismo , ARN de Transferencia de Glicerina/química , ARN de Transferencia de Glicerina/genética , ARN de Transferencia de Glicerina/metabolismo , ARN de Transferencia de Valina/química , ARN de Transferencia de Valina/genética , ARN de Transferencia de Valina/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Especificidad por Sustrato
4.
Nucleic Acids Res ; 48(7): e41, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32083657

RESUMEN

RNAs are post-transcriptionally modified by dedicated writer or eraser enzymes that add or remove specific modifications, respectively. Mass spectrometry (MS) of RNA is a useful tool to study the modification state of an oligonucleotide (ON) in a sensitive manner. Here, we developed an ion-pairing reagent free chromatography for positive ion detection of ONs by low- and high-resolution MS, which does not interfere with other types of small compound analyses done on the same instrument. We apply ON-MS to determine the ONs from an RNase T1 digest of in vitro transcribed tRNA, which are purified after ribozyme-fusion transcription by automated size exclusion chromatography. The thus produced tRNAValAAC is substrate of the human tRNA ADAT2/3 enzyme and we confirm the deamination of adenosine to inosine and the formation of tRNAValIACin vitro by ON-MS. Furthermore, low resolution ON-MS is used to monitor the demethylation of ONs containing 1-methyladenosine by bacterial AlkB in vitro. The power of high-resolution ON-MS is demonstrated by the detection and mapping of modified ONs from native total tRNA digested with RNase T1. Overall, we present an oligonucleotide MS method which is broadly applicable to monitor in vitro RNA (de-)modification processes and native RNA.


Asunto(s)
Espectrometría de Masas , Oligonucleótidos/análisis , Procesamiento Postranscripcional del ARN , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina Desaminasa/metabolismo , Cromatografía en Gel , Células HEK293 , Células HeLa , Humanos , Oxigenasas de Función Mixta/metabolismo , Oligonucleótidos/aislamiento & purificación , ARN de Transferencia/biosíntesis , ARN de Transferencia/aislamiento & purificación , ARN de Transferencia de Valina/química , ARN de Transferencia de Valina/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleasa T1/metabolismo
5.
Biochemistry ; 57(39): 5641-5647, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30199619

RESUMEN

Inosine at the "wobble" position (I34) is one of the few essential posttranscriptional modifications in tRNAs (tRNAs). It results from the deamination of adenosine and occurs in bacteria on tRNAArgACG and in eukarya on six or seven additional tRNA substrates. Because inosine is structurally a guanosine analogue, reverse transcriptases recognize it as a guanosine. Most methods used to examine the presence of inosine rely on this phenomenon and detect the modified base as a change in the DNA sequence that results from the reverse transcription reaction. These methods, however, cannot always be applied to tRNAs because reverse transcription can be compromised by the presence of other posttranscriptional modifications. Here we present SL-ID (splinted ligation-based inosine detection), a reverse transcription-free method for detecting inosine based on an I34-dependent specific cleavage of tRNAs by endonuclease V, followed by a splinted ligation and polyacrylamide gel electrophoresis analysis. We show that the method can detect I34 on different tRNA substrates and can be applied to total RNA derived from different species, cell types, and tissues. Here we apply the method to solve previous controversies regarding the modification status of mammalian tRNAArgACG.


Asunto(s)
Desoxirribonucleasa IV (Fago T4-Inducido)/química , Electroforesis en Gel de Poliacrilamida/métodos , Inosina/análisis , Oligodesoxirribonucleótidos/química , ARN de Transferencia de Arginina/química , ARN de Transferencia de Valina/química , Animales , Secuencia de Bases , Células HEK293 , Células HeLa , Humanos , Inosina/genética , Ratones , Hibridación de Ácido Nucleico , Oligodesoxirribonucleótidos/genética , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Valina/genética
6.
RNA Biol ; 14(10): 1364-1373, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-27892771

RESUMEN

Posttranscriptional processing of RNA molecules is a common strategy to enlarge the structural and functional repertoire of RNomes observed in all 3 domains of life. Fragmentation of RNA molecules of basically all functional classes has been reported to yield smaller non-protein coding RNAs (ncRNAs) that typically possess different roles compared with their parental transcripts. Here we show that a valine tRNA-derived fragment (Val-tRF) that is produced under certain stress conditions in the halophilic archaeon Haloferax volcanii is capable of binding to the small ribosomal subunit. As a consequence of Val-tRF binding mRNA is displaced from the initiation complex which results in global translation attenuation in vivo and in vitro. The fact that the archaeal Val-tRF also inhibits eukaryal as well as bacterial protein biosynthesis implies a functionally conserved mode of action. While tRFs and tRNA halves have been amply identified in recent RNA-seq project, Val-tRF described herein represents one of the first functionally characterized tRNA processing products to date.


Asunto(s)
Haloferax volcanii/genética , ARN Mensajero/metabolismo , ARN de Transferencia de Valina/metabolismo , Ribosomas/metabolismo , Regulación de la Expresión Génica Arqueal , Haloferax volcanii/química , Haloferax volcanii/metabolismo , Modelos Moleculares , Biosíntesis de Proteínas , ARN de Archaea/metabolismo , ARN Mensajero/química , ARN de Transferencia de Valina/química , Ribosomas/química , Estrés Fisiológico
7.
Nucleic Acids Res ; 43(6): 3332-43, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25753665

RESUMEN

Stabilization of the ribosomal complexes plays an important role in translational control. Mechanisms of ribosome stabilization have been studied in detail for initiation and elongation of eukaryotic translation, but almost nothing is known about stabilization of eukaryotic termination ribosomal complexes. Here, we present one of the mechanisms of fine-tuning of the translation termination process in eukaryotes. We show that certain deacylated tRNAs, remaining in the E site of the ribosome at the end of the elongation cycle, increase the stability of the termination and posttermination complexes. Moreover, only the part of eRF1 recognizing the stop codon is stabilized in the A site of the ribosome, and the stabilization is not dependent on the hydrolysis of peptidyl-tRNA. The determinants, defining this property of the tRNA, reside in the acceptor stem. It was demonstrated by site-directed mutagenesis of tRNA(Val) and construction of a mini-helix structure identical to the acceptor stem of tRNA. The mechanism of this stabilization is different from the fixation of the unrotated state of the ribosome by CCA end of tRNA or by cycloheximide in the E site. Our data allow to reveal the possible functions of the isodecoder tRNAs in eukaryotes.


Asunto(s)
Terminación de la Cadena Péptídica Traduccional , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Acilación , Animales , Codón de Terminación , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Estabilidad Proteica , Estabilidad del ARN , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia de Valina/química , ARN de Transferencia de Valina/genética , ARN de Transferencia de Valina/metabolismo , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
RNA ; 19(8): 1137-46, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23793893

RESUMEN

N-1 Methylation of the nearly invariant purine residue found at position 9 of tRNA is a nucleotide modification found in multiple tRNA species throughout Eukarya and Archaea. First discovered in Saccharomyces cerevisiae, the tRNA methyltransferase Trm10 is a highly conserved protein both necessary and sufficient to catalyze all known instances of m1G9 modification in yeast. Although there are 19 unique tRNA species that contain a G at position 9 in yeast, and whose fully modified sequence is known, only 9 of these tRNA species are modified with m1G9 in wild-type cells. The elements that allow Trm10 to distinguish between structurally similar tRNA species are not known, and sequences that are shared between all substrate or all nonsubstrate tRNAs have not been identified. Here, we demonstrate that the in vitro methylation activity of yeast Trm10 is not sufficient to explain the observed pattern of modification in vivo, as additional tRNA species are substrates for Trm10 m1G9 methyltransferase activity. Similarly, overexpression of Trm10 in yeast yields m1G9 containing tRNA species that are ordinarily unmodified in vivo. Thus, yeast Trm10 has a significantly broader tRNA substrate specificity than is suggested by the observed pattern of modification in wild-type yeast. These results may shed light onto the suggested involvement of Trm10 in other pathways in other organisms, particularly in higher eukaryotes that contain up to three different genes with sequence similarity to the single TRM10 gene in yeast, and where these other enzymes have been implicated in pathways beyond tRNA processing.


Asunto(s)
ARN de Hongos/metabolismo , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ARNt Metiltransferasas/metabolismo , Genes Fúngicos , Guanosina/análogos & derivados , Guanosina/química , Humanos , Cinética , Metilación , Procesamiento Postranscripcional del ARN , ARN de Hongos/química , ARN de Transferencia/química , ARN de Transferencia de Valina/química , ARN de Transferencia de Valina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato , ARNt Metiltransferasas/genética
9.
J Struct Biol ; 179(3): 252-60, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22387042

RESUMEN

Knowing the 3-D structure of an RNA is fundamental to understand its biological function. Nowadays X-ray crystallography and NMR spectroscopy are systematically applied to newly discovered RNAs. However, the application of these high-resolution techniques is not always possible, and thus scientists must turn to lower resolution alternatives. Here, we introduce a pipeline to systematically generate atomic resolution 3-D structures that are consistent with low-resolution data sets. We compare and evaluate the discriminative power of a number of low-resolution experimental techniques to reproduce the structure of the Escherichia coli tRNA(VAL) and P4-P6 domain of the Tetrahymena thermophila group I intron. We test single and combinations of the most accessible low-resolution techniques, i.e. hydroxyl radical footprinting (OH), methidiumpropyl-EDTA (MPE), multiplexed hydroxyl radical cleavage (MOHCA), and small-angle X-ray scattering (SAXS). We show that OH-derived constraints are accurate to discriminate structures at the atomic level, whereas EDTA-based constraints apply to global shape determination. We provide a guide for choosing which experimental techniques or combination of thereof is best in which context. The pipeline represents an important step towards high-throughput low-resolution RNA structure determination.


Asunto(s)
Escherichia coli , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN de Transferencia de Valina/química , Secuencia de Bases , Simulación por Computador , Interpretación Estadística de Datos , Datos de Secuencia Molecular
10.
Archaea ; 2012: 260909, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23326205

RESUMEN

Nonprotein coding RNA (ncRNA) molecules have been recognized recently as major contributors to regulatory networks in controlling gene expression in a highly efficient manner. These RNAs either originate from their individual transcription units or are processing products from longer precursor RNAs. For example, tRNA-derived fragments (tRFs) have been identified in all domains of life and represent a growing, yet functionally poorly understood, class of ncRNA candidates. Here we present evidence that tRFs from the halophilic archaeon Haloferax volcanii directly bind to ribosomes. In the presented genomic screen of the ribosome-associated RNome, a 26-residue-long fragment originating from the 5' part of valine tRNA was by far the most abundant tRF. The Val-tRF is processed in a stress-dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. As a consequence of ribosome binding, Val-tRF reduces protein synthesis by interfering with peptidyl transferase activity. Therefore this tRF functions as ribosome-bound small ncRNA capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine tuning the rate of protein production.


Asunto(s)
Haloferax volcanii/genética , ARN de Archaea/genética , ARN de Transferencia/genética , Secuencia de Bases , Regulación de la Expresión Génica Arqueal , Redes Reguladoras de Genes , Haloferax volcanii/metabolismo , Conformación de Ácido Nucleico , Procesamiento Postranscripcional del ARN , ARN de Archaea/química , ARN de Archaea/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , ARN de Transferencia de Valina/química , ARN de Transferencia de Valina/genética , ARN de Transferencia de Valina/metabolismo , ARN no Traducido/química , ARN no Traducido/genética , ARN no Traducido/metabolismo , Subunidades Ribosómicas Pequeñas de Archaea/genética , Subunidades Ribosómicas Pequeñas de Archaea/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
11.
Mol Vis ; 16: 1736-42, 2010 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-20806033

RESUMEN

PURPOSE: To analyze mitochondrial DNA (mt DNA) gene mutations in a 19-year-old female patient, who presented with chronic progressive external ophthalmoplegia (CPEO), together with her mother and younger sister. METHODS: The diagnosis of mitochondrial myopathy was made based on clinical and biologic analysis. Histochemical methods were used to detect ragged-red fibers (RRFs) and ragged-blue fibers (RBFs) on a muscle biopsy of the patient. All mitochondrial gene DNA fragments of the patient, her mother, and younger sister were amplified by polymerase chain reaction. The products were sequenced and compared with reference databases. RESULTS: A novel T1658C mutation and a known A10006G mutation were identified in the mitochondrial tRNA(Val) gene and the tRNA(Gly) gene, respectively, in the patient, her mother, and younger sister. The T1658C mutation changes the T loop structure of mitochondrial tRNA(Val) and the A10006G mutation disturbs the D loop of mitochondrial tRNA(Gly). CONCLUSIONS: The T1658C and A10006G mutations of mtDNA may be responsible for the pathogenesis of the patient with CPEO.


Asunto(s)
Mutación/genética , Oftalmoplejía Externa Progresiva Crónica/genética , ARN de Transferencia de Valina/genética , ARN/genética , Adolescente , Secuencia de Bases , ADN Mitocondrial/genética , Familia , Femenino , Humanos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN/química , ARN Mitocondrial , ARN de Transferencia de Valina/química , Adulto Joven
12.
Nucleic Acids Res ; 36(9): 3065-74, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18400783

RESUMEN

Phenotypic diversity associated with pathogenic mutations of the human mitochondrial genome (mtDNA) has often been explained by unequal segregation of the mutated and wild-type genomes (heteroplasmy). However, this simple hypothesis cannot explain the tissue specificity of disorders caused by homoplasmic mtDNA mutations. We have previously associated a homoplasmic point mutation (1624C>T) in MTTV with a profound metabolic disorder that resulted in the neonatal deaths of numerous siblings. Affected tissues harboured a marked biochemical defect in components of the mitochondrial respiratory chain, presumably due to the extremely low (<1%) steady-state levels of mt-tRNA(Val). In primary myoblasts and transmitochondrial cybrids established from the proband (index case) and offspring, the marked respiratory deficiency was lost and steady-state levels of the mutated mt-tRNA(Val) were greater than in the biopsy material, but were still an order of magnitude lower than in control myoblasts. We present evidence that the generalized decrease in steady-state mt-tRNA(Val) observed in the homoplasmic 1624C>T-cell lines is caused by a rapid degradation of the deacylated form of the abnormal mt-tRNA(Val). By both establishing the identity of the human mitochondrial valyl-tRNA synthetase then inducing its overexpression in transmitochondrial cell lines, we have been able to partially restore steady-state levels of the mutated mt-tRNA(Val), consistent with an increased stability of the charged mt-tRNA. These data indicate that variations in the levels of VARS2L between tissue types and patients could underlie the difference in clinical presentation between individuals homoplasmic for the 1624C>T mutation.


Asunto(s)
Antígenos HLA/metabolismo , Miopatías Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación Puntual , ARN de Transferencia de Valina/genética , ARN/genética , Valina-ARNt Ligasa/metabolismo , Secuencia de Bases , Línea Celular , Células Cultivadas , Humanos , Mitocondrias/enzimología , Datos de Secuencia Molecular , ARN/química , ARN/metabolismo , Estabilidad del ARN , ARN Mitocondrial , ARN de Transferencia de Valina/química , ARN de Transferencia de Valina/metabolismo
13.
J Am Chem Soc ; 131(24): 8571-7, 2009 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-19485365

RESUMEN

Atomic-resolution information on the structure and dynamics of nucleic acids is essential for a better understanding of the mechanistic basis of many cellular processes. NMR spectroscopy is a powerful method for studying the structure and dynamics of nucleic acids; however, solution NMR studies are currently limited to relatively small nucleic acids at high concentrations. Thus, technological and methodological improvements that increase the experimental sensitivity and spectral resolution of NMR spectroscopy are required for studies of larger nucleic acids or protein-nucleic acid complexes. Here we introduce a series of imino-proton-detected NMR experiments that yield an over 2-fold increase in sensitivity compared to conventional pulse schemes. These methods can be applied to the detection of base pair interactions, RNA-ligand titration experiments, measurement of residual dipolar (15)N-(1)H couplings, and direct measurements of conformational transitions. These NMR experiments employ longitudinal spin relaxation enhancement techniques that have proven useful in protein NMR spectroscopy. The performance of these new experiments is demonstrated for a 10 kDa TAR-TAR*(GA) RNA kissing complex and a 26 kDa tRNA.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , ARN/química , VIH/genética , Enlace de Hidrógeno , Iminoazúcares/química , Cinética , Modelos Moleculares , Conformación de Ácido Nucleico , ARN de Transferencia de Valina/química , ARN Viral/química , Soluciones
14.
J Biomol NMR ; 43(2): 121-9, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19067179

RESUMEN

Imino (1)H-(15)N residual dipolar couplings (RDCs) provide additional structural information that complements standard (1)H-(1)H NOEs leading to improvements in both the local and global structure of RNAs. Here, we report measurement of imino (1)H-(1)H RDCs for the Iron Responsive Element (IRE) RNA and native E. coli tRNA(Val) using a BEST-Jcomp-HMQC2 experiment. (1)H-(1)H RDCs are observed between the imino protons in G-U wobble base pairs and between imino protons on neighboring base pairs in both RNAs. These imino (1)H-(1)H RDCs complement standard (1)H-(15)N RDCs because the (1)H-(1)H vectors generally point along the helical axis, roughly perpendicular to (1)H-(15)N RDCs. The use of longitudinal relaxation enhancement increased the signal-to-noise of the spectra by ~3.5-fold over the standard experiment. The ability to measure imino (1)H-(1)H RDCs offers a new restraint, which can be used in NMR domain orientation and structural studies of RNAs.


Asunto(s)
Iminas/química , Resonancia Magnética Nuclear Biomolecular/métodos , ARN Bacteriano/química , ARN de Transferencia de Valina/química , ARN/química , Escherichia coli , Proteínas Reguladoras del Hierro/genética , Isótopos de Nitrógeno/química
15.
Science ; 276(5316): 1250-2, 1997 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-9157882

RESUMEN

During translation errors of aminoacylation are corrected in editing reactions which ensure that an amino acid is stably attached to its corresponding transfer RNA (tRNA). Previous studies have not shown whether the tRNA nucleotides needed for effecting translational editing are the same as or distinct from those required for aminoacylation, but several considerations have suggested that they are the same. Here, designed tRNAs that are highly active for aminoacylation but are not active in translational editing are presented. The editing reaction can be controlled by manipulation of nucleotides at the corner of the L-shaped tRNA. In contrast, these manipulations do not affect aminoacylation. These results demonstrate the segregation of nucleotide determinants for the editing and aminoacylation functions of tRNA.


Asunto(s)
Edición de ARN , ARN de Transferencia/metabolismo , Acetilación , Secuencia de Bases , Sitios de Unión , Clonación Molecular , Escherichia coli , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN de Transferencia de Isoleucina/química , ARN de Transferencia de Isoleucina/metabolismo , ARN de Transferencia de Valina/química , ARN de Transferencia de Valina/metabolismo
16.
RNA Biol ; 5(2): 104-11, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18421255

RESUMEN

tRNAs are transcribed as precursors with a 5' end leader and a 3' end trailer. In the course of tRNA maturation, RNase P removes the 5' end leader and tRNase Z can endonucleolytically remove the 3' end trailer. A domain remote from the active site of tRNase Z recognizes and binds substrate, principally through contacts with the elbow (D/T loops) of the tRNA. To evaluate possible contacts, processing kinetics was performed using human nuclear encoded pre-tRNA(Arg) with substitutions in conserved D and T loop nucleotides. Changes in K(M) observed with some of the substitutions suggest contacts between tRNase Z and substrate tRNA in this region, and changes in tRNA structure provide an additional basis for interpretation of the kinetic effects.


Asunto(s)
Secuencia Conservada , Endorribonucleasas/metabolismo , Mutación/genética , Conformación de Ácido Nucleico , Precursores del ARN/química , Precursores del ARN/genética , Bacillus subtilis/enzimología , Secuencia de Bases , Catálisis , Humanos , Cinética , Datos de Secuencia Molecular , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Arginina/química , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Valina/química , ARN de Transferencia de Valina/genética , Especificidad por Sustrato
17.
J Mol Biol ; 360(3): 610-22, 2006 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-16787653

RESUMEN

Coordinated translocation of the tRNA-mRNA complex by the ribosome occurs in a precise, stepwise movement corresponding to a distance of three nucleotides along the mRNA. Frameshift suppressor tRNAs generally contain an extra nucleotide in the anticodon loop and they subvert the normal mechanisms used by the ribosome for frame maintenance. The mechanism by which suppressor tRNAs traverse the ribosome during translocation is poorly understood. Here, we demonstrate translocation of a tRNA by four nucleotides from the A site to the P site, and from the P site to the E site. We show that translocation of a punctuated mRNA is possible with an extra, unpaired nucleotide between codons. Interestingly, the NMR structure of the four nucleotide anticodon stem-loop reveals a conformation different from the canonical tRNA structure. Flexibility within the loop may allow conformational adjustment upon A site binding and for interacting with the four nucleotide codon in order to shift the mRNA reading frame.


Asunto(s)
Anticodón/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Fenilalanina/metabolismo , ARN de Transferencia de Valina/metabolismo , Ribosomas/metabolismo , Anticodón/genética , Secuencia de Bases , Escherichia coli , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico/efectos de los fármacos , Docilidad/efectos de los fármacos , ARN Mensajero/química , ARN Mensajero/genética , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Valina/química , ARN de Transferencia de Valina/genética , Sistemas de Lectura/genética , Ribosomas/genética , Sales (Química)/farmacología
18.
Nat Biotechnol ; 16(10): 961-5, 1998 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9788354

RESUMEN

A minizyme is a hammerhead ribozyme with a short oligonucleotide linker instead of stem/loop II. Minizymes with low activity as monomers form active dimeric structures with a common stem. We explored the use of dimeric minizymes as gene-inactivating agents by placing minizymes under the control of a tRNA(Val) promoter. The tRNA(Val) portion of the transcript did not hinder dimerization as the tRNA-embedded minizyme formed an active dimeric structure. The cleavage activity of this minizyme that had been expressed either in vitro or in HeLa cells was almost one order of magnitude higher than that of the tRNA(Val)-embedded conventional hammerhead ribozyme. The tRNA(Val)-driven minizyme inhibited reporter gene activity (95%) whereas the tRNA(Val)-driven hammerhead ribozyme resulted in approximately 55% inhibition.


Asunto(s)
ARN Catalítico/metabolismo , ARN de Transferencia de Valina/metabolismo , Secuencia de Bases , Catálisis , Cartilla de ADN , Dimerización , Células HeLa , Humanos , Espectroscopía de Resonancia Magnética , Conformación de Ácido Nucleico , ARN Catalítico/química , ARN de Transferencia de Valina/química
19.
Nucleic Acids Res ; 32(22): 6548-56, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15598826

RESUMEN

Ribosome complexes containing deacyl-tRNA1(Val) or biotinylvalyl-tRNA1(Val) and an mRNA analog have been irradiated with wavelengths specific for activation of the cmo5U nucleoside at position 34 in the tRNA1(Val) anticodon loop. The major product for both types of tRNA is the cross-link between 16S rRNA (C1400) and the tRNA (cmo5U34) characterized already by Ofengand and his collaborators [Prince et al. (1982) Proc. Natl Acad. Sci. USA, 79, 5450-5454]. However, in complexes containing deacyl-tRNA1(Val), an additional product is separated by denaturing PAGE and this is shown to involve C1400 and m5C967 of 16S rRNA and cmo5U34 of the tRNA. Puromycin treatment of the biotinylvalyl-tRNA1(Val) -70S complex followed by irradiation, results in the appearance of the unusual photoproduct, which indicates an immediate change in the tRNA interaction with the ribosome after peptide transfer. These results indicate an altered interaction between the tRNA anticodon and the 30S subunit for the tRNA in the P/E hybrid state compared with its interaction in the classic P/P state.


Asunto(s)
Escherichia coli/genética , ARN Ribosómico 16S/química , ARN de Transferencia de Valina/química , Ribosomas/química , Secuencia de Bases , Sitios de Unión , Cinética , Luz , Datos de Secuencia Molecular , Nucleótidos/análisis , Puromicina/farmacología , ARN Bacteriano/química , ARN Ribosómico 16S/metabolismo , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia de Valina/metabolismo , Ribosomas/metabolismo , Ribosomas/efectos de la radiación , Transcripción Genética
20.
Nucleic Acids Res ; 29(10): E49-9, 2001 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-11353094

RESUMEN

A new method using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the direct analysis of the mass-silent post-transcriptionally modified nucleoside pseudouridine in nucleic acids has been developed. This method utilizes 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide to derivatize pseudouridine residues. After chemical derivatization all pseudouridine residues will contain a 252 Da 'mass tag' that allows the presence of pseudouridine to be identified using mass spectrometry. Pseudouridine residues can be identified in intact nucleic acids by obtaining a mass spectrum of the nucleic acid before and after derivatization. The mass difference (in units of 252 Da) will denote the number of pseudouridine residues present. To determine the sequence location of pseudouridine, a combination of enzymatic hydrolysis and mass spectrometric steps are used. Here, MALDI analysis of RNase T1 digestion products before and after modification are used to narrow the sequence location of pseudouridine to specific T1 fragments in the gene sequence. Further mass spectrometric monitoring of exonuclease digestion products from isolated T1 fragments is then used for exact sequence placement. This approach to pseudouridine identification is demonstrated using Escherichia coli tRNAS: This new method allows for the direct determination of pseudouridine in nucleic acids, can be used to identify modified pseudouridine residues and can be used with general modification mapping approaches to completely characterize the post-transcriptional modifications present in RNAs.


Asunto(s)
Escherichia coli/genética , Seudouridina/análisis , Procesamiento Postranscripcional del ARN , ARN Bacteriano/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Secuencia de Bases , CME-Carbodiimida/análogos & derivados , CME-Carbodiimida/metabolismo , Cromatografía Líquida de Alta Presión , Peso Molecular , Seudouridina/genética , Seudouridina/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo , ARN de Transferencia de Valina/química , ARN de Transferencia de Valina/genética , ARN de Transferencia de Valina/metabolismo , Ribonucleasa T1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA