Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 958
Filtrar
1.
Mass Spectrom Rev ; 42(4): 1462-1502, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34747510

RESUMEN

Extra virgin olive oil (EVOO) is largely used in Mediterranean diet, and it is also worldwide apprised not only for its organoleptic properties but also for its healthy effects mainly attributed to the presence of several naturally occurring phenolic and polyphenolic compounds (bio-phenols). These compounds are characterized by the presence of multiple phenolic groups in more or less complex structures. Their content is fundamental in defining the healthy qualities of EVOO and consequently the analytical methods for their characterization and quantification are of current interest. Traditionally their determination has been conducted using a colorimetric assay based on the reaction of Folin-Ciocalteu (FC) reagent with the functional hydroxy groups of phenolic compounds. Identification and quantification of the bio-phenols in olive oils requires certainly more performing analytical methods. Chromatographic separation is now commonly achieved by HPLC, coupled with spectrometric devices as UV, FID, and MS. This last approach constitutes an actual cutting-edge application for bio-phenol determination in complex matrices as olive oils, mostly on the light of the development of mass analyzers and the achievement of high resolution and accurate mass measurement in more affordable instrument configurations. After a short survey of some rugged techniques used for bio-phenols determination, in this review have been described the most recent mass spectrometry-based methods, adopted for the analysis of the bio-phenols in EVOOs. In particular, the sample handling and the results of HPLC coupled with low- and high-resolution MS and MS/MS analyzers, of ion mobility mass spectrometry and ambient mass spectrometry have been reported and discussed.


Asunto(s)
Fenoles , Espectrometría de Masas en Tándem , Fenoles/análisis , Fenoles/química , Aceite de Oliva/análisis , Aceite de Oliva/química , Fenol/análisis , Cromatografía Líquida de Alta Presión/métodos
2.
Hum Genomics ; 17(1): 57, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420280

RESUMEN

Alzheimer's disease (AD) poses a profound human, social, and economic burden. Previous studies suggest that extra virgin olive oil (EVOO) may be helpful in preventing cognitive decline. Here, we present a network machine learning method for identifying bioactive phytochemicals in EVOO with the highest potential to impact the protein network linked to the development and progression of the AD. A balanced classification accuracy of 70.3 ± 2.6% was achieved in fivefold cross-validation settings for predicting late-stage experimental drugs targeting AD from other clinically approved drugs. The calibrated machine learning algorithm was then used to predict the likelihood of existing drugs and known EVOO phytochemicals to be similar in action to the drugs impacting AD protein networks. These analyses identified the following ten EVOO phytochemicals with the highest likelihood of being active against AD: quercetin, genistein, luteolin, palmitoleate, stearic acid, apigenin, epicatechin, kaempferol, squalene, and daidzein (in the order from the highest to the lowest likelihood). This in silico study presents a framework that brings together artificial intelligence, analytical chemistry, and omics studies to identify unique therapeutic agents. It provides new insights into how EVOO constituents may help treat or prevent AD and potentially provide a basis for consideration in future clinical studies.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Aceite de Oliva/uso terapéutico , Aceite de Oliva/química , Inteligencia Artificial , Aprendizaje Automático
3.
Cell Commun Signal ; 22(1): 309, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38835076

RESUMEN

BACKGROUND: Neuroinflammation is widely acknowledged as a characteristic feature of almost all neurological disorders and specifically in depression- and anxiety-like disorders. In recent years, there has been significant attention on natural compounds with potent anti-inflammatory effects due to their potential in mitigating neuroinflammation and neuroplasticity. METHODS: In the present study, we aimed to evaluate the neuroprotective effects of oleacein (OC), a rare secoiridoid derivative found in extra virgin olive oil. Our goal was to explore the BDNF/TrkB neurotrophic activity of OC and subsequently assess its potential for modulating neuroinflammatory response using human neuroblastoma cells (SH-SY5Y cells) and an in vivo model of depression induced by lipopolysaccharide (LPS)-mediated inflammation. RESULTS: In SH-SY5Y cells, OC exhibited a significant dose-dependent increase in BDNF expression. This enhancement was absent when cells were co-treated with inhibitors of BDNF's receptor TrkB, as well as downstream molecules PI3K and MEK. Whole-transcriptomics analysis revealed that OC upregulated cell cycle-related genes under normal conditions, while downregulating inflammation-associated genes in LPS-induced conditions. Furthermore, surface plasmon resonance (SPR) assays demonstrated that OC exhibited a stronger and more stable binding affinity to TrkB compared to the positive control, 7,8-dihydroxyflavone. Importantly, bioluminescence imaging revealed that a single oral dose of OC significantly increased BDNF expression in the brains of Bdnf-IRES-AkaLuc mice. Furthermore, oral administration of OC at a dosage of 10 mg/kg body weight for 10 days significantly reduced immobility time in the tail suspension test compared to the LPS-treated group. RT-qPCR analysis revealed that OC significantly decreased the expression of pro-inflammatory cytokines Tnfα, Il6, and Il1ß, while simultaneously enhancing Bdnf expression, as well as both pro and mature BDNF protein levels in mice hippocampus. These changes were comparable to those induced by the positive control antidepressant drug fluoxetine. Additionally, microarray analysis of mouse brains confirmed that OC could counteract LPS-induced inflammatory biological events. CONCLUSION: Altogether, our study represents the first report on the potential antineuroinflammatory and antidepressant properties of OC via modulation of BDNF/TrkB neurotrophic activity. This finding underscores the potential of OC as a natural therapeutic agent for depression- and anxiety-related disorders.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Lipopolisacáridos , Receptor trkB , Animales , Humanos , Receptor trkB/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Lipopolisacáridos/farmacología , Ratones , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Línea Celular Tumoral , Monoterpenos Ciclopentánicos/farmacología , Masculino , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratones Endogámicos C57BL , Aceite de Oliva/farmacología , Aceite de Oliva/química , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Inflamación/patología , Aldehídos , Glicoproteínas de Membrana , Fenoles
4.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 1-6, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836689

RESUMEN

This study aimed to investigate the antibacterial and antimicrobial activity of ozone gel against oral biofilms grown on titanium dental implant discs. The experiment used medical grade five titanium discs on which peri-implant isolated biofilms were grown. The experimental groups were control, Streptococcus mutans (S. mutans) and Granulicatella adiacens (G. adiacens), (n = 6). The oral microbes grown on titanium discs were exposed to ozone gel for 3 minutes and the antibacterial activity was assessed by turbidity test and adherence test for the antibiofilm activity test. Bacterial morphology and confluence were investigated by scanning electron microscopy (SEM), (n=3). Two bacterial species were identified from the peri-implant sample, S. mutans and G. adiacens. The results showed that adding ozone to the bacterial biofilm on titanium dental implants did not exhibit significant antibacterial activity against S. mutans. Moreover, there was no significant difference in antibiofilm activity between control and treatment groups. However, significant antibacterial and antibiofilm effect was exhibited by ozone gel against G. adiacens. Ozonated olive oil can be considered as a potential antimicrobial agent for disinfecting dental implant surfaces and treating peri-implantitis.


Asunto(s)
Biopelículas , Implantes Dentales , Aceite de Oliva , Ozono , Periimplantitis , Streptococcus mutans , Ozono/farmacología , Aceite de Oliva/farmacología , Aceite de Oliva/química , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Periimplantitis/microbiología , Periimplantitis/tratamiento farmacológico , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/fisiología , Humanos , Implantes Dentales/microbiología , Titanio/farmacología , Titanio/química , Antibacterianos/farmacología , Microscopía Electrónica de Rastreo , Pruebas de Sensibilidad Microbiana
5.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 59-68, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38814234

RESUMEN

Development of novel functional foods is trending as one of the hot topics in food science and food/beverage industries. In the present study, the anti-diabetic, anti-hyperlipidemic and histo-protective effects of the extra virgin olive oil (EVOO) enriched with the organosulfur diallyl sulfide (DAS) (DAS-rich EVOO) were evaluated in alloxan-induced diabetic mice. The ingestion of EVOO (500µL daily for two weeks) attenuated alloxan-induced elevated glucose, alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase, lactate dehydrogenase (LDH), urea and creatinine. It also normalized the levels of triglycerides (TG), total cholesterols (TC), low-density lipoprotein-cholesterol (LDL-c) and their consequent atherogenic index of plasma (AIP) in diabetic animals. Additionally, EVOO prevented lipid peroxidation (MDA) and reduced the level of hydrogen peroxide (H2O2) in diabetic animals. Concomitantly, it enhanced the activity of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD), reducing thereby tissue oxidative stress injury. The overall histologic (pancreas, liver, and kidney) alterations were also improved after EVOO ingestion. The manifest anti-diabetic, lipid-lowering and histo-protective properties of EVOO were markedly potentiated with DAS-rich EVOO suggesting possible synergistic interactions between DAS and EVOO lipophilic bioactive ingredients. Overall, EVOO and DAS-rich EVOO show promise as functional foods and/or adjuvants for the treatment of diabetes and its complications.


Asunto(s)
Compuestos Alílicos , Diabetes Mellitus Experimental , Hipoglucemiantes , Hipolipemiantes , Aceite de Oliva , Sulfuros , Animales , Aceite de Oliva/química , Aceite de Oliva/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Compuestos Alílicos/farmacología , Compuestos Alílicos/uso terapéutico , Sulfuros/farmacología , Sulfuros/uso terapéutico , Sulfuros/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Ratones , Hipolipemiantes/farmacología , Masculino , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Páncreas/efectos de los fármacos , Páncreas/patología , Páncreas/metabolismo , Glutatión Peroxidasa/metabolismo , Catalasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Superóxido Dismutasa/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Alanina Transaminasa/sangre , Alanina Transaminasa/metabolismo , Aspartato Aminotransferasas/metabolismo , Aspartato Aminotransferasas/sangre , Triglicéridos/sangre , Triglicéridos/metabolismo
6.
Appl Microbiol Biotechnol ; 108(1): 358, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829381

RESUMEN

Biosurfactants are in demand by the global market as natural commodities suitable for incorporation into commercial products or utilization in environmental applications. Fungi are promising producers of these molecules and have garnered interest also for their metabolic capabilities in efficiently utilizing recalcitrant and complex substrates, like hydrocarbons, plastic, etc. Within this framework, biosurfactants produced by two Fusarium solani fungal strains, isolated from plastic waste-contaminated landfill soils, were analyzed. Mycelia of these fungi were grown in the presence of 5% olive oil to drive biosurfactant production. The characterization of the emulsifying and surfactant capacity of these extracts highlighted that two different components are involved. A protein was purified and identified as a CFEM (common in fungal extracellular membrane) containing domain, revealing a good propensity to stabilize emulsions only in its aggregate form. On the other hand, an unidentified cationic smaller molecule exhibits the ability to reduce surface tension. Based on the 3D structural model of the protein, a plausible mechanism for the formation of very stable aggregates, endowed with the emulsifying ability, is proposed. KEY POINTS: • Two Fusarium solani strains are analyzed for their surfactant production. • A cationic surfactant is produced, exhibiting the ability to remarkably reduce surface tension. • An identified protein reveals a good propensity to stabilize emulsions only in its aggregate form.


Asunto(s)
Proteínas Fúngicas , Fusarium , Tensoactivos , Fusarium/metabolismo , Fusarium/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Tensoactivos/metabolismo , Tensoactivos/química , Emulsionantes/metabolismo , Emulsionantes/química , Microbiología del Suelo , Emulsiones/química , Emulsiones/metabolismo , Tensión Superficial , Cisteína/metabolismo , Cisteína/química , Aceite de Oliva/metabolismo , Aceite de Oliva/química , Micelio/metabolismo
7.
Planta Med ; 90(7-08): 554-560, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843795

RESUMEN

A selective Oxone-induced oxidation of oleocanthal and oleacein, the two main secoiridoids of olive oil, to their bis-oxidized products is described. This protocol is based on a Baeyer-Villiger mechanism and the concentration of Oxone in the final solution. The bis-oxidation of the aldehydic compounds could be extended for the synthesis of various semisynthetic analogs. The obtained acids exhibit strong antioxidant activity, being efficient free radical scavengers.


Asunto(s)
Aldehídos , Aceite de Oliva , Oxidación-Reducción , Aldehídos/química , Aceite de Oliva/química , Antioxidantes/química , Antioxidantes/farmacología , Fenoles/química , Furanos/química , Monoterpenos Ciclopentánicos/química
8.
Chem Biodivers ; 21(4): e202301697, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38345352

RESUMEN

Olive oil (OO) is widely recognized as a main component in the Mediterranean diet owing to its unique chemical composition and associated health-promoting properties. This review aimed at providing readers with recent results on OO physicochemical profiling, extraction technology, and quality parameters specified by regulations to ensure authentic products for consumers. Recent research progress on OO adulteration were outlined through a bibliometric analysis mapping using Vosviewer software. As revealed by bibliometric analysis, richness in terms of fatty acids, pigments, polar phenolic compounds, tocopherols, squalene, sterols, and triterpenic compounds justify OO health-promoting properties and increasing demand on its global consumption. OO storage is a critical post-processing operation that must be optimized to avoid oxidation. Owing to its great commercial value on markets, OO is a target to adulteration with other vegetable oils. In this context, different chemometric tools were developed to deal with this problem. To conclude, increasing demand and consumption of OO on the global market is justified by its unique composition. Challenges such as oxidation and adulteration stand out as the main issues affecting the OO market.


Asunto(s)
Aceites de Plantas , Escualeno , Aceite de Oliva/química , Aceites de Plantas/química , Esteroles , Control de Calidad
9.
Chem Biodivers ; 21(2): e202301629, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38109266

RESUMEN

Three Portuguese olive oils with PDO ('Azeite do Alentejo Interior', 'Azeites da Beira Interior' and 'Azeite de Trás-os-Montes') were studied considering their physicochemical quality, antioxidant capacity, oxidative stability, total phenols content, gustatory sensory sensations and Fourier transform infrared (FTIR) spectra. All oils fulfilled the legal thresholds of EVOOs and the PDO's specifications. Olive oils from 'Azeite da Beira Interior' and 'Azeite de Trás-os-Montes' showed greater total phenols contents and antioxidant capacities, while 'Azeites da Beira Interior' presented higher oxidative stabilities. Linear discriminant models were developed using FTIR spectra (transmittance and the 1st and 2nd derivatives), allowing the correct identification of the oils' PDO (100 % sensitivity and specificity, repeated K-fold-CV). This study also revealed that multiple linear regression models, based on FTIR transmittance data, could predict the sweet, bitter, and pungent intensities of the PDO oils (R2 ≥0.979±0.016; RMSE≤0.26±0.05, repeated K-fold-CV). This demonstrates the potential of using FTIR as a non-destructive technique for authenticating oils with PDO.


Asunto(s)
Antioxidantes , Fenoles , Aceite de Oliva/química , Espectroscopía Infrarroja por Transformada de Fourier , Análisis de Fourier , Portugal , Fenoles/análisis , Aceites de Plantas/química
10.
Phytochem Anal ; 35(5): 1134-1141, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38520203

RESUMEN

INTRODUCTION: Olive oil, derived from the olive tree (Olea europaea L.), is used in cooking, cosmetics, and soap production. Due to its high value, some producers adulterate olive oil with cheaper edible oils or fraudulently mislabel oils as olive to increase profitability. Adulterated products can cause allergic reactions in sensitive individuals and can lack compounds which contribute to the perceived health benefits of olive oil, and its corresponding premium price. OBJECTIVE: There is a need for robust methods to rapidly authenticate olive oils. By utilising machine learning models trained on the nuclear magnetic resonance (NMR) spectra of known olive oil and edible oils, samples can be classified as olive and authenticated. While high-field NMRs are commonly used for their superior resolution and sensitivity, they are generally prohibitively expensive to purchase and operate for routine screening purposes. Low-field benchtop NMR presents an affordable alternative. METHODS: We compared the predictive performance of partial least squares discrimination analysis (PLS-DA) models trained on low-field 60 MHz benchtop proton (1H) NMR and high-field 400 MHz 1H NMR spectra. The data were acquired from a sample set consisting of 49 extra virgin olive oils (EVOOs) and 45 other edible oils. RESULTS: We demonstrate that PLS-DA models trained on low-field NMR spectra are highly predictive when classifying EVOOs from other oils and perform comparably to those trained on high-field spectra. We demonstrated that variance was primarily driven by regions of the spectra arising from olefinic protons and ester protons from unsaturated fatty acids in models derived from data at both field strengths.


Asunto(s)
Aceite de Oliva , Espectroscopía de Protones por Resonancia Magnética , Aceite de Oliva/química , Análisis de los Mínimos Cuadrados , Espectroscopía de Protones por Resonancia Magnética/métodos , Aceites de Plantas/química , Aceites de Plantas/análisis , Espectroscopía de Resonancia Magnética/métodos , Olea/química
11.
Sensors (Basel) ; 24(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38676183

RESUMEN

The electronic nose is a non-invasive technology suitable for the analysis of edible oils. One of the practical applications in the olive oil industry is the classification of virgin oils based on their sensory characteristics. Notwithstanding that this technology, at this stage, cannot realistically replace the currently used methods, it is fruitful for a preliminary analysis of the oil quality. This work makes use of this technology to develop a methodology for the detection of the threshold by which an extra-virgin olive oil (EVOO) drops into the virgin olive oil (VOO) category. With this aim, two features were studied: the level of fruitiness level and the type of defect. The results showed a greater influence of the level of fruitiness than the type of defect in the determination of the detection threshold. Furthermore, three of the sensors (S2, S7 and S9) of the commercial e-nose PEN3 were identified as the most discriminating in the classification between EVOO and VOO oils.


Asunto(s)
Nariz Electrónica , Aceite de Oliva , Aceite de Oliva/química , Frutas/química
12.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928048

RESUMEN

Olive oil phenols are recognized as molecules with numerous positive health effects, many of which rely on their antioxidative activity, i.e., the ability to transfer hydrogen to radicals. Proton-coupled electron transfer reactions and hydrogen tunneling are ubiquitous in biological systems. Reactions of olive oil phenols, hydroxytyrosol, tyrosol, oleuropein, oleacein, oleocanthal, homovanillyl alcohol, vanillin, and a few phenolic acids with a DPPH• (2,2-diphenyl-1-picrylhydrazyl) radical in a 1,4-dioxane:water = 95:5 or 99:1 v/v solvent mixture were studied through an experimental kinetic analysis and computational chemistry calculations. The highest rate constants corresponding to the highest antioxidative activity are obtained for the ortho-diphenols hydroxytyrosol, oleuropein, and oleacein. The experimentally determined kinetic isotope effects (KIEs) for hydroxytyrosol, homovanillyl alcohol, and caffeic acid reactions are 16.0, 15.4, and 16.7, respectively. Based on these KIEs, thermodynamic activation parameters, and an intrinsic bond orbital (IBO) analysis along the IRC path calculations, we propose a proton-coupled electron transfer mechanism. The average local ionization energy and electron donor Fukui function obtained for the phenolic compounds show that the most reactive electron-donating sites are associated with π electrons above and below the aromatic ring, in support of the IBO analysis and proposed PCET reaction mechanism. Large KIEs and isotopic values of Arrhenius pre-exponential factor AH/AD determined for the hydroxytyrosol, homovanillyl alcohol, and caffeic acid reactions of 0.6, 1.3, and 0.3, respectively, reveal the involvement of hydrogen tunneling in the process.


Asunto(s)
Hidrógeno , Aceite de Oliva , Fenoles , Protones , Aceite de Oliva/química , Hidrógeno/química , Fenoles/química , Transporte de Electrón , Cinética , Termodinámica , Antioxidantes/química
13.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732097

RESUMEN

The olive oil sector is a fundamental food in the Mediterranean diet. It has been demonstrated that the consumption of extra virgin olive oil (EVOO) with a high content of phenolic compounds is beneficial in the prevention and/or treatment of many diseases. The main objective of this work was to study the relationship between the content of phenolic compounds and the in vitro neuroprotective and anti-inflammatory activity of EVOOs from two PDOs in the province of Granada. To this purpose, the amounts of phenolic compounds were determined by liquid chromatography coupled to mass spectrometry (HPLC-MS) and the inhibitory activity of acetylcholinesterase (AChE) and cyclooxygenase-2 (COX-2) enzymes by spectrophotometric and fluorimetric assays. The main families identified were phenolic alcohols, secoiridoids, lignans, flavonoids, and phenolic acids. The EVOO samples with the highest total concentration of compounds and the highest inhibitory activity belonged to the Picual and Manzanillo varieties. Statistical analysis showed a positive correlation between identified compounds and AChE and COX-2 inhibitory activity, except for lignans. These results confirm EVOO's compounds possess neuroprotective potential.


Asunto(s)
Fármacos Neuroprotectores , Aceite de Oliva , Fenoles , Aceite de Oliva/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fenoles/análisis , Fenoles/química , Fenoles/farmacología , España , Ciclooxigenasa 2/metabolismo , Acetilcolinesterasa/metabolismo , Cromatografía Líquida de Alta Presión , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/química , Flavonoides/análisis , Flavonoides/farmacología , Flavonoides/química
14.
Int J Mol Sci ; 25(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38732269

RESUMEN

New antimicrobial molecules effective against Pseudomonas aeruginosa, known as an antibiotic-resistant "high-priority pathogen", are urgently required because of its ability to develop biofilms related to healthcare-acquired infections. In this study, for the first time, the anti-biofilm and anti-virulence activities of a polyphenolic extract of extra-virgin olive oil as well as purified oleocanthal and oleacein, toward P. aeruginosa clinical isolates were investigated. The main result of our study was the anti-virulence activity of the mixture of oleacein and oleocanthal toward multidrug-resistant and intermediately resistant strains of P. aeruginosa isolated from patients with ventilator-associated pneumonia or surgical site infection. Specifically, the mixture of oleacein (2.5 mM)/oleocanthal (2.5 mM) significantly inhibited biofilm formation, alginate and pyocyanin production, and motility in both P. aeruginosa strains (p < 0.05); scanning electron microscopy analysis further evidenced its ability to inhibit bacterial cell adhesion as well as the production of the extracellular matrix. In conclusion, our results suggest the potential application of the oleacein/oleocanthal mixture in the management of healthcare-associated P. aeruginosa infections, particularly in the era of increasing antimicrobial resistance.


Asunto(s)
Aldehídos , Antibacterianos , Biopelículas , Monoterpenos Ciclopentánicos , Aceite de Oliva , Fenoles , Pseudomonas aeruginosa , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Pseudomonas aeruginosa/efectos de los fármacos , Aceite de Oliva/química , Aceite de Oliva/farmacología , Fenoles/farmacología , Fenoles/química , Aldehídos/farmacología , Aldehídos/química , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Adhesión Bacteriana/efectos de los fármacos
15.
J Environ Manage ; 351: 119861, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142600

RESUMEN

Olive oil mill wastewater (OMW) is an environmental concern in olive oil producers' regions due to its use in agricultural soils as an organic amendment. However, OMW can also be used as organic fertilizer due to their high organic matter and nutrient levels, but its use, when it occurs without environmental management, can cause serious environmental implications for soils and waters. This work evaluated the impact of different OMW levels on a set of physicochemical parameters from an agricultural vertisol where wheat grew (Triticum aestivum L var. Douma 1). A set of physicochemical parameters were conducted before adding different levels of OMW (0, 5, 10 and 15 L m-2) at two soil depths (0-30 and 30-60 cm) and for the two growing seasons to determine: i) the effect of OMW treatments on the studied physicochemical soil properties (bulk density, soil porosity, soil pH, electrical conductivity and organic matter), ii) available primary (N, P, K) and secondary macronutrients (Ca, Mg and Na), ii) micronutrients (Cu Fe, Mn and Zn), and iv) available heavy metals (Cd and Pb). The results indicated that soil physicochemical parameters were slightly improved, mainly due to improvement in organic matter, macro- and micronutrients, usually proportionally to the olive mill wastewater dose. Cadmium and Pb were within the permissible limits. The increased OMW had different behaviour on the soil nutritional balances of different elements, leading to nutrient imbalances, although in some cases, they were improved. However, the plant growth was not affected, and it was improved under 10 L m-2 and 15 L m-2 doses. The results offer valuable data about the use of OMW as organic fertilizer for crops and their potential impact on soil properties.


Asunto(s)
Metales Pesados , Olea , Aguas Residuales , Suelo/química , Aceite de Oliva/química , Fertilizantes , Plomo , Siria , Nutrientes , Micronutrientes
16.
Molecules ; 29(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474623

RESUMEN

Extra virgin olive oil (EVOO) is recognized for its numerous health benefits, attributed to its rich phenolic components. NMR has emerged as a prevalent technique for precisely identifying these compounds. Among Mediterranean countries, Greece stands as the third-largest producer of olives, with the Epirus region notably advancing in olive cultivation, contributing significantly to the dynamic growth of the region. In this study, an NMR method was employed based on the acquisition of a 1H NMR spectrum along with multiple resonant suppression in order to increase the sensitivity. Using the above method, 198 samples of extra virgin olive oil, primarily sourced from the Epirus region, were analyzed, and both the qualitative and quantitative aspects of the phenolic compounds were obtained. In addition, we examined the effects of various factors such as variety, harvest month, and region origin on the phenolic compounds' concentration. The results revealed an average total phenolic content of 246 mg/kg, closely approaching the EU health claim limit of 250 mg/kg. Approximately 15% of the samples were confidently characterized as high-phenolic olive oil. The highest concentrations were observed in the Thesprotia samples, with several Lianolia varieties exceeding the total phenolic content of 400 mg/kg. Statistical tests demonstrated a significant influence of the olive variety and the month of fruit harvest on phenolic component concentration, followed by the region of origin. A very strong correlation was noted between the total phenolics content and the levels of oleocanthal and oleacein, with a correlation coefficient (r) of 0.924. Upon optimization of all factors affecting olive oil quality, the majority of the EVOOs from the Epirus region have the potential to be characterized as high in phenolic content.


Asunto(s)
Olea , Aceite de Oliva/química , Grecia , Olea/química , Espectroscopía de Resonancia Magnética , Imagen por Resonancia Magnética
17.
Molecules ; 29(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38474654

RESUMEN

Olive oil and herbs, two key components of the Mediterranean diet, are known for their beneficial effects on humans. In our study, we incorporated aromatic and medicinal herbs into local monovarietal olive oils via maceration procedures for enrichment. We identified the herbal-derived ingredients that migrate to olive oils and contribute positively to their total phenolic content and functional properties, such as radical scavenging activity. Thus, we characterized the essential oil composition of the aromatic herbs (GC-MS), and we determined the phenolic content and antioxidant capacity of the additives and the virgin olive oils before and after enrichment. The herbal phenolic compounds were analyzed by LC-LTQ/Orbitrap HRMS. We found that olive oils infused with Origanum vulgare ssp. hirtum, Rosmarinus officinalis and Salvia triloba obtained an increased phenolic content, by approximately 1.3 to 3.4 times, in comparison with the untreated ones. Infusion with S. triloba led to a significantly higher antioxidant capacity. Rosmarinic acid, as well as phenolic glucosides, identified in the aromatic herbs, were not incorporated into olive oils due to their high polarity. In contrast, phenolic aglycones and diterpenes from R. officinalis and S. triloba migrated to the enriched olive oils, leading to a significant increase in their phenolic content and to an improvement in their free radical scavenging capacity.


Asunto(s)
Antioxidantes , Plantas Medicinales , Humanos , Antioxidantes/química , Aceite de Oliva/química , Fitoquímicos , Ácido Rosmarínico , Aceites de Plantas/química
18.
Molecules ; 29(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276603

RESUMEN

Extra virgin olive oil (EVOO) is a valuable product and is highly appreciated by consumers for its great nutritional value. However, to date, there has been a lack of uniform systems capable of ranking the nutritional value of EVOO based on its chemical composition in terms of macro- and micronutrients (including phenolic compounds and tocopherols). The aim of this study was to propose a scoring algorithm to rank the nutritional value of EVOO samples, considering their chemical composition in macro- and micronutrients and their sensitivity to oxidation phenomena. Data from more than 1000 EVOO samples were used to assess the variability of the data, considering the selected negative parameters (free acidity, peroxide value, spectrophotometric indices) and positive components (composition in tocopherols via HPLC-DAD, phenolic compounds via HPLC-DAD, and fatty acids via GC-MS) so as to ensure the universal validity of the scoring algorithm. The dataset included samples from the main producing countries worldwide, in addition to Australia, across several production years; data were selected to represent different production realities. A mathematical model was set up for each chemical component, resulting in six variable values. By combining these values with a dimensionless constant value, the algorithm for computing the nutritional value score (NVS) was defined. It allows the nutritional value of an oil to be ranked on a scale of 0 to 100 based on its chemical composition. The algorithm was then successfully tested using chemical data from about 300 EVOO samples obtained from laboratories from different Italian regions. The proposed NVS is a simple and objective tool for scoring the nutritional value of an EVOO, easy to understand for both producers and consumers.


Asunto(s)
Olea , Aceite de Oliva/química , Olea/química , Fenoles/química , Tocoferoles/análisis , Valor Nutritivo , Micronutrientes
19.
Molecules ; 29(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38792161

RESUMEN

Olive oil production is characterized by large amounts of waste, and yet is considerably highly valued. Olive pomace can serve as a cheap source of bioactive compounds (BACs) with important antioxidant activity. Novel technologies like Pulsed Electric Fields (PEF) and High Pressure (HP) and microwave (MW) processing are considered green alternatives for the recovery of BACs. Different microwave (150-600 W), PEF (1-5 kV/cm field strength, 100-1500 pulses/15 µs width), and HP (250-650 MPa) conditions, in various product/solvent ratios, methanol concentrations, extraction temperatures, and processing times were investigated. Results indicated that the optimal MW extraction conditions were 300 W at 50 °C for 5 min using 60% v/v methanol with a product/solvent ratio of 1:10 g/mL. Similarly, the mix of 40% v/v methanol with olive pomace, treated at 650 MPa for the time needed for pressure build-up (1 min) were considered as optimal extraction conditions in the case of HP, while for PEF the optimal conditions were 60% v/v methanol with a product/solvent ratio of 1:10 g/mL, treated at 5000 pulses, followed by 1 h extraction under stirring conditions. Therefore, these alternative extraction technologies could assist the conventional practice in minimizing waste production and simultaneously align with the requirements of the circular bioeconomy concept.


Asunto(s)
Antioxidantes , Electricidad , Microondas , Olea , Presión , Olea/química , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Extractos Vegetales/química , Solventes/química , Aceite de Oliva/química , Metanol/química
20.
Molecules ; 29(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731426

RESUMEN

The use of by-products as a source of bioactive compounds with economic added value is one of the objectives of a circular economy. The olive oil industry is a source of olive pomace as a by-product. The olive pomace used in the present study was the exhausted olive pomace, which is the by-product generated from the air drying and subsequent hexane extraction of residual oil from the olive pomace. The objective was to extract bioactive compounds remaining in this by-product. Various types of green extraction were used in the present study: solvent extraction (water and hydroalcoholic); ultrasound-assisted extraction; Ultra-Turrax-assisted extraction; and enzyme-assisted extraction (cellulase; viscoenzyme). The phenolic profile of each extract was determined using HPLC-DAD and the total phenolic content (TPC) and antioxidant activity (ABTS, DPPH, and ORAC) were determined as well. The results showed significant differences in the yield of extraction among the different methods used, with the enzyme-assisted, with or without ultrasound, extraction presenting the highest values. The ultrasound-assisted hydroethanolic extraction (USAHE) was the method that resulted in the highest content of the identified phenolic compounds: 2.021 ± 0.29 mg hydroxytyrosol/100 mg extract, 0.987 ± 0.09 mg tyrosol/100 mg extract, and 0.121 ± 0.005 mg catechol/100 mg extract. The conventional extraction with water at 50 °C produced the best results for TPC and antioxidant activity of the extracts. The extracts from the USAHE were able to inhibit Gram-positive bacteria, especially Bacillus cereus, showing 67.2% inhibition at 3% extract concentration.


Asunto(s)
Antioxidantes , Aceite de Oliva , Extractos Vegetales , Polifenoles , Aceite de Oliva/química , Polifenoles/aislamiento & purificación , Polifenoles/química , Polifenoles/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Tecnología Química Verde/métodos , Olea/química , Cromatografía Líquida de Alta Presión/métodos , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA