Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Arch Biochem Biophys ; 743: 109671, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37336343

RESUMEN

Staphylokinase (SAK), a potent fibrin-specific plasminogen activator secreted by Staphylococcus aureus, carries a pair of lysine at the carboxy-terminus that play a key role in plasminogen activation. The underlaying mechanism by which C-terminal lysins of SAK modulate its function remains unknown. This study has been undertaken to unravel role of C-terminal lysins of SAK in plasminogen activation. While deletion of C-terminal lysins (Lys135, Lys136) drastically impaired plasminogen activation by SAK, addition of lysins enhanced its catalytic activity 2-2.5-fold. Circular dichroism analysis revealed that C-terminally modified mutants of SAK carry significant changes in their beta sheets and secondary structure. Structure models and RING (residue interaction network generation) studies indicated that the deletion of lysins has conferred extensive topological alterations in SAK, disrupting vital interactions at the interface of SAK.plasmin complex, thereby leading significant impairment in its functional activity. In contrast, addition of lysins at the C-terminus enhanced its conformational flexibility, creating a stronger coupling at the interface of SAK.plasmin complex and making it more efficient for plasminogen activation. Taken together, these studies provided new insights on the role of C-terminal lysins in establishment of precise intermolecular interactions of SAK with the plasmin for the optimal function of activator complex.


Asunto(s)
Fibrinolisina , Lisina , Fibrinolisina/química , Plasminógeno/química , Activadores Plasminogénicos/química
2.
J Biol Chem ; 294(10): 3794-3805, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30651349

RESUMEN

Protein sequences of members of the plasminogen activation system are present throughout the entire vertebrate phylum. This important and well-described proteolytic cascade is governed by numerous protease-substrate and protease-inhibitor interactions whose conservation is crucial to maintaining unchanged protein function throughout evolution. The pressure to preserve protein-protein interactions may lead to either co-conservation or covariation of binding interfaces. Here, we combined covariation analysis and structure-based prediction to analyze the binding interfaces of urokinase (uPA):plasminogen activator inhibitor-1 (PAI-1) and uPA:plasminogen complexes. We detected correlated variation between the S3-pocket-lining residues of uPA and the P3 residue of both PAI-1 and plasminogen. These residues are known to form numerous polar interactions in the human uPA:PAI-1 Michaelis complex. To test the effect of mutations that correlate with each other and have occurred during mammalian diversification on protein-protein interactions, we produced uPA, PAI-1, and plasminogen from human and zebrafish to represent mammalian and nonmammalian orthologs. Using single amino acid point substitutions in these proteins, we found that the binding interfaces of uPA:plasminogen and uPA:PAI-1 may have coevolved to maintain tight interactions. Moreover, we conclude that although the interaction areas between protease-substrate and protease-inhibitor are shared, the two interactions are mechanistically different. Compared with a protease cleaving its natural substrate, the interaction between a protease and its inhibitor is more complex and involves a more fine-tuned mechanism. Understanding the effects of evolution on specific protein interactions may help further pharmacological interventions of the plasminogen activation system and other proteolytic systems.


Asunto(s)
Evolución Molecular , Inhibidor 1 de Activador Plasminogénico/metabolismo , Activadores Plasminogénicos/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Modelos Moleculares , Activadores Plasminogénicos/antagonistas & inhibidores , Activadores Plasminogénicos/química , Unión Proteica , Conformación Proteica , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
3.
J Biol Chem ; 292(35): 14425-14437, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28710283

RESUMEN

The misfolding of proteins and their accumulation in extracellular tissue compartments as insoluble amyloid or amorphous protein aggregates are a hallmark feature of many debilitating protein deposition diseases such as Alzheimer's disease, prion diseases, and type II diabetes. The plasminogen activation system is best known as an extracellular fibrinolytic system but was previously reported to also be capable of degrading amyloid fibrils. Here we show that amorphous protein aggregates interact with tissue-type plasminogen activator and plasminogen, via an exposed lysine-dependent mechanism, to efficiently generate plasmin. The insoluble aggregate-bound plasmin is shielded from inhibition by α2-antiplasmin and degrades amorphous protein aggregates to release smaller, soluble but relatively hydrophobic fragments of protein (plasmin-generated protein fragments (PGPFs)) that are cytotoxic. In vitro, both endothelial and microglial cells bound and internalized PGPFs before trafficking them to lysosomes. Clusterin and α2-macroglobulin bound to PGPFs to significantly ameliorate their toxicity. On the basis of these findings, we hypothesize that, as part of the in vivo extracellular proteostasis system, the plasminogen activation system may work synergistically with extracellular chaperones to safely clear large and otherwise pathological protein aggregates from the body.


Asunto(s)
Fibrinolisina/metabolismo , Microglía/efectos de los fármacos , Fragmentos de Péptidos/toxicidad , Activadores Plasminogénicos/toxicidad , Agregado de Proteínas , Activador de Tejido Plasminógeno/metabolismo , alfa 2-Antiplasmina/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Clusterina/química , Clusterina/metabolismo , Conalbúmina/química , Conalbúmina/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Endotelio Vascular/ultraestructura , Fibrinolisina/antagonistas & inhibidores , Fibrinolisina/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Microglía/metabolismo , Microglía/patología , Microglía/ultraestructura , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Plasminógeno/química , Plasminógeno/metabolismo , Activadores Plasminogénicos/química , Activadores Plasminogénicos/genética , Activadores Plasminogénicos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solubilidad , Superóxido Dismutasa-1/química , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Activador de Tejido Plasminógeno/química
4.
J Am Chem Soc ; 140(45): 15516-15524, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30347143

RESUMEN

Although the functional specificity and catalytic versatility of enzymes have been exploited in numerous settings, controlling the spatial and temporal activity of enzymes remains challenging. Here we describe an approach for programming the function of streptokinase (SK), a protein that is clinically used as a blood "clot buster" therapeutic. We show that the fibrinolytic activity resulting from the binding of SK to the plasma proenzyme plasminogen (Pg) can be effectively regulated (turned "OFF" and "ON") by installing an intrasteric regulatory feature using a DNA-linked protease inhibitor modification. We describe the design rationale, synthetic approach, and functional characterization of two generations of intrasterically regulated SK-Pg constructs and demonstrate dose-dependent and sequence-specific temporal control in fibrinolytic activity in response to short predesignated DNA inputs. The studies described establish the feasibility of a new enzyme-programming approach and serves as a step toward advancing a new generation of programmable enzyme therapeutics.


Asunto(s)
ADN/farmacología , Diseño de Fármacos , Activadores Plasminogénicos/farmacología , Inhibidores de Proteasas/farmacología , Estreptoquinasa/antagonistas & inhibidores , ADN/química , Humanos , Activadores Plasminogénicos/síntesis química , Activadores Plasminogénicos/química , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , Estreptoquinasa/metabolismo
5.
Bioorg Khim ; 41(5): 565-78, 2015.
Artículo en Ruso | MEDLINE | ID: mdl-26762094

RESUMEN

Comparative in vitro study of the kinetics of various reactions involved in the process of thrombolysis initiated by streptokinase (SK) and staphylokinase (STA) was carried out. It was shown that at the interaction of an equimolar ratio of plasminogen (Pg) with SK or STA the rate of formation and the specific esterase activity of the complex plasmin (Pm) · SK are higher than those of the complex Pm · STA. The catalytic efficiency (kcat/Km) of hydrolysis of the chromogenic plasmin substrates by Pm · SK complex was 2 times higher than by Pm · STA complex. In the absence of fibrin catalytic efficiency (kPg/K(Pg)) of activation of Glu-plasminogen and Lys-plasminogen glycoform II by Pm · SK complex was higher than by Pm · STA complex, but the pres- ence of fibrin increased kPg/K(Pg)) activation of both plasminogens by Pm · STA complex significantly stronger than by Pm · SK complex due to the decrease in K(Pg)). In contrast to STA (15.5 kDa), SK molecule (47 kDa) creates significant steric hindrances for the interaction of plasmin in Pm · SK complex with protein inhibi- tors. In addition, SK caused greater fibrinogen degradation than STA. It is shown that Pm · SK and Pm · STA complexes lyse fibrin clots in buffer with similar rates, while the rate of lysis of plasma clots, immersed in plas- ma, by Pm · STA complex are significantly higher than those by Pm · SK complex. It was revealed that the species specificity of STA and S K is determined mainly by the rate of formation and the efficiency of Pm · SK and Pm · STA complexes in the activation of autologous plasminogen. The lysis efficiency of plasma clots of mammals fell in the series: human > dog > rabbit for SK and the dog > human > rabbit for STA. The results show that in the purified system SK is a more effective activator of plasminogen than STA. In the system con- taining fibrin and α2-AP, the activator and fibrinolytic activities of STA are higher than those of SK, due to the increased stability in plasma and fibrin specificity of STA, the fast reaction of the complex Pm · STA with α2AP and the ability of the STA to recyclization in the presence of α2AP.


Asunto(s)
Fibrina/química , Fibrinólisis , Metaloendopeptidasas/química , Activadores Plasminogénicos/química , Inactivadores Plasminogénicos/química , Plasminógeno/química , Estreptoquinasa/química , Animales , Perros , Humanos , Cinética , Metaloendopeptidasas/genética , Unión Proteica , Conejos , Proteínas Recombinantes/química , Especificidad de la Especie , Especificidad por Sustrato
6.
J Lipid Res ; 55(4): 625-34, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24478033

RESUMEN

Apo(a), the distinguishing protein component of lipoprotein(a) [Lp(a)], exhibits sequence similarity to plasminogen and can inhibit binding of plasminogen to cell surfaces. Plasmin generated on the surface of vascular cells plays a role in cell migration and proliferation, two of the fibroproliferative inflammatory events that underlie atherosclerosis. The ability of apo(a) to inhibit pericellular plasminogen activation on vascular cells was therefore evaluated. Two isoforms of apo(a), 12K and 17K, were found to significantly decrease tissue-type plasminogen activator-mediated plasminogen activation on human umbilical vein endothelial cells (HUVECs) and THP-1 monocytes and macrophages. Lp(a) purified from human plasma decreased plasminogen activation on THP-1 monocytes and HUVECs but not on THP-1 macrophages. Removal of kringle V or the strong lysine binding site in kringle IV10 completely abolished the inhibitory effect of apo(a). Treatment with carboxypeptidase B to assess the roles of carboxyl-terminal lysines in cellular receptors leads in most cases to decreases in plasminogen activation as well as plasminogen and apo(a) binding; however, inhibition of plasminogen activation by apo(a) was unaffected. Our findings directly demonstrate that apo(a) inhibits pericellular plasminogen activation in all three cell types, although binding of apo(a) to cell-surface receptors containing carboxyl-terminal lysines does not appear to play a major role in the inhibition mechanism.


Asunto(s)
Apolipoproteínas A/fisiología , Plasminógeno/fisiología , Apolipoproteínas A/química , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana , Humanos , Leucocitos Mononucleares/metabolismo , Lisina/fisiología , Macrófagos/metabolismo , Activadores Plasminogénicos/química , Activadores Plasminogénicos/farmacología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas
7.
Biochem Biophys Res Commun ; 444(4): 595-8, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24486550

RESUMEN

Cluster 2b streptokinase (SK2b), secreted by invasive skin-trophic strains of Streptococcus pyogenes (GAS), is a human plasminogen (hPg) activator that optimally functions when human plasma hPg is bound, via its kringle-2 domain, to cognizant bacterial cells through the a1a2 domain of the major cellular hPg receptor, Plasminogen-binding group A streptococcal M-like protein (PAM). Another class of streptokinases (SK1), secreted primarily by GAS strains that possess affinity for pharyngeal infections, does not require PAM-bound hPg for optimal activity. We find herein that replacement of the central ß-domain of SK2b with the same module from SK1 reduces the dependency of SK2b on PAM, and the converse is true when the ß-domain of SK1 is replaced with this same region of SK2b. These data suggest that simple evolutionary shuttling of protein domains in GAS can be employed by GAS to rapidly generate strains that differ in tissue tropism and invasive capability and allow the bacteria to survive different challenges by the host.


Asunto(s)
Interacciones Huésped-Patógeno , Activadores Plasminogénicos/metabolismo , Plasminógeno/metabolismo , Infecciones Estreptocócicas/virología , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/fisiología , Estreptoquinasa/metabolismo , Humanos , Kringles , Plasminógeno/química , Activadores Plasminogénicos/química , Infecciones Estreptocócicas/enzimología , Streptococcus pyogenes/química , Streptococcus pyogenes/patogenicidad , Estreptoquinasa/química
8.
Biopolymers ; 101(11): 1129-40, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24931846

RESUMEN

The ionic liquid 1-ethyl-3-methyl imidazolium chloride (EMIM Cl) and the amino acid l-arginine hydrochloride (l-ArgHCl) have been successfully used to improve the yield of oxidative refolding for various proteins. However, the molecular mechanisms behind the actions of such solvent additives-especially of ionic liquids-are still not well understood. To analyze these mechanisms, we have determined the transfer free energies from water into ionic liquid solutions of proteinogenic amino acids and of diketopiperazine as peptide bond analogue. For EMIM Cl and 1-ethyl-3-methyl imidazolium diethyl phosphate, which had a suppressive effect on protein refolding, as well as for l-ArgHCl favorable interactions with amino acid side chains, but no favorable interactions with the peptide backbone could be observed. A quantitative analysis of other ionic liquids together with their already published effects on protein refolding showed that only solvent additives within a certain range of hydrophobicity, chaotropicity and kosmotropicity were effective for the refolding of recombinant plasminogen activator.


Asunto(s)
Arginina/química , Interacciones Hidrofóbicas e Hidrofílicas , Líquidos Iónicos/química , Activadores Plasminogénicos/química , Replegamiento Proteico , Proteínas Recombinantes/química , Cloruro de Sodio/química , Aminoácidos/química , Guanidina/química , Imidazoles/química , Organofosfatos/química , Oxidación-Reducción , Solubilidad , Solventes/química , Termodinámica
9.
Bioorg Khim ; 40(6): 642-57, 2014.
Artículo en Ruso | MEDLINE | ID: mdl-25895360

RESUMEN

The main physiological function of plasmin is a blood clot fibrinolysis and restore normal blood flow. To date, however, it became apparent that in addition to thrombolysis plasminogen/plasmin system plays an important physiological and pathological role in the degradation of extracellular matrix, embryogenesis, cell migration, tissue remodeling, wound healing, angiogenesis, inflammation and tumor cells migration. This review focuses on the structural features of plasminogen, the regulation of its activation by physiological plasminogen activators, inhibitors of plasmin and plasminogen activators, the role of the plasminogen binding to fibrin, cellular receptors and extracellular ligands in performing various functions by formed plasmin.


Asunto(s)
Fibrinolisina/química , Fibrinólisis , Neovascularización Patológica/genética , Plasminógeno/química , Secuencia de Aminoácidos , Angiostatinas/química , Angiostatinas/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fibrinolisina/antagonistas & inhibidores , Fibrinolisina/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Neovascularización Patológica/metabolismo , Plasminógeno/antagonistas & inhibidores , Plasminógeno/metabolismo , Activadores Plasminogénicos/antagonistas & inhibidores , Activadores Plasminogénicos/química
10.
J Biol Chem ; 287(23): 19171-6, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22518846

RESUMEN

Bacterial plasminogen (Pg) activators generate plasmin to degrade fibrin blood clots and other proteins that modulate the pathogenesis of infection, yet despite strong homology between mammalian Pgs, the activity of bacterial Pg activators is thought to be restricted to the Pg of their host mammalian species. Thus, we found that Streptococcus uberis Pg activator (SUPA), isolated from a Streptococcus species that infects cows but not humans, robustly activated bovine but not human Pg in purified systems and in plasma. Consistent with this, SUPA formed a higher avidity complex (118-fold) with bovine Pg than with human Pg and non-proteolytically activated bovine but not human Pg. Surprisingly, however, the presence of human fibrin overrides the species-restricted action of SUPA. First, human fibrin enhanced the binding avidity of SUPA for human Pg by 4-8-fold in the presence and absence of chloride ion (a negative regulator). Second, although SUPA did not protect plasmin from inactivation by α(2)-antiplasmin, fibrin did protect human plasmin, which formed a 31-fold higher avidity complex with SUPA than Pg. Third, fibrin significantly enhanced Pg activation by reducing the K(m) (4-fold) and improving the catalytic efficiency of the SUPA complex (6-fold). Taken together, these data suggest that indirect molecular interactions may override the species-restricted activity of bacterial Pg activators; this may affect the pathogenesis of infections or may be exploited to facilitate the design of new blood clot-dissolving drugs.


Asunto(s)
Proteínas Bacterianas/química , Activadores de Enzimas/química , Fibrina/química , Activadores Plasminogénicos/química , Plasminógeno/química , Streptococcus/enzimología , Animales , Proteínas Bacterianas/metabolismo , Bovinos , Enfermedades de los Bovinos/enzimología , Activación Enzimática , Activadores de Enzimas/metabolismo , Fibrina/metabolismo , Humanos , Plasminógeno/metabolismo , Activadores Plasminogénicos/metabolismo , Unión Proteica , Especificidad de la Especie
11.
J Biol Chem ; 287(28): 23971-6, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22645135

RESUMEN

Omptins constitute a unique family of outer membrane proteases that are widespread in Enterobacteriaceae. The plasminogen activator (Pla) of Yersinia pestis is an omptin family member that is very important for development of both bubonic and pneumonic plague. The physiological function of Pla is to cleave (activate) human plasminogen to form the plasma protease plasmin. Uniquely, lipopolysaccharide (LPS) is essential for the catalytic activity of all omptins, including Pla. Why omptins require LPS for enzymatic activity is unknown. Here, we report the co-crystal structure of LPS-free Pla in complex with the activation loop peptide of human plasminogen, its natural substrate. The structure shows that in the absence of LPS, the peptide substrate binds deep within the active site groove and displaces the nucleophilic water molecule, providing an explanation for the dependence of omptins on LPS for enzymatic activity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Lipopolisacáridos/metabolismo , Activadores Plasminogénicos/metabolismo , Serina Endopeptidasas/metabolismo , Yersinia pestis/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Activación Enzimática , Fibrinolisina/química , Fibrinolisina/metabolismo , Humanos , Lipopolisacáridos/química , Modelos Moleculares , Mutación , Péptidos/química , Péptidos/metabolismo , Plasminógeno/química , Plasminógeno/metabolismo , Activadores Plasminogénicos/química , Activadores Plasminogénicos/genética , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteolisis , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Especificidad por Sustrato , Yersinia pestis/genética
12.
Biochim Biophys Acta ; 1824(2): 326-33, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22056293

RESUMEN

Streptokinase (SK) is a protein co-factor with a potent capability for human plasminogen (HPG) activation. Our previous studies [1] have indicated a major role of long-range protein-protein contacts between the three domains (alpha, beta, and gamma) of SK and the multi-domain HPG substrate (K1-K5CD). To further explore this phenomenon, we prepared truncated derivatives of HPG with progressive removal of kringle domains, like K5CD, K4K5CD, K3-K5CD (K3K4K5CD), K2-K5CD (K2K3K4K5CD) and K1-K5CD (K1K2K3K4K5CD). While urokinase (uPA) cleaved the scissile peptide in the isolated catalytic domain (µPG) with nearly the same rate as with full-length HPG, SK-plasmin showed only 1-2% activity, revealing mutually distinct mechanisms of HPG catalysis between the eukaryotic and prokaryotic activators. Remarkably, with SK.HPN (plasmin), the 'addition' of both kringles 4 and 5 onto the catalytic domain showed catalytic rates comparable to full length HPG, thus identifying the dependency of the "long-range" enzyme-substrate interactions onto these two CD-proximal domains. Further, chimeric variants of K5CD were generated by swapping the kringle domains of HPG with those of uPA and TPA (tissue plasminogen activator), separately. Surprisingly, although native-like catalytic turnover rates were retained when either K1, K2 or K4 of HPG was substituted at the K5 position in K5CD, these were invariably lost once substituted with the evolutionarily more distant TPA- and uPA-derived kringles. The present results unveil a novel mechanism of SK.HPN action in which augmented catalysis occurs through enzyme-substrate interactions centered on regions in substrate HPG (kringles 4 and 5) that are spatially distant from the scissile peptide bond.


Asunto(s)
Kringles , Activadores Plasminogénicos/química , Plasminógeno/química , Estreptoquinasa/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Biocatálisis , Dominio Catalítico , Activación Enzimática , Fibrinolisina/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Mutagénesis Sitio-Dirigida , Pichia , Plasminógeno/genética , Activadores Plasminogénicos/genética , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Estreptoquinasa/genética , Especificidad por Sustrato
13.
Semin Thromb Hemost ; 39(4): 356-64, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23504606

RESUMEN

Plasminogen activator inhibitor 1 (PAI-1) is the main inhibitor of tissue-type (t-PA) and urokinase-type (u-PA) plasminogen activator and therefore plays an important role in the plasminogen-plasmin system. PAI-1 is involved in a variety of cardiovascular diseases (mainly through inhibition of t-PA) as well as in cell migration and tumor development (mainly through inhibition of u-PA and interaction with vitronectin). PAI-1 is a unique member of the serpin superfamily, exhibiting particular unique conformational and functional properties. Because of its involvement in various biologic and pathophysiologic processes, PAI-1 has been the subject of many studies, including extensive structural investigations, in vitro cell biologic studies, in vivo animal studies, and epidemiologic studies. The review provides an overview on the current knowledge on PAI-1.


Asunto(s)
Inhibidor 1 de Activador Plasminogénico/fisiología , Activadores Plasminogénicos/fisiología , Animales , Fibrinólisis/fisiología , Humanos , Inhibidor 1 de Activador Plasminogénico/química , Activadores Plasminogénicos/química
14.
Protein Expr Purif ; 91(1): 85-90, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23891573

RESUMEN

The plasminogen activator (PA) in snake venom, a serine protease, can convert plasminogen to active plasmin, indirectly causing the degradation of fibrin. It is difficult to purify sufficient snake venom PA (SV-PA) for clinical applications due to the low SV-PA content in venom. The gene encoding PA was obtained from the venom gland of Gloydius brevicaudus using RT-PCR with primers designed according to the N-terminal amino acids of G. brevicaudus venom PA (GBV-PA), was cloned into the prokaryotic expression vector pET-42a, and recombinant GBV-PA (rGBV-PA) was expressed via Isopropyl-ß-d-1-Thiogalactopyranoside (IPTG) induction. Like human tissue PA, the purified renatured rGBV-PA could significantly reduce the rabbit plasma euglobulin lysis time (ELT) and prevent thrombus formation in the inferior vena cava of rats. Within the dosage range, the dosage and effects were positively correlated.


Asunto(s)
Venenos de Crotálidos/química , Escherichia coli/metabolismo , Activadores Plasminogénicos/biosíntesis , Proteínas Recombinantes/biosíntesis , Viperidae/genética , Animales , Clonación Molecular , Escherichia coli/química , Escherichia coli/genética , Femenino , Tiempo de Lisis del Coágulo de Fibrina , Fibrinólisis/efectos de los fármacos , Masculino , Activadores Plasminogénicos/química , Activadores Plasminogénicos/genética , Activadores Plasminogénicos/farmacología , Conejos , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Trombosis de la Vena/patología
15.
Molecules ; 18(8): 8945-58, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-23896619

RESUMEN

In view of the clear evidence that urokinase type plasminogen activator (uPA) plays an important role in the processes of tumor cell metastasis, aortic aneurysm, and multiple sclerosis, it has become a target of choice for pharmacological intervention. The goal of this study was thus to determine the presence of inhibitors of uPA in plants known traditionally for their anti-tumor properties. Crude methanol extracts were prepared from the leaves of plants (14) collected from the subtropical dry forest (Guanica, Puerto Rico), and tested for the presence of inhibitors of uPA using the fibrin plate assay. The extracts that tested positive (6) were then partitioned with petroleum ether, chloroform, ethyl acetate and n-butanol, in a sequential manner. The resulting fractions were then tested again using the fibrin plate assay. Extracts from leaves of Croton lucidus (C. lucidus) showed the presence of a strong uPA inhibitory activity. Serial dilutions of these C. lucidus partitions were performed to determine the uPA inhibition IC50 values. The chloroform extract showed the lowest IC50 value (3.52 µg/mL) and hence contained the most potent uPA inhibitor. Further investigations revealed that the crude methanol extract and its chloroform and n-butanol partitions did not significantly inhibit closely related proteases such as the tissue type plasminogen activator (tPA) and plasmin, indicating their selectivity for uPA, and hence superior potential for medicinal use with fewer side effects. In a further evaluation of their therapeutic potential for prevention of cancer metastasis, the C. lucidus extracts displayed cytostatic activity against human pancreatic carcinoma (PaCa-2) cells, as determined through an MTS assay. The cytostatic activities recorded for each of the partitions correlated with their relative uPA inhibitory activities. There are no existing reports of uPA inhibitors being present in any of the plants reported in this study.


Asunto(s)
Extractos Vegetales/administración & dosificación , Activadores Plasminogénicos/antagonistas & inhibidores , Activador de Plasminógeno de Tipo Uroquinasa/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citostáticos/administración & dosificación , Citostáticos/química , Fibrinolisina/química , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Extractos Vegetales/química , Activadores Plasminogénicos/química , Activador de Plasminógeno de Tipo Uroquinasa/antagonistas & inhibidores
16.
Cell Mol Life Sci ; 68(5): 785-801, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21136135

RESUMEN

The plasmin-antiplasmin system plays a key role in blood coagulation and fibrinolysis. Plasmin and α(2)-antiplasmin are primarily responsible for a controlled and regulated dissolution of the fibrin polymers into soluble fragments. However, besides plasmin(ogen) and α(2)-antiplasmin the system contains a series of specific activators and inhibitors. The main physiological activators of plasminogen are tissue-type plasminogen activator, which is mainly involved in the dissolution of the fibrin polymers by plasmin, and urokinase-type plasminogen activator, which is primarily responsible for the generation of plasmin activity in the intercellular space. Both activators are multidomain serine proteases. Besides the main physiological inhibitor α(2)-antiplasmin, the plasmin-antiplasmin system is also regulated by the general protease inhibitor α(2)-macroglobulin, a member of the protease inhibitor I39 family. The activity of the plasminogen activators is primarily regulated by the plasminogen activator inhibitors 1 and 2, members of the serine protease inhibitor superfamily.


Asunto(s)
Antifibrinolíticos/metabolismo , Plasminógeno/fisiología , Antifibrinolíticos/química , Sitios de Unión , Coagulación Sanguínea/fisiología , Fibrinólisis/fisiología , Humanos , Modelos Biológicos , Modelos Moleculares , Plasminógeno/química , Activadores Plasminogénicos/química , Activadores Plasminogénicos/fisiología , Inactivadores Plasminogénicos/química , Inactivadores Plasminogénicos/fisiología , Estructura Terciaria de Proteína , Serina Proteasas/química , Serina Proteasas/fisiología , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/fisiología , alfa-Macroglobulinas/química , alfa-Macroglobulinas/fisiología
17.
J Biol Chem ; 285(27): 21037-48, 2010 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-20385559

RESUMEN

The single transmembrane domain serine/threonine kinase activin receptor type IIB (ActRIIB) has been proposed to bind key regulators of skeletal muscle mass development, including the ligands GDF-8 (myostatin) and GDF-11 (BMP-11). Here we provide a detailed kinetic characterization of ActRIIB binding to several low and high affinity ligands using a soluble activin receptor type IIB-Fc chimera (ActRIIB.Fc). We show that both GDF-8 and GDF-11 bind the extracellular domain of ActRIIB with affinities comparable with those of activin A, a known high affinity ActRIIB ligand, whereas BMP-2 and BMP-7 affinities for ActRIIB are at least 100-fold lower. Using site-directed mutagenesis, we demonstrate that ActRIIB binds GDF-11 and activin A in different ways such as, for example, substitutions in ActRIIB Leu(79) effectively abolish ActRIIB binding to activin A yet not to GDF-11. Native ActRIIB has four isoforms that differ in the length of the C-terminal portion of their extracellular domains. We demonstrate that the C terminus of the ActRIIB extracellular domain is crucial for maintaining biological activity of the ActRIIB.Fc receptor chimera. In addition, we show that glycosylation of ActRIIB is not required for binding to activin A or GDF-11. Together, our findings reveal binding specificity and activity determinants of the ActRIIB receptor that combine to effect specificity in the activation of distinct signaling pathways.


Asunto(s)
Receptores de Activinas Tipo II/metabolismo , Receptores de Activinas Tipo II/química , Receptores de Activinas Tipo II/genética , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , ADN Complementario/genética , Genes Reporteros , Humanos , Ligandos , Mutagénesis , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/metabolismo , Miostatina/química , Miostatina/metabolismo , Plásmidos/genética , Activadores Plasminogénicos/química , Activadores Plasminogénicos/metabolismo , Unión Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
18.
BMC Biochem ; 12: 60, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22112213

RESUMEN

BACKGROUND: Pharmacological thrombolysis with streptokinase, urokinase or tissue activator of plasminogen (t-PA), and mechanical interventions are frequently used in the treatment of both arterial and venous thrombotic diseases. It has been previously reported that application of ultrasound as an adjunct to thrombolytic therapy offers unique potential to improve effectiveness. However, little is known about effects of the ultrasound on proteins of blood coagulation and fibrinolysis. Here, we investigated the effects of the ultrasound on fibrinogen on processes of coagulation and fibrinogenolysis in an in vitro system. RESULTS: Our study demonstrated that low frequency high intensity pulse ultrasound (25.1 kHz, 48.4 W/cm2, duty 50%) induced denaturation of plasminogen and t-PA and fibrinogen aggregates formation in vitro. The aggregates were characterized by the loss of clotting ability and a greater rate of plasminolysis than native fibrinogen. We investigated the effect of the ultrasound on individual proteins. In case of plasminogen and t-PA, ultrasound led to a decrease of the fibrinogenolysis rate, while it increased the fibrinogenolysis rate in case of fibrinogen. It has been shown that upon ultrasound treatment of mixture fibrinogen or fibrin with plasminogen, t-PA, or both, the rate of proteolytic digestion of fibrin(ogen) increases too. It has been shown that summary effect on the fibrin(ogen) proteolytic degradation under the conditions for combined ultrasound treatment is determined exclusively by effect on fibrin(ogen). CONCLUSIONS: The data presented here suggest that among proteins of fibrinolytic systems, the fibrinogen is one of the most sensitive proteins to the action of ultrasound. It has been shown in vitro that ultrasound induced fibrinogen aggregates formation, characterized by the loss of clotting ability and a greater rate of plasminolysis than native fibrinogen in different model systems and under different mode of ultrasound treatment. Under ultrasound treatment of plasminogen and/or t-PA in the presence of fibrin(ogen) the stabilizing effect fibrin(ogen) on given proteins was shown. On the other hand, an increase in the rate of fibrin(ogen) lysis was observed due to both the change in the substrate structure and promoting of the protein-protein complexes formation.


Asunto(s)
Fibrinógeno/química , Fibrinógeno/efectos de la radiación , Ondas de Choque de Alta Energía , Proteolisis/efectos de la radiación , Animales , Bovinos , Fibrinolisina/química , Fibrinolisina/metabolismo , Microscopía Electrónica de Rastreo , Plasminógeno/química , Plasminógeno/efectos de la radiación , Activadores Plasminogénicos/química , Activadores Plasminogénicos/efectos de la radiación , Terapia Trombolítica , Terapia por Ultrasonido
19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(8): 2171-4, 2010 Aug.
Artículo en Zh | MEDLINE | ID: mdl-20939332

RESUMEN

To investigate the effect of GDG on the secondary structure of plasminogen and plasminogen activators, circular dichroism and SDS-PAGD were applied. The results show that the secondary structures of prourokinase and streptokinase were changed by GDG. The amount of alpha-helix, beta-sheet, beta-turn and random coil of fibrinolytic factors relates with the different concentrations of GDG in the study. GDG has no effects on the secondary structure of plasmin and plasminogen. GDG enhancing the interactivation of plasminogen and prourokinase was indicated by SDS-PAGE. It was found that GDG significantly affected the activity of prourokinase and streptokinase, and increased intrinsic fluorescence of prourokinase.


Asunto(s)
Activadores Plasminogénicos/química , Plasminógeno/química , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Estructura Secundaria de Proteína , Proteínas Recombinantes , Activador de Plasminógeno de Tipo Uroquinasa
20.
Biomolecules ; 10(11)2020 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-33202679

RESUMEN

The Gram-negative bacterium Yersinia pestis causes plague, a fatal flea-borne anthropozoonosis, which can progress to aerosol-transmitted pneumonia. Y. pestis overcomes the innate immunity of its host thanks to many pathogenicity factors, including plasminogen activator, Pla. This factor is a broad-spectrum outer membrane protease also acting as adhesin and invasin. Y. pestis uses Pla adhesion and proteolytic capacity to manipulate the fibrinolytic cascade and immune system to produce bacteremia necessary for pathogen transmission via fleabite or aerosols. Because of microevolution, Y. pestis invasiveness has increased significantly after a single amino-acid substitution (I259T) in Pla of one of the oldest Y. pestis phylogenetic groups. This mutation caused a better ability to activate plasminogen. In paradox with its fibrinolytic activity, Pla cleaves and inactivates the tissue factor pathway inhibitor (TFPI), a key inhibitor of the coagulation cascade. This function in the plague remains enigmatic. Pla (or pla) had been used as a specific marker of Y. pestis, but its solitary detection is no longer valid as this gene is present in other species of Enterobacteriaceae. Though recovering hosts generate anti-Pla antibodies, Pla is not a good subunit vaccine. However, its deletion increases the safety of attenuated Y. pestis strains, providing a means to generate a safe live plague vaccine.


Asunto(s)
Activadores Plasminogénicos/metabolismo , Mapas de Interacción de Proteínas/fisiología , Yersinia pestis/metabolismo , Animales , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Humanos , Peste/genética , Peste/metabolismo , Peste/prevención & control , Vacuna contra la Peste/administración & dosificación , Vacuna contra la Peste/genética , Vacuna contra la Peste/metabolismo , Activadores Plasminogénicos/química , Activadores Plasminogénicos/genética , Mutación Puntual/fisiología , Estructura Secundaria de Proteína , Yersinia pestis/clasificación , Yersinia pestis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA