Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 841
Filtrar
1.
Nat Immunol ; 20(7): 793-801, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31213715

RESUMEN

Unlike other cells in the body, immune cells have to be able to enter and adapt to life within diverse tissues. Immune cells develop within dedicated immune system organs, such as the bone marrow, thymus and lymphoid tissues, but also inhabit other tissues, wherein they not only provide defense against infection and malignancies but also contribute to homeostatic tissue function. Because different tissues have widely divergent metabolic rates and fuel requirements, this raises interesting questions about the adaptation of immune cells in specific tissues. When immune cells take up residence in different tissues, they develop a transcriptional signature that reflects adaptation to life and function within that tissue. Genes encoding metabolic-pathway proteins are strongly represented within these signatures, reflective of the importance of metabolic adaptation to tissue residence. In this Review, we discuss the available data on the metabolic adaptation of immune cells to life in different tissue sites, within the broader framework of how functional adaptation versus maladaptation in the niche can affect tissue homeostasis.


Asunto(s)
Adaptación Biológica , Metabolismo Energético , Sistema Inmunológico/citología , Sistema Inmunológico/fisiología , Especificidad de Órganos/inmunología , Animales , Biomarcadores , Homeostasis , Interacciones Huésped-Patógeno/inmunología , Humanos , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Activación de Macrófagos/genética , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Transducción de Señal
2.
Nat Immunol ; 20(5): 571-580, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30936493

RESUMEN

Fine control of macrophage activation is needed to prevent inflammatory disease, particularly at barrier sites such as the lungs. However, the dominant mechanisms that regulate the activation of pulmonary macrophages during inflammation are poorly understood. We found that alveolar macrophages (AlvMs) were much less able to respond to the canonical type 2 cytokine IL-4, which underpins allergic disease and parasitic worm infections, than macrophages from lung tissue or the peritoneal cavity. We found that the hyporesponsiveness of AlvMs to IL-4 depended upon the lung environment but was independent of the host microbiota or the lung extracellular matrix components surfactant protein D (SP-D) and mucin 5b (Muc5b). AlvMs showed severely dysregulated metabolism relative to that of cavity macrophages. After removal from the lungs, AlvMs regained responsiveness to IL-4 in a glycolysis-dependent manner. Thus, impaired glycolysis in the pulmonary niche regulates AlvM responsiveness during type 2 inflammation.


Asunto(s)
Inflamación/inmunología , Pulmón/inmunología , Activación de Macrófagos/inmunología , Macrófagos Alveolares/inmunología , Animales , Inflamación/genética , Inflamación/metabolismo , Interleucina-4/genética , Interleucina-4/inmunología , Interleucina-4/metabolismo , Larva/inmunología , Larva/fisiología , Pulmón/metabolismo , Pulmón/patología , Activación de Macrófagos/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/parasitología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mucina 5B/genética , Mucina 5B/inmunología , Mucina 5B/metabolismo , Nippostrongylus/inmunología , Nippostrongylus/fisiología , Proteína D Asociada a Surfactante Pulmonar/genética , Proteína D Asociada a Surfactante Pulmonar/inmunología , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Infecciones por Strongylida/genética , Infecciones por Strongylida/inmunología , Infecciones por Strongylida/parasitología
3.
Immunity ; 54(11): 2531-2546.e5, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34644537

RESUMEN

Alternatively activated macrophages (AAMs) contribute to the resolution of inflammation and tissue repair. However, molecular pathways that govern their differentiation have remained incompletely understood. Here, we show that uncoupling protein-2-mediated mitochondrial reprogramming and the transcription factor GATA3 specifically controlled the differentiation of pro-resolving AAMs in response to the alarmin IL-33. In macrophages, IL-33 sequentially triggered early expression of pro-inflammatory genes and subsequent differentiation into AAMs. Global analysis of underlying signaling events revealed that IL-33 induced a rapid metabolic rewiring of macrophages that involved uncoupling of the respiratory chain and increased production of the metabolite itaconate, which subsequently triggered a GATA3-mediated AAM polarization. Conditional deletion of GATA3 in mononuclear phagocytes accordingly abrogated IL-33-induced differentiation of AAMs and tissue repair upon muscle injury. Our data thus identify an IL-4-independent and GATA3-dependent pathway in mononuclear phagocytes that results from mitochondrial rewiring and controls macrophage plasticity and the resolution of inflammation.


Asunto(s)
Metabolismo Energético , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-33/metabolismo , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Biomarcadores , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Inflamación/etiología , Activación de Macrófagos/genética , Mitocondrias/genética , Mitocondrias/inmunología , Mitocondrias/metabolismo , Fagocitos , Transducción de Señal
4.
Nat Immunol ; 18(5): 519-529, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28346409

RESUMEN

Obesity is associated with metabolic inflammation and endoplasmic reticulum (ER) stress, both of which promote metabolic disease progression. Adipose tissue macrophages (ATMs) are key players orchestrating metabolic inflammation, and ER stress enhances macrophage activation. However, whether ER stress pathways underlie ATM regulation of energy homeostasis remains unclear. Here, we identified inositol-requiring enzyme 1α (IRE1α) as a critical switch governing M1-M2 macrophage polarization and energy balance. Myeloid-specific IRE1α abrogation in Ern1f/f; Lyz2-Cre mice largely reversed high-fat diet (HFD)-induced M1-M2 imbalance in white adipose tissue (WAT) and blocked HFD-induced obesity, insulin resistance, hyperlipidemia and hepatic steatosis. Brown adipose tissue (BAT) activity, WAT browning and energy expenditure were significantly higher in Ern1f/f; Lyz2-Cre mice. Furthermore, IRE1α ablation augmented M2 polarization of macrophages in a cell-autonomous manner. Thus, IRE1α senses protein unfolding and metabolic and immunological states, and consequently guides ATM polarization. The macrophage IRE1α pathway drives obesity and metabolic syndrome through impairing BAT activity and WAT browning.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Tejido Adiposo Blanco/patología , Endorribonucleasas/metabolismo , Macrófagos/fisiología , Obesidad/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Diferenciación Celular/genética , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Endorribonucleasas/genética , Metabolismo Energético/genética , Humanos , Activación de Macrófagos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética
5.
Nature ; 617(7960): 386-394, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37100912

RESUMEN

Inflammation is a complex physiological process triggered in response to harmful stimuli1. It involves cells of the immune system capable of clearing sources of injury and damaged tissues. Excessive inflammation can occur as a result of infection and is a hallmark of several diseases2-4. The molecular bases underlying inflammatory responses are not fully understood. Here we show that the cell surface glycoprotein CD44, which marks the acquisition of distinct cell phenotypes in the context of development, immunity and cancer progression, mediates the uptake of metals including copper. We identify a pool of chemically reactive copper(II) in mitochondria of inflammatory macrophages that catalyses NAD(H) redox cycling by activating hydrogen peroxide. Maintenance of NAD+ enables metabolic and epigenetic programming towards the inflammatory state. Targeting mitochondrial copper(II) with supformin (LCC-12), a rationally designed dimer of metformin, induces a reduction of the NAD(H) pool, leading to metabolic and epigenetic states that oppose macrophage activation. LCC-12 interferes with cell plasticity in other settings and reduces inflammation in mouse models of bacterial and viral infections. Our work highlights the central role of copper as a regulator of cell plasticity and unveils a therapeutic strategy based on metabolic reprogramming and the control of epigenetic cell states.


Asunto(s)
Plasticidad de la Célula , Cobre , Inflamación , Transducción de Señal , Animales , Ratones , Cobre/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , NAD/metabolismo , Transducción de Señal/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Peróxido de Hidrógeno/metabolismo , Epigénesis Genética/efectos de los fármacos , Metformina/análogos & derivados , Oxidación-Reducción , Plasticidad de la Célula/efectos de los fármacos , Plasticidad de la Célula/genética , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/genética
6.
Nat Immunol ; 17(12): 1397-1406, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27776109

RESUMEN

Microglia are the resident macrophages of the central nervous system (CNS). Gene expression profiling has identified Sall1, which encodes a transcriptional regulator, as a microglial signature gene. We found that Sall1 was expressed by microglia but not by other members of the mononuclear phagocyte system or by other CNS-resident cells. Using Sall1 for microglia-specific gene targeting, we found that the cytokine receptor CSF1R was involved in the maintenance of adult microglia and that the receptor for the cytokine TGF-ß suppressed activation of microglia. We then used the microglia-specific expression of Sall1 to inducibly inactivate the murine Sall1 locus in vivo, which resulted in the conversion of microglia from resting tissue macrophages into inflammatory phagocytes, leading to altered neurogenesis and disturbed tissue homeostasis. Collectively, our results show that transcriptional regulation by Sall1 maintains microglial identity and physiological properties in the CNS and allows microglia-specific manipulation in vivo.


Asunto(s)
Microglía/fisiología , Fagocitos/inmunología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Perfilación de la Expresión Génica , Silenciador del Gen , Homeostasis/genética , Mediadores de Inflamación/metabolismo , Activación de Macrófagos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/genética , Factores de Transcripción/genética , Transcriptoma , Factor de Crecimiento Transformador beta/metabolismo
7.
Immunity ; 50(2): 418-431.e6, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30770245

RESUMEN

Sepsis is a bi-phasic inflammatory disease that threatens approximately 30 million lives and claims over 14 million annually, yet little is known regarding the molecular switches and pathways that regulate this disease. Here, we have described ABCF1, an ATP-Binding Cassette (ABC) family member protein, which possesses an E2 ubiquitin enzyme activity, through which it controls the Lipopolysaccharide (LPS)- Toll-like Receptor-4 (TLR4) mediated gram-negative insult by targeting key proteins for K63-polyubiquitination. Ubiquitination by ABCF1 shifts the inflammatory profile from an early phase MyD88-dependent to a late phase TRIF-dependent signaling pathway, thereby regulating TLR4 endocytosis and modulating macrophage polarization from M1 to M2 phase. Physiologically, ABCF1 regulates the shift from the inflammatory phase of sepsis to the endotoxin tolerance phase, and modulates cytokine storm and interferon-ß (IFN-ß)-dependent production by the immunotherapeutic mediator, SIRT1. Consequently, ABCF1 controls sepsis induced mortality by repressing hypotension-induced renal circulatory dysfunction.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/inmunología , Macrófagos/inmunología , Sepsis/inmunología , Choque Séptico/inmunología , Enzimas Ubiquitina-Conjugadoras/inmunología , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/inmunología , Adenosina Trifosfato/metabolismo , Animales , Citocinas/inmunología , Citocinas/metabolismo , Femenino , Interferón beta/inmunología , Interferón beta/metabolismo , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/inmunología , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/genética , Activación de Macrófagos/inmunología , Macrófagos/clasificación , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Interferencia de ARN , Sepsis/genética , Sepsis/metabolismo , Choque Séptico/genética , Choque Séptico/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación/inmunología
8.
Nat Immunol ; 16(8): 838-849, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26147685

RESUMEN

Interferon-γ (IFN-γ) primes macrophages for enhanced microbial killing and inflammatory activation by Toll-like receptors (TLRs), but little is known about the regulation of cell metabolism or mRNA translation during this priming. We found that IFN-γ regulated the metabolism and mRNA translation of human macrophages by targeting the kinases mTORC1 and MNK, both of which converge on the selective regulator of translation initiation eIF4E. Physiological downregulation of mTORC1 by IFN-γ was associated with autophagy and translational suppression of repressors of inflammation such as HES1. Genome-wide ribosome profiling in TLR2-stimulated macrophages showed that IFN-γ selectively modulated the macrophage translatome to promote inflammation, further reprogram metabolic pathways and modulate protein synthesis. These results show that IFN-γ-mediated metabolic reprogramming and translational regulation are key components of classical inflammatory macrophage activation.


Asunto(s)
Interferón gamma/inmunología , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Biosíntesis de Proteínas/inmunología , ARN Mensajero/inmunología , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/inmunología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Western Blotting , Células Cultivadas , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/inmunología , Factor 4E Eucariótico de Iniciación/metabolismo , Perfilación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/inmunología , Proteínas de Homeodominio/metabolismo , Humanos , Interferón gamma/farmacología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/genética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , MicroARNs/genética , Microscopía Fluorescente , Complejos Multiproteicos/genética , Complejos Multiproteicos/inmunología , Complejos Multiproteicos/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/inmunología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/inmunología , Serina-Treonina Quinasas TOR/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 2/metabolismo , Factor de Transcripción HES-1
9.
Immunity ; 49(4): 615-626.e6, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332629

RESUMEN

Macrophages polarize into distinct phenotypes in response to complex environmental cues. We found that the nuclear receptor PPARγ drove robust phenotypic changes in macrophages upon repeated stimulation with interleukin (IL)-4. The functions of PPARγ on macrophage polarization in this setting were independent of ligand binding. Ligand-insensitive PPARγ bound DNA and recruited the coactivator P300 and the architectural protein RAD21. This established a permissive chromatin environment that conferred transcriptional memory by facilitating the binding of the transcriptional regulator STAT6 and RNA polymerase II, leading to robust production of enhancer and mRNAs upon IL-4 re-stimulation. Ligand-insensitive PPARγ binding controlled the expression of an extracellular matrix remodeling-related gene network in macrophages. Expression of these genes increased during muscle regeneration in a mouse model of injury, and this increase coincided with the detection of IL-4 and PPARγ in the affected tissue. Thus, a predominantly ligand-insensitive PPARγ:RXR cistrome regulates progressive and/or reinforcing macrophage polarization.


Asunto(s)
Epigénesis Genética/inmunología , Epigenómica/métodos , Regulación de la Expresión Génica/inmunología , Activación de Macrófagos/inmunología , Macrófagos/inmunología , PPAR gamma/inmunología , Animales , Línea Celular , Células Cultivadas , Interleucina-4/inmunología , Interleucina-4/farmacología , Ligandos , Activación de Macrófagos/genética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , PPAR gamma/genética , PPAR gamma/metabolismo
10.
Immunity ; 49(6): 1021-1033.e6, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30566880

RESUMEN

Metabolic engagement is intrinsic to immune cell function. Prostaglandin E2 (PGE2) has been shown to modulate macrophage activation, yet how PGE2 might affect metabolism is unclear. Here, we show that PGE2 caused mitochondrial membrane potential (Δψm) to dissipate in interleukin-4-activated (M(IL-4)) macrophages. Effects on Δψm were a consequence of PGE2-initiated transcriptional regulation of genes, particularly Got1, in the malate-aspartate shuttle (MAS). Reduced Δψm caused alterations in the expression of 126 voltage-regulated genes (VRGs), including those encoding resistin-like molecule α (RELMα), a key marker of M(IL-4) cells, and genes that regulate the cell cycle. The transcription factor ETS variant 1 (ETV1) played a role in the regulation of 38% of the VRGs. These results reveal ETV1 as a Δψm-sensitive transcription factor and Δψm as a mediator of mitochondrial-directed nuclear gene expression.


Asunto(s)
Núcleo Celular/efectos de los fármacos , Dinoprostona/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Macrófagos/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Animales , Núcleo Celular/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Interleucina-4/farmacología , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/genética , Macrófagos/metabolismo , Macrófagos/ultraestructura , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
EMBO J ; 41(18): e109353, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35920020

RESUMEN

Macrophage polarization is a process whereby macrophages acquire distinct effector states (M1 or M2) to carry out multiple and sometimes opposite functions. We show here that translational reprogramming occurs during macrophage polarization and that this relies on the Elongator complex subunit Elp3, an enzyme that modifies the wobble uridine base U34 in cytosolic tRNAs. Elp3 expression is downregulated by classical M1-activating signals in myeloid cells, where it limits the production of pro-inflammatory cytokines via FoxO1 phosphorylation, and attenuates experimental colitis in mice. In contrast, alternative M2-activating signals upregulate Elp3 expression through a PI3K- and STAT6-dependent signaling pathway. The metabolic reprogramming linked to M2 macrophage polarization relies on Elp3 and the translation of multiple candidates, including the mitochondrial ribosome large subunit proteins Mrpl3, Mrpl13, and Mrpl47. By promoting translation of its activator Ric8b in a codon-dependent manner, Elp3 also regulates mTORC2 activation. Elp3 expression in myeloid cells further promotes Wnt-driven tumor initiation in the intestine by maintaining a pool of tumor-associated macrophages exhibiting M2 features. Collectively, our data establish a functional link between tRNA modifications, mTORC2 activation, and macrophage polarization.


Asunto(s)
Histona Acetiltransferasas , Activación de Macrófagos , Transducción de Señal , Animales , Codón/metabolismo , Histona Acetiltransferasas/genética , Activación de Macrófagos/genética , Macrófagos/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones
12.
Nat Immunol ; 15(5): 423-30, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24681566

RESUMEN

Obesity and resistance to insulin are closely associated with the development of low-grade inflammation. Interleukin 6 (IL-6) is linked to obesity-associated inflammation; however, its role in this context remains controversial. Here we found that mice with an inactivated gene encoding the IL-6Rα chain of the receptor for IL-6 in myeloid cells (Il6ra(Δmyel) mice) developed exaggerated deterioration of glucose homeostasis during diet-induced obesity, due to enhanced resistance to insulin. Tissues targeted by insulin showed increased inflammation and a shift in macrophage polarization. IL-6 induced expression of the receptor for IL-4 and augmented the response to IL-4 in macrophages in a cell-autonomous manner. Il6ra(Δmyel) mice were resistant to IL-4-mediated alternative polarization of macrophages and exhibited enhanced susceptibility to lipopolysaccharide (LPS)-induced endotoxemia. Our results identify signaling via IL-6 as an important determinant of the alternative activation of macrophages and assign an unexpected homeostatic role to IL-6 in limiting inflammation.


Asunto(s)
Endotoxemia/inmunología , Resistencia a la Insulina , Interleucina-6/metabolismo , Activación de Macrófagos , Macrófagos/inmunología , Obesidad/inmunología , Animales , Células Cultivadas , Humanos , Resistencia a la Insulina/genética , Resistencia a la Insulina/inmunología , Interleucina-4/inmunología , Interleucina-6/genética , Lipopolisacáridos/inmunología , Activación de Macrófagos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Receptores de Interleucina-6/genética , Transducción de Señal/genética
13.
Immunity ; 46(5): 714-729, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28514673

RESUMEN

Recognition of pathogens by innate and adaptive immune cells instructs rapid alterations of cellular processes to promote effective resolution of infection. To accommodate increased bioenergetic and biosynthetic demands, metabolic pathways are harnessed to maximize proliferation and effector molecule production. In parallel, activation initiates context-specific gene-expression programs that drive effector functions and cell fates that correlate with changes in epigenetic landscapes. Many chromatin- and DNA-modifying enzymes make use of substrates and cofactors that are intermediates of metabolic pathways, providing potential cross talk between metabolism and epigenetic regulation of gene expression. In this review, we discuss recent studies of T cells and macrophages supporting a role for metabolic activity in integrating environmental signals with activation-induced gene-expression programs through modulation of the epigenome and speculate as to how this may influence context-specific macrophage and T cell responses to infection.


Asunto(s)
Metabolismo Energético , Epigénesis Genética , Regulación de la Expresión Génica , Inmunidad , Macrófagos/inmunología , Macrófagos/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Microambiente Celular/genética , Microambiente Celular/inmunología , Humanos , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Activación de Macrófagos/genética , Activación de Macrófagos/inmunología , Macrófagos/citología , Redes y Vías Metabólicas , Linfocitos T/citología
14.
Eur J Immunol ; 54(1): e2350464, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37943053

RESUMEN

During atherogenesis, plaque macrophages take up and process deposited lipids, trigger inflammation, and form necrotic cores. The traditional inflammatory/anti-inflammatory paradigm has proven insufficient in explaining their complex disease-driving mechanisms. Instead, we now appreciate that macrophages exhibit remarkable heterogeneity and functional specialization in various pathological contexts, including atherosclerosis. Technical advances for studying individual cells, especially single-cell RNA sequencing, indeed allowed to identify novel macrophage subsets in both murine and human atherosclerosis, highlighting the existence of diverse macrophage activation states throughout pathogenesis. In addition, recent studies highlighted the role of the local microenvironment in shaping the macrophages' phenotype and function. However, this remains largely undescribed in the context of atherosclerosis. In this review we explore the origins of macrophages and their functional specialization, shedding light on the diverse sources of macrophage accumulation in the atherosclerotic plaque. Next, we discuss the phenotypic diversity observed in both murine and human atherosclerosis, elucidating their distinct functions and spatial distribution within plaques. Finally, we highlight the importance of the local microenvironment in both phenotypic and functional specialization of macrophages in atherosclerosis and elaborate on the need for spatial multiomics approaches to provide a better understanding of the different macrophage subsets' roles in the pathogenesis of atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Animales , Ratones , Aterosclerosis/patología , Placa Aterosclerótica/patología , Macrófagos/patología , Monocitos/patología , Fenotipo , Activación de Macrófagos/genética
15.
Mol Syst Biol ; 20(6): 626-650, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38724853

RESUMEN

More than 500 kinases are implicated in the control of most cellular process in mammals, and deregulation of their activity is linked to cancer and inflammatory disorders. 80 clinical kinase inhibitors (CKIs) have been approved for clinical use and hundreds are in various stages of development. However, CKIs inhibit other kinases in addition to the intended target(s), causing both enhanced clinical effects and undesired side effects that are only partially predictable based on in vitro selectivity profiling. Here, we report an integrative approach grounded on the use of chromatin modifications as unbiased, information-rich readouts of the functional effects of CKIs on macrophage activation. This approach exceeded the performance of transcriptome-based approaches and allowed us to identify similarities and differences among CKIs with identical intended targets, to recognize novel CKI specificities and to pinpoint CKIs that may be repurposed to control inflammation, thus supporting the utility of this strategy to improve selection and use of CKIs in clinical settings.


Asunto(s)
Epigenoma , Inhibidores de Proteínas Quinasas , Inhibidores de Proteínas Quinasas/farmacología , Humanos , Animales , Ratones , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/genética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo
16.
J Immunol ; 210(4): 359-368, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36724439

RESUMEN

Macrophages are sentinels of the innate immune system that maintain tissue homeostasis and contribute to inflammatory responses. Their broad scope of action depends on both functional heterogeneity and plasticity. Small noncoding RNAs called microRNAs (miRNAs) contribute to macrophage function as post-transcriptional inhibitors of target gene networks. Genetic and pharmacologic studies have uncovered genes regulated by miRNAs that control macrophage cellular programming and macrophage-driven pathology. miRNAs control proinflammatory M1-like activation, immunoregulatory M2-like macrophage activation, and emerging macrophage functions in metabolic disease and innate immune memory. Understanding the gene networks regulated by individual miRNAs enhances our understanding of the spectrum of macrophage function at steady state and during responses to injury or pathogen invasion, with the potential to develop miRNA-based therapies. This review aims to consolidate past and current studies investigating the complexity of the miRNA interactome to provide the reader with a mechanistic view of how miRNAs shape macrophage behavior.


Asunto(s)
MicroARNs , Macrófagos , Redes Reguladoras de Genes , Activación de Macrófagos/genética
17.
Methods ; 227: 1-16, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38703879

RESUMEN

Long noncoding RNAs (lncRNA) are emerging players in regulation of gene expression and cell signaling and their dysregulation has been implicated in a multitude of human diseases. Recent studies from our laboratory revealed that lncRNAs play critical roles in cytokine regulation, inflammation, and metabolism. We demonstrated that lncRNA HOTAIR, which is a well-known regulator of gene silencing, plays critical roles in modulation of cytokines and proinflammatory genes, and glucose metabolism in macrophages during inflammation. In addition, we recently discovered a series of novel lncRNAs that are closely associated with inflammation and macrophage activation. We termed these as long-noncoding inflammation associated RNAs (LinfRNAs). We are currently engaged in the functional characterization of these hLinfRNAs (human LinfRNAs) with a focus on their roles in inflammation, and we are investigating their potential implications in chronic inflammatory human diseases. Here, we have summarized experimental methods that have been utilized for the discovery and functional characterization of lncRNAs in inflammation and macrophage activation.


Asunto(s)
Inflamación , Activación de Macrófagos , Macrófagos , ARN Largo no Codificante , ARN Largo no Codificante/genética , Humanos , Activación de Macrófagos/genética , Inflamación/genética , Inflamación/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Animales , Regulación de la Expresión Génica , Citocinas/metabolismo , Citocinas/genética
18.
J Cell Physiol ; 239(5): e31225, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38403999

RESUMEN

Innate immune response is regulated by tissue resident or infiltrating immune cells such as macrophages (Mφ) that play critical role in tissue development, homeostasis, and repair of damaged tissue. However, the epigenetic mechanisms that regulate Mφ plasticity and innate immune functions are not well understood. Long non-coding RNA (lncRNA) are among the most abundant class of transcriptome but their function in myeloid cell biology is less explored. In this study, we deciphered the regulatory role of previously uncharacterized lncRNAs in Mφ polarization and innate immune responses. Two lncRNAs showed notable changes in their levels during M1 and M2 Mφ differentiation. Our findings indicate that LINC01010 expression increased and AC007032 expression decreased significantly. LINC01010 exhibit myeloid cell-specificity, while AC007032.1 is ubiquitous and expressed in both myeloid and lymphoid (T cells, B cells and NK cells) cells. Expression of these lncRNAs is dysregulated in periodontal disease (PD), a microbial biofilm-induced immune disease, and responsive to lipopolysaccharide (LPS) from different oral and non-oral bacteria. Knockdown of LINC01010 but not AC007032.1 reduced the surface expression of Mφ differentiation markers CD206 and CD68, and M1Mφ polarization markers MHCII and CD32. Furthermore, LINC01010 RNAi attenuated bacterial phagocytosis, antigen processing and cytokine secretion suggesting its key function in innate immunity. Mechanistically, LINC01010 knockdown Mφ treated with Escherichia coli LPS exhibit significantly reduced expression of multiple nuclear factor kappa B pathway genes. Together, our data highlight functional role of a PD-associated lncRNA LINC01010 in shaping macrophage differentiation, polarization, and innate immune activation.


Asunto(s)
Diferenciación Celular , Inmunidad Innata , Macrófagos , FN-kappa B , ARN Largo no Codificante , Animales , Humanos , Ratones , Diferenciación Celular/genética , Línea Celular Tumoral , Regulación de la Expresión Génica , Inmunidad Innata/genética , Lipopolisacáridos/farmacología , Activación de Macrófagos/genética , Macrófagos/inmunología , Macrófagos/metabolismo , FN-kappa B/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal
19.
Biochem Biophys Res Commun ; 718: 149983, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38718735

RESUMEN

Transmembrane 6 superfamily 1 (TM6SF1) is lowly expressed in lung adenocarcinoma (LUAD), but the function and mechanisms of TM6SF1 remain unclear. Thus, we attempt to explore the function of TM6SF1 and its underlying mechanisms in LUAD. qRT-PCR was used for detecting TM6SF1 mRNA expression. Immunohistochemistry staining was used for detecting the expression of MMP-2, TM6SF1, Ki67, MMP-9, and CD163 proteins. E-cadherin, p-PI3K, Vimentin, AKT, N-cadherin, PI3K, p-AKT, mTOR, p-mTOR, and marker proteins of M2 macrophages were evaluated using Western blot. CD206 protein expression was examined via immunofluorescence. The IL-10 concentration was measured via enzyme-linked immunosorbent assay (ELISA). Using CCK-8, colony formation and transwell assays, cell proliferation, migration, and invasion were assessed. A549 cells were injected into the mice's flank for establishing a mouse tumor model and into the tail vein for establishing the lung metastasis model. HE staining was performed to detect pathological changes in lung tissues. Decreased TM6SF1 expression was found in LUAD tissues and cells. TM6SF1 overexpression inhibited cell viability, proliferation, invasion, migration, EMT, and polarization of M2 macrophages in LUAD cells, along with tumor growth and metastasis in xenograft mice. Bioinformatics analysis demonstrated that TM6SF1 was correlated with the tumor microenvironment. TM6SF1 overexpression reduced expression levels of p-mTOR, p-PI3K, p-AKT, mTOR, and AKT. TM6SF1-caused inhibition of proliferation, migration, invasion and EMT, as M2 macrophage polarization was reversed by the PI3K activator in LUAD cells. TM6SF1 inactivated the PI3K/AKT/mTOR pathway to suppress LUAD malignancy and polarization of M2 macrophages, providing insight for developing new LUAD treatments.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Macrófagos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Humanos , Ratones , Células A549 , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/genética , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Activación de Macrófagos/genética , Macrófagos/metabolismo , Macrófagos/patología , Ratones Endogámicos BALB C , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
20.
RNA ; 28(7): 947-971, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35512831

RESUMEN

The poly(A) tail enhances translation and transcript stability, and tail length is under dynamic control during cell state transitions. Tail regulation plays essential roles in translational timing and fertilization in early development, but poly(A) tail dynamics have not been fully explored in post-embryonic systems. Here, we examined the landscape and impact of tail length control during macrophage activation. Upon activation, more than 1500 mRNAs, including proinflammatory genes, underwent distinctive changes in tail lengths. Increases in tail length correlated with mRNA levels regardless of transcriptional activity, and many mRNAs that underwent tail extension encode proteins necessary for immune function and post-transcriptional regulation. Strikingly, we found that ZFP36, whose protein product destabilizes target transcripts, undergoes tail extension. Our analyses indicate that many mRNAs undergoing tail lengthening are, in turn, degraded by elevated levels of ZFP36, constituting a post-transcriptional feedback loop that ensures transient regulation of transcripts integral to macrophage activation. Taken together, this study establishes the complexity, relevance, and widespread nature of poly(A) tail dynamics, and the resulting post-transcriptional regulation during macrophage activation.


Asunto(s)
Activación de Macrófagos , Poli A , Regulación de la Expresión Génica , Activación de Macrófagos/genética , Poli A/genética , Poli A/metabolismo , Poliadenilación , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA