Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.229
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 165(7): 1708-1720, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27264604

RESUMEN

In the mammalian intestine, crypts of Leiberkühn house intestinal epithelial stem/progenitor cells at their base. The mammalian intestine also harbors a diverse array of microbial metabolite compounds that potentially modulate stem/progenitor cell activity. Unbiased screening identified butyrate, a prominent bacterial metabolite, as a potent inhibitor of intestinal stem/progenitor proliferation at physiologic concentrations. During homeostasis, differentiated colonocytes metabolized butyrate likely preventing it from reaching proliferating epithelial stem/progenitor cells within the crypt. Exposure of stem/progenitor cells in vivo to butyrate through either mucosal injury or application to a naturally crypt-less host organism led to inhibition of proliferation and delayed wound repair. The mechanism of butyrate action depended on the transcription factor Foxo3. Our findings indicate that mammalian crypt architecture protects stem/progenitor cell proliferation in part through a metabolic barrier formed by differentiated colonocytes that consume butyrate and stimulate future studies on the interplay of host anatomy and microbiome metabolism.


Asunto(s)
Bacterias/metabolismo , Butiratos/metabolismo , Colon/citología , Colon/microbiología , Microbioma Gastrointestinal , Células Madre/metabolismo , Acil-CoA Deshidrogenasa/deficiencia , Acil-CoA Deshidrogenasa/genética , Animales , Proliferación Celular , Intestino Delgado/citología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Oxidación-Reducción , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Células Madre/citología , Pez Cebra
2.
Cell ; 167(7): 1705-1718.e13, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27984722

RESUMEN

Metformin has utility in cancer prevention and treatment, though the mechanisms for these effects remain elusive. Through genetic screening in C. elegans, we uncover two metformin response elements: the nuclear pore complex (NPC) and acyl-CoA dehydrogenase family member-10 (ACAD10). We demonstrate that biguanides inhibit growth by inhibiting mitochondrial respiratory capacity, which restrains transit of the RagA-RagC GTPase heterodimer through the NPC. Nuclear exclusion renders RagC incapable of gaining the GDP-bound state necessary to stimulate mTORC1. Biguanide-induced inactivation of mTORC1 subsequently inhibits growth through transcriptional induction of ACAD10. This ancient metformin response pathway is conserved from worms to humans. Both restricted nuclear pore transit and upregulation of ACAD10 are required for biguanides to reduce viability in melanoma and pancreatic cancer cells, and to extend C. elegans lifespan. This pathway provides a unified mechanism by which metformin kills cancer cells and extends lifespan, and illuminates potential cancer targets. PAPERCLIP.


Asunto(s)
Metformina/farmacología , Acil-CoA Deshidrogenasa/genética , Envejecimiento , Animales , Tamaño Corporal , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Humanos , Longevidad , Diana Mecanicista del Complejo 1 de la Rapamicina , Mitocondrias/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/metabolismo , Neoplasias/tratamiento farmacológico , Poro Nuclear/metabolismo , Fosforilación Oxidativa , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo
3.
Cell ; 161(5): 1152-1163, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25981666

RESUMEN

Cells adapt to temperature shifts by adjusting levels of lipid desaturation and membrane fluidity. This fundamental process occurs in nearly all forms of life, but its mechanism in eukaryotes is unknown. We discovered that the evolutionarily conserved Caenorhabditis elegans gene acdh-11 (acyl-CoA dehydrogenase [ACDH]) facilitates heat adaptation by regulating the lipid desaturase FAT-7. Human ACDH deficiency causes the most common inherited disorders of fatty acid oxidation, with syndromes that are exacerbated by hyperthermia. Heat upregulates acdh-11 expression to decrease fat-7 expression. We solved the high-resolution crystal structure of ACDH-11 and established the molecular basis of its selective and high-affinity binding to C11/C12-chain fatty acids. ACDH-11 sequesters C11/C12-chain fatty acids and prevents these fatty acids from activating nuclear hormone receptors and driving fat-7 expression. Thus, the ACDH-11 pathway drives heat adaptation by linking temperature shifts to regulation of lipid desaturase levels and membrane fluidity via an unprecedented mode of fatty acid signaling.


Asunto(s)
Acil-CoA Deshidrogenasa/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Ácidos Grasos/metabolismo , Acil-CoA Deshidrogenasa/química , Adaptación Fisiológica , Secuencia de Aminoácidos , Animales , Proteínas de Caenorhabditis elegans/química , Calor , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia
4.
Cell ; 161(5): 962-963, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26000475

RESUMEN

How do cells maintain the fluidity of cellular membrane in response to temperature fluctuation? In this issue of Cell, Ma et al. identify a regulatory circuit involving a heat-induced acyl-CoA dehydrogenase that controls the lipid saturation level and the fluidity of cellular membranes by transcriptionally regulating a lipid desaturase.


Asunto(s)
Acil-CoA Deshidrogenasa/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Ácidos Grasos/metabolismo , Animales
5.
Cell ; 153(1): 240-52, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23540701

RESUMEN

Dietary composition has major effects on physiology. Here, we show that developmental rate, reproduction, and lifespan are altered in C. elegans fed Comamonas DA1877 relative to those fed a standard E. coli OP50 diet. We identify a set of genes that change in expression in response to this diet and use the promoter of one of these (acdh-1) as a dietary sensor. Remarkably, the effects on transcription and development occur even when Comamonas DA1877 is diluted with another diet, suggesting that Comamonas DA1877 generates a signal that is sensed by the nematode. Surprisingly, the developmental effect is independent from TOR and insulin signaling. Rather, Comamonas DA1877 affects cyclic gene expression during molting, likely through the nuclear hormone receptor NHR-23. Altogether, our findings indicate that different bacteria elicit various responses via distinct mechanisms, which has implications for diseases such as obesity and the interactions between the human microbiome and intestinal cells.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Insulina/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Acil-CoA Deshidrogenasa/metabolismo , Animales , Betaproteobacteria , Caenorhabditis elegans/metabolismo , Dieta , Escherichia coli , Expresión Génica , Longevidad , Muda , Receptores Citoplasmáticos y Nucleares/metabolismo , Inanición , Transcriptoma
6.
Cell ; 153(1): 253-66, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23540702

RESUMEN

Expression profiles are tailored according to dietary input. However, the networks that control dietary responses remain largely uncharacterized. Here, we combine forward and reverse genetic screens to delineate a network of 184 genes that affect the C. elegans dietary response to Comamonas DA1877 bacteria. We find that perturbation of a mitochondrial network composed of enzymes involved in amino acid metabolism and the TCA cycle affects the dietary response. In humans, mutations in the corresponding genes cause inborn diseases of amino acid metabolism, most of which are treated by dietary intervention. We identify several transcription factors (TFs) that mediate the changes in gene expression upon metabolic network perturbations. Altogether, our findings unveil a transcriptional response system that is poised to sense dietary cues and metabolic imbalances, illustrating extensive communication between metabolic networks in the mitochondria and gene regulatory networks in the nucleus.


Asunto(s)
Caenorhabditis elegans/metabolismo , Redes Reguladoras de Genes , Redes y Vías Metabólicas , Acil-CoA Deshidrogenasa/metabolismo , Animales , Betaproteobacteria , Proteínas de Caenorhabditis elegans/metabolismo , Dieta , Escherichia coli , Humanos , Insulina/metabolismo , Errores Innatos del Metabolismo , Mitocondrias/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Interferencia de ARN , Transducción de Señal , Factores de Transcripción/metabolismo
7.
J Biol Chem ; 300(8): 107549, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002673

RESUMEN

Porcine epidemic diarrhea virus (PEDV) belongs to the Alphacoronavirus genus within the Coronavirus family, causing severe watery diarrhea in piglets and resulting in significant economic losses. Medium-chain acyl-CoA dehydrogenase (ACADM) is an enzyme participating in lipid metabolism associated with metabolic diseases and pathogen infections. Nonetheless, the precise role of ACADM in regulating PEDV replication remains uncertain. In this study, we identified ACADM as the host binding partner of NSP4 via immunoprecipitation-mass spectrometry analysis. The interaction between ACADM and NSP4 was subsequently corroborated through coimmunoprecipitation and laser confocal microscopy. Following this, a notable upsurge in ACADM expression was observed during PEDV infection. ACADM overexpression effectively inhibited virus replication, whereas ACADM knockdown facilitated virus replication, suggesting ACADM has negative regulation effect on PEDV infection. Furthermore, we demonstrated fatty acid ß-oxidation affected PEDV replication for the first time, inhibition of fatty acid ß-oxidation reduced PEDV replication. ACADM decreased PEDV-induced ß-oxidation to suppress PEDV replication. Mechanistically, ACADM reduced cellular free fatty acid levels and subsequent ß-oxidation by hindering AMPK-mediated lipophagy. In summary, our results reveal that ACADM plays a negative regulatory role in PEDV replication by regulating lipid metabolism. The present study introduces a novel approach for the prevention and control of PEDV infection.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Oxidación-Reducción , Virus de la Diarrea Epidémica Porcina , Replicación Viral , Virus de la Diarrea Epidémica Porcina/fisiología , Animales , Chlorocebus aethiops , Células Vero , Proteínas Quinasas Activadas por AMP/metabolismo , Porcinos , Humanos , Acil-CoA Deshidrogenasa/metabolismo , Acil-CoA Deshidrogenasa/genética , Metabolismo de los Lípidos , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Ácidos Grasos/metabolismo , Células HEK293 , Activación Enzimática
8.
Hum Mol Genet ; 32(14): 2347-2356, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37162351

RESUMEN

Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most common inherited disorder of mitochondrial fatty acid ß-oxidation (FAO) in humans. Patients exhibit clinical episodes often associated with fasting. Symptoms include hypoketotic hypoglycemia and Reye-like episodes. With limited treatment options, we explored the use of human MCAD (hMCAD) mRNA in fibroblasts from patients with MCAD deficiency to provide functional MCAD protein and reverse the metabolic block. Transfection of hMCAD mRNA into MCAD- deficient patient cells resulted in an increased MCAD protein that localized to mitochondria, concomitant with increased enzyme activity in cell extracts. The therapeutic hMCAD mRNA-lipid nanoparticle (LNP) formulation was also tested in vivo in Acadm-/- mice. Administration of multiple intravenous doses of the hMCAD mRNA-LNP complex (LNP-MCAD) into Acadm-/- mice produced a significant level of MCAD protein with increased enzyme activity in liver, heart and skeletal muscle homogenates. Treated Acadm-/- mice were more resistant to cold stress and had decreased plasma levels of medium-chain acylcarnitines compared to untreated animals. Furthermore, hepatic steatosis in the liver from treated Acadm-/- mice was reduced compared to untreated ones. Results from this study support the potential therapeutic value of hMCAD mRNA-LNP complex treatment for MCAD deficiency.


Asunto(s)
Acil-CoA Deshidrogenasas , Fibroblastos , Humanos , Ratones , Animales , Acil-CoA Deshidrogenasa/genética , Acil-CoA Deshidrogenasa/metabolismo , ARN Mensajero/genética , Modelos Animales de Enfermedad , Fibroblastos/metabolismo
9.
Am J Physiol Endocrinol Metab ; 326(5): E735-E746, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38597830

RESUMEN

Most studies on fat appetite have focused on long-chain triglycerides (LCTs) due to their obesogenic properties. Medium-chain triglycerides (MCTs), conversely, exhibit antiobesogenic effects; however, the regulation of MCT intake remains elusive. Here, we demonstrate that mice can distinguish between MCTs and LCTs, and the specific appetite for MCTs is governed by hepatic ß-oxidation. We generated liver-specific medium-chain acyl-CoA dehydrogenase (MCAD)-deficient (MCADL-/-) mice and analyzed their preference for MCT and LCT solutions using glyceryl trioctanoate (C8-TG), glyceryl tridecanoate (C10-TG), corn oil, and lard oil in two-bottle choice tests conducted over 8 days. In addition, we used lick microstructure analyses to evaluate the palatability and appetite for MCT and LCT solutions. Finally, we measured the expression levels of genes associated with fat ingestion (Galanin, Qrfp, and Nmu) in the hypothalamus 2 h after oral gavage of fat. Compared with control mice, MCADL-/- mice exhibited a significantly reduced preference for MCT solutions, with no alteration in the preference for LCTs. Lick analysis revealed that MCADL-/- mice displayed a significantly decreased appetite for MCT solutions only while the palatability of both MCT and LCT solutions remained unaffected. Hypothalamic Galanin expression in control mice was elevated by oral gavage of C8-TG but not by LCTs, and this response was abrogated in MCADL-/- mice. In summary, our data suggest that hepatic ß-oxidation is required for MCT-specific appetite but not for LCT-specific appetite. The induction of hypothalamic galanin upon MCT ingestion, dependent on hepatic ß-oxidation, could be involved in the regulation of MCT-specific appetite.NEW & NOTEWORTHY Whether and how medium-chain triglyceride (MCT) intake is regulated remains unknown. Here, we showed that mice can discriminate between MCTs and LCTs. Hepatic ß-oxidation participates in MCT-specific appetite, and hypothalamic galanin may be one of the factors that regulate MCT intake. Because of the antiobesity effects of MCTs, studying MCT-specific appetite may help combat obesity by promoting the intake of MCTs instead of LCTs.


Asunto(s)
Acil-CoA Deshidrogenasa , Apetito , Ácidos Grasos , Hígado , Ratones Noqueados , Oxidación-Reducción , Triglicéridos , Animales , Triglicéridos/metabolismo , Ratones , Oxidación-Reducción/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Masculino , Ácidos Grasos/metabolismo , Apetito/efectos de los fármacos , Apetito/fisiología , Acil-CoA Deshidrogenasa/metabolismo , Acil-CoA Deshidrogenasa/genética , Ratones Endogámicos C57BL , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos
10.
J Inherit Metab Dis ; 47(4): 731-745, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38356271

RESUMEN

Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most prevalent mitochondrial fatty acid ß-oxidation disorder. In this study, we assessed the variability of the lipid profile in MCADD by analysing plasma samples obtained from 25 children with metabolically controlled MCADD (following a normal diet with frequent feeding and under l-carnitine supplementation) and 21 paediatric control subjects (CT). Gas chromatography-mass spectrometry was employed for the analysis of esterified fatty acids, while high-resolution C18-liquid chromatography-mass spectrometry was used to analyse lipid species. We identified a total of 251 lipid species belonging to 15 distinct lipid classes. Principal component analysis revealed a clear distinction between the MCADD and CT groups. Univariate analysis demonstrated that 126 lipid species exhibited significant differences between the two groups. The lipid species that displayed the most pronounced variations included triacylglycerols and phosphatidylcholines containing saturated and monounsaturated fatty acids, specifically C14:0 and C16:0, which were found to be more abundant in MCADD. The observed changes in the plasma lipidome of children with non-decompensated MCADD suggest an underlying alteration in lipid metabolism. Therefore, longitudinal monitoring and further in-depth investigations are warranted to better understand whether such alterations are specific to MCADD children and their potential long-term impacts.


Asunto(s)
Acil-CoA Deshidrogenasa , Errores Innatos del Metabolismo Lipídico , Lipidómica , Fosfolípidos , Triglicéridos , Humanos , Errores Innatos del Metabolismo Lipídico/sangre , Lipidómica/métodos , Niño , Masculino , Femenino , Triglicéridos/sangre , Fosfolípidos/sangre , Preescolar , Acil-CoA Deshidrogenasa/deficiencia , Lactante , Adolescente , Metabolismo de los Lípidos , Estudios de Casos y Controles , Ácidos Grasos/sangre , Ácidos Grasos/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Carnitina/sangre
11.
BMC Pediatr ; 24(1): 37, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38216926

RESUMEN

BACKGROUND: Generating rigorous evidence to inform care for rare diseases requires reliable, sustainable, and longitudinal measurement of priority outcomes. Having developed a core outcome set for pediatric medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, we aimed to assess the feasibility of prospective measurement of these core outcomes during routine metabolic clinic visits. METHODS: We used existing cohort data abstracted from charts of 124 children diagnosed with MCAD deficiency who participated in a Canadian study which collected data from birth to a maximum of 11 years of age to investigate the frequency of clinic visits and quality of metabolic chart data for selected outcomes. We recorded all opportunities to collect outcomes from the medical chart as a function of visit rate to the metabolic clinic, by treatment centre and by child age. We applied a data quality framework to evaluate data based on completeness, conformance, and plausibility for four core MCAD outcomes: emergency department use, fasting time, metabolic decompensation, and death. RESULTS: The frequency of metabolic clinic visits decreased with increasing age, from a rate of 2.8 visits per child per year (95% confidence interval, 2.3-3.3) among infants 2 to 6 months, to 1.0 visit per child per year (95% confidence interval, 0.9-1.2) among those ≥ 5 years of age. Rates of emergency department visits followed anticipated trends by child age. Supplemental findings suggested that some emergency visits occur outside of the metabolic care treatment centre but are not captured. Recommended fasting times were updated relatively infrequently in patients' metabolic charts. Episodes of metabolic decompensation were identifiable but required an operational definition based on acute manifestations most commonly recorded in the metabolic chart. Deaths occurred rarely in these patients and quality of mortality data was not evaluated. CONCLUSIONS: Opportunities to record core outcomes at the metabolic clinic occur at least annually for children with MCAD deficiency. Methods to comprehensively capture emergency care received at outside institutions are needed. To reduce substantial heterogeneous recording of core outcome across treatment centres, improved documentation standards are required for recording of recommended fasting times and a consensus definition for metabolic decompensations needs to be developed and implemented.


Asunto(s)
Errores Innatos del Metabolismo Lipídico , Evaluación de Resultado en la Atención de Salud , Niño , Humanos , Acil-CoA Deshidrogenasa , Canadá , Estudios Prospectivos , Preescolar
12.
BMC Biol ; 21(1): 184, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667308

RESUMEN

BACKGROUND: Monogenetic inborn errors of metabolism cause a wide phenotypic heterogeneity that may even differ between family members carrying the same genetic variant. Computational modelling of metabolic networks may identify putative sources of this inter-patient heterogeneity. Here, we mainly focus on medium-chain acyl-CoA dehydrogenase deficiency (MCADD), the most common inborn error of the mitochondrial fatty acid oxidation (mFAO). It is an enigma why some MCADD patients-if untreated-are at risk to develop severe metabolic decompensations, whereas others remain asymptomatic throughout life. We hypothesised that an ability to maintain an increased free mitochondrial CoA (CoASH) and pathway flux might distinguish asymptomatic from symptomatic patients. RESULTS: We built and experimentally validated, for the first time, a kinetic model of the human liver mFAO. Metabolites were partitioned according to their water solubility between the bulk aqueous matrix and the inner membrane. Enzymes are also either membrane-bound or in the matrix. This metabolite partitioning is a novel model attribute and improved predictions. MCADD substantially reduced pathway flux and CoASH, the latter due to the sequestration of CoA as medium-chain acyl-CoA esters. Analysis of urine from MCADD patients obtained during a metabolic decompensation showed an accumulation of medium- and short-chain acylcarnitines, just like the acyl-CoA pool in the MCADD model. The model suggested some rescues that increased flux and CoASH, notably increasing short-chain acyl-CoA dehydrogenase (SCAD) levels. Proteome analysis of MCADD patient-derived fibroblasts indeed revealed elevated levels of SCAD in a patient with a clinically asymptomatic state. This is a rescue for MCADD that has not been explored before. Personalised models based on these proteomics data confirmed an increased pathway flux and CoASH in the model of an asymptomatic patient compared to those of symptomatic MCADD patients. CONCLUSIONS: We present a detailed, validated kinetic model of mFAO in human liver, with solubility-dependent metabolite partitioning. Personalised modelling of individual patients provides a novel explanation for phenotypic heterogeneity among MCADD patients. Further development of personalised metabolic models is a promising direction to improve individualised risk assessment, management and monitoring for inborn errors of metabolism.


Asunto(s)
Errores Innatos del Metabolismo Lipídico , Metabolismo de los Lípidos , Humanos , Acil-CoA Deshidrogenasa/genética , Coenzima A , Errores Innatos del Metabolismo Lipídico/genética
13.
J Biol Phys ; 50(1): 89-118, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38103157

RESUMEN

Acyl-CoA dehydrogenase deficiency (ACAD) is an inherited and potentially fatal disorder with variable clinical symptoms. The relationship between pathogenicity and deleterious point mutations is investigated here in ACAD structures of short (SCAD) and medium-chain (MCAD) types. Structures and dynamic features of native and mutant forms of enzymes models were compared. A total of 2.88 µs molecular dynamics simulations were performed at four different temperatures. Total energy, RMSD, protein ligand interactions and affinity, RMSF measures, secondary structure changes, and important interactions were studied. Mutations in the three main domains of ACADs are pathogenic, while those located at linker turns are not. Mutations affect mostly tetramer formations, secondary structures, and many contacts and interactions. In R206H (MCAD mutant) which is experimentally known to cause a huge turnover decrease, the lack of a single H-bond between substrate and FAD was observed. Secondary structures showed temperature-dependent changes, and SCAD activity was found to be highly correlated to the enzyme helix 3-10 content. Finally, RMSF patterns pointed to one important loop that maintains the substrate close to the active site and is a cause of substrate wobbling upon mutation. Despite similar structure, function, and cellular location, SCAD and MCAD may have different optimum temperatures that are related to the structure taken at that specific temperature. In conclusion, new insight has been provided on the effect of various SCAD and MCAD pathogenic mutations on the structure and dynamical features of the enzymes.


Asunto(s)
Errores Innatos del Metabolismo Lipídico , Mutación Puntual , Humanos , Virulencia , Acil-CoA Deshidrogenasa/química , Acil-CoA Deshidrogenasa/genética , Errores Innatos del Metabolismo Lipídico/genética , Estructura Secundaria de Proteína
14.
Int J Mol Sci ; 25(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39201818

RESUMEN

The Yak (Bos grunniens) is a special breed of livestock predominantly distributed in the Qinghai-Tibet Plateau of China. Intramuscular fat (IMF) content in beef cattle is a vital indicator of meat quality. In this study, RNA-Seq and Protein-Seq were respectively employed to sequence the transcriptome and proteome of the longissimus dorsi (LD) tissue from 4-year-old yaks with significant differences in IMF content under the same fattening conditions. Five overlapping genes (MYL3, ACADS, L2HGDH, IGFN1, and ENSBGRG00000000-926) were screened using combined analysis. Functional verification tests demonstrated that the key gene ACADS inhibited yak intramuscular preadipocyte (YIMA) differentiation and proliferation, promoted mitochondrial biogenesis gene expression, and increased the mitochondrial membrane potential (MMP). Furthermore, co-transfection experiments further demonstrated that interfering with ACADS reversed the effect of PPARα agonists in promoting lipid differentiation. In conclusion, ACADS potentially inhibits lipid deposition in YIAMs by regulating the PPARα signalling pathway. These findings offer insights into the molecular mechanisms underlying yak meat quality.


Asunto(s)
Músculo Esquelético , Animales , Bovinos , Músculo Esquelético/metabolismo , Adipocitos/metabolismo , Adipocitos/citología , Transcriptoma , Diferenciación Celular , Tejido Adiposo/metabolismo , Metabolismo de los Lípidos , Acil-CoA Deshidrogenasa/genética , Acil-CoA Deshidrogenasa/metabolismo , Proteoma/metabolismo , Multiómica
15.
Gastroenterology ; 162(3): 828-843.e11, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34780722

RESUMEN

BACKGROUND & AIMS: Polygenic and environmental factors are underlying causes of inflammatory bowel disease (IBD). We hypothesized that integration of the genetic loci controlling a metabolite's abundance, with known IBD genetic susceptibility loci, may help resolve metabolic drivers of IBD. METHODS: We measured the levels of 1300 metabolites in the serum of 484 patients with ulcerative colitis (UC) and 464 patients with Crohn's disease (CD) and 365 controls. Differential metabolite abundance was determined for disease status, subtype, clinical and endoscopic disease activity, as well as IBD phenotype including disease behavior, location, and extent. To inform on the genetic basis underlying metabolic diversity, we integrated metabolite and genomic data. Genetic colocalization and Mendelian randomization analyses were performed using known IBD risk loci to explore whether any metabolite was causally associated with IBD. RESULTS: We found 173 genetically controlled metabolites (metabolite quantitative trait loci, 9 novel) within 63 non-overlapping loci (7 novel). Furthermore, several metabolites significantly associated with IBD disease status and activity as defined using clinical and endoscopic indexes. This constitutes a resource for biomarker discovery and IBD biology insights. Using this resource, we show that a novel metabolite quantitative trait locus for serum butyrate levels containing ACADS was not supported as causal for IBD; replicate the association of serum omega-6 containing lipids with the fatty acid desaturase 1/2 locus and identify these metabolites as causal for CD through Mendelian randomization; and validate a novel association of serum plasmalogen and TMEM229B, which was predicted as causal for CD. CONCLUSIONS: An exploratory analysis combining genetics and unbiased serum metabolome surveys can reveal novel biomarkers of disease activity and potential mediators of pathology in IBD.


Asunto(s)
Acil-CoA Deshidrogenasa/genética , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Butiratos/sangre , Estudios de Casos y Controles , Niño , Preescolar , Colitis Ulcerosa/sangre , Colitis Ulcerosa/tratamiento farmacológico , Enfermedad de Crohn/sangre , Enfermedad de Crohn/tratamiento farmacológico , Estudios Transversales , Heces/química , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Células HEK293 , Humanos , Masculino , Análisis de la Aleatorización Mendeliana , Metaboloma , Persona de Mediana Edad , Plasmalógenos/sangre , Plasmalógenos/genética , Sitios de Carácter Cuantitativo , Índice de Severidad de la Enfermedad , Adulto Joven
16.
Mol Genet Metab ; 138(1): 106971, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36549199

RESUMEN

INTRODUCTION: The clinical significance of Short-chain acyl CoA dehydrogenase deficiency (SCADD), caused by biallelic variation in the ACADS gene, is contested. Clinically ascertained individuals have a range of reported metabolic and physical symptoms. Conversely, individuals identified through newborn screening remain overwhelmingly asymptomatic. Two common ACADS variants, c.511C > T (p.Arg171Trp) and c.625G > A (p.Gly209Ser) are known to reduce enzymatic activity with undetermined clinical correlate. We applied a genome-first approach to evaluate the prevalence and clinical consequences of ACADS variants in an ancestrally diverse and unselected patient population. MATERIAL AND METHODS: We used exome sequence data linked to electronic health records (EHRs) to identify clinically relevant ACADS variants, and estimate their prevalence and clinical implications in 27,447 ancestrally diverse and unrelated adults from the BioMe Biobank in New York, NY. We extracted International Classification of Diseases, ninth (ICD-9) and tenth (ICD-10) revision codes corresponding to eight SCADD-associated phenotypes relevant to adults from participants' EHRs. Phenotypes included intellectual disability, behavioral disorders with onset in childhood, epilepsy or seizure disorders, hypoglycemia, muscle weakness, metabolic acidosis, fatty liver, and a diagnosis of SCADD or disorder of fatty acid oxidation. We performed manual chart reviews for individuals homozygous for rare pathogenic variants. Multivariate logistic regression was used to determine the association between clinically relevant ACADS variants and phenotypes of interest. RESULTS: 1 in 10,000 BioMe participants were homozygous for rare pathogenic variants (PVs) in ACADS, 1 in 20 were homozygous or presumed compound heterozygous for common variants (CVs), and 1 in 300 harbored both a PV and a CV. Of the 2035 variant positive individuals, none had a documented diagnosis of SCADD. We identified five PV/PV positive individuals, none of whom had evidence of symptomatic SCADD on manual chart review. CV/CV positive and CV/PV positive individuals did not have increased odds of any of the eight ACADS phenotypes evaluated compared to variant negative individuals (OR for CV/CV 0.99, 95% CI 0.86-1.1, p = .88; OR for CV/PV OR 1.49, 95% CI 0.87-2.6, p = .15). CONCLUSIONS: The prevalence of clinically relevant ACADS variants in an unselected population was higher than previously reported SCADD prevalence of 1 in 35,000 in the United States. Clinically relevant variants in ACADS were not associated with evidence of metabolic disease in a large and ancestrally diverse adult population. These findings support the assertion that SCADD is more likely a biochemical entity without clinical correlate, in particular when caused by one or more common variants.


Asunto(s)
Errores Innatos del Metabolismo Lipídico , Humanos , Recién Nacido , Errores Innatos del Metabolismo Lipídico/genética , Fenotipo , Tamizaje Neonatal , Homocigoto , Acil-CoA Deshidrogenasa/genética
17.
Mol Genet Metab ; 140(3): 107689, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37660571

RESUMEN

Triheptanoin (triheptanoylglycerol) has shown value as anaplerotic therapy for patients with long chain fatty acid oxidation disorders but is contraindicated in medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. In search for anaplerotic therapy for patients with MCAD deficiency, fibroblasts from three patients homozygous for the most common mutation, ACADMG985A/G985A, were treated with fatty acids hypothesized not to require MCAD for their metabolism, including heptanoic (C7; the active component of triheptanoin), 2,6-dimethylheptanoic (dMC7), 6-amino-2,4-dimethylheptanoic (AdMC7), or 4,8-dimethylnonanoic (dMC9) acids. Their effectiveness as anaplerotic fatty acids was assessed in live cells by monitoring changes in cellular oxygen consumption rate (OCR) and mitochondrial protein lysine succinylation, which reflects cellular succinyl-CoA levels, using immunofluorescence (IF) staining. Krebs cycle intermediates were also quantitated in these cells using targeted metabolomics. The four fatty acids induced positive changes in OCR parameters, consistent with their oxidative catalysis and utilization. Increases in cellular IF staining of succinylated lysines were observed, indicating that the fatty acids were effective sources of succinyl-CoA in the absence of media glucose, pyruvate, and lipids. The ability of MCAD deficient cells to metabolize C7 was confirmed by the ability of extracts to enzymatically utilize C7-CoA as substrate but not C8-CoA. To evaluate C7 therapeutic potential in vivo, Acadm-/- mice were treated with triheptanoin for seven days. Dose dependent increase in plasma levels of heptanoyl-, valeryl-, and propionylcarnitine indicated efficient metabolism of the medication. The pattern of the acylcarnitine profile paralleled resolution of liver pathology including reversing hepatic steatosis, increasing hepatic glycogen content, and increasing hepatocyte protein succinylation, all indicating improved energy homeostasis in the treated mice. These results provide the impetus to evaluate triheptanoin and the medium branched chain fatty acids as potential therapeutic agents for patients with MCAD deficiency.


Asunto(s)
Acil-CoA Deshidrogenasas , Errores Innatos del Metabolismo Lipídico , Humanos , Animales , Ratones , Acil-CoA Deshidrogenasa/genética , Errores Innatos del Metabolismo Lipídico/tratamiento farmacológico , Errores Innatos del Metabolismo Lipídico/genética , Errores Innatos del Metabolismo Lipídico/metabolismo , Ácidos Grasos/metabolismo , Hígado/metabolismo , Acil-CoA Deshidrogenasas/genética
18.
Clin Genet ; 103(6): 644-654, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36840705

RESUMEN

Biallelic variants in the ACADM gene cause medium-chain acyl-CoA dehydrogenase deficiency (MCADD). This study reports on differences in the occurrence of secondary free carnitine (C0) deficiency and different biochemical phenotypes related to genotype and age in 109 MCADD patients followed-up at a single tertiary care center during 22 years. C0 deficiency occurred earlier and more frequently in c.985A>G homozygotes (genotype A) compared to c.985A>G compound heterozygotes (genotype B) and individuals carrying variants other than c.985A>G and c.199C>T (genotype D) (median age 4.2 vs. 6.6 years; p < 0.001). No patient carrying c.199C>T (genotype C) developed C0 deficiency. A daily dosage of 20-40 mg/kg carnitine was sufficient to maintain normal C0 concentrations. Compared to genotype A as reference group, octanoylcarnitine (C8) was significantly lower in genotypes B and C, whereas C0 was significantly higher by 8.28 µmol/L in genotype C (p < 0.05). In conclusion, C0 deficiency is mainly found in patients with pathogenic genotypes associated with high concentrations of presumably toxic acylcarnitines, while individuals carrying the variant c.199C>T are spared and show consistently mild biochemical phenotypes into adulthood. Low-dose carnitine supplementation maintains normal C0 concentrations. However, future studies need to evaluate clinical benefits on acute and chronic manifestations of MCADD.


Asunto(s)
Errores Innatos del Metabolismo Lipídico , Tamizaje Neonatal , Humanos , Recién Nacido , Genotipo , Errores Innatos del Metabolismo Lipídico/genética , Carnitina , Aminoácidos , Estudios de Asociación Genética , Acil-CoA Deshidrogenasa/química , Acil-CoA Deshidrogenasa/genética
19.
BMC Cancer ; 23(1): 789, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612627

RESUMEN

This study aimed to evaluate the potential of exosomes from cancer cells to predict chemoresistance in pancreatic cancer (PC) and explore the molecular mechanisms through RNA-sequencing and mass spectrometry. We sought to understand the connection between the exosomal Medium-chain acyl-CoA dehydrogenase (ACADM) level and the reaction to gemcitabine in vivo and in patients with PC. We employed loss-of-function, gain-of-function, metabolome mass spectrometry, and xenograft models to investigate the effect of exosomal ACADM in chemoresistance in PC. Our results showed that the molecules involved in lipid metabolism in exosomes vary between PC cells with different gemcitabine sensitivity. Exosomal ACADM (Exo-ACADM) was strongly correlated with gemcitabine sensitivity in vivo, which can be used as a predictor for postoperative gemcitabine chemosensitivity in pancreatic patients. Moreover, ACADM was found to regulate the gemcitabine response by affecting ferroptosis through Glutathione peroxidase 4 (GPX4) and mevalonate pathways. It was also observed that ACADM increased the consumption of unsaturated fatty acids and decreased intracellular lipid peroxides and reactive oxygen species (ROS) levels. In conclusion, this research suggests that Exo-ACADM may be a viable biomarker for predicting the responsiveness of patients to chemotherapy.


Asunto(s)
Ferroptosis , Neoplasias Pancreáticas , Humanos , Acil-CoA Deshidrogenasa , Gemcitabina , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Metabolismo de los Lípidos , Ácidos Grasos , Neoplasias Pancreáticas
20.
FASEB J ; 36(4): e22216, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35238077

RESUMEN

Various lipids (mainly meibum lipids secreted by the meibomian glands) are present in the tear film lipid layer and play important roles in tear stability and the health of the cornea and conjunctiva. Many meibum lipids contain fatty alcohols (FAls) with chain lengths ≥C24, but the fatty acyl-CoA reductases (FARs) that produce them remain unclear. Here, using cell-based assays, we found that the two FAR isozymes (FAR1 and FAR2) show different substrate specificities: FAR1 and FAR2 are involved in the production of C16-C18 and ≥C20 FAls, respectively. Next, we generated Far2 knockout (KO) mice and examined their dry eye phenotype and meibum lipid composition. These mice showed a severe dry eye phenotype, characterized by plugged meibomian gland orifices, corneal damage, and tear film instability. The plugging was attributed to an increase in the melting point of the meibum lipids. Liquid chromatography coupled with tandem mass spectrometry revealed that FAl-containing meibum lipids (wax monoesters and types 1ω, 2α, and 2ω wax diesters) with a hydroxyl group at position 1 were almost completely absent in Far2 KO mice. The levels of di-unsaturated (O-acyl)-ω-hydroxy fatty acids were higher in Far2 KO mice than in wild type mice, but those of tri-unsaturated ones were comparable, suggesting the presence of two synthesis pathways for type 1ω wax diesters. These results indicate the importance of FAl-containing meibum lipids in the formation of a functional tear film lipid layer. In addition, our study provides clues to the molecular mechanism of the biosynthesis of meibum lipids.


Asunto(s)
Síndromes de Ojo Seco , Lágrimas , Acil-CoA Deshidrogenasa/metabolismo , Aldehído Oxidorreductasas/metabolismo , Animales , Síndromes de Ojo Seco/metabolismo , Alcoholes Grasos/análisis , Alcoholes Grasos/metabolismo , Glándulas Tarsales/metabolismo , Ratones , Ratones Noqueados , Lágrimas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA