Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.284
Filtrar
1.
J Neurosci ; 43(47): 7958-7966, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37813571

RESUMEN

In the mammalian nose, two chemosensory systems, the trigeminal and the olfactory mediate the detection of volatile chemicals. Most odorants are able to activate the trigeminal system, and vice versa, most trigeminal agonists activate the olfactory system as well. Although these two systems constitute two separate sensory modalities, trigeminal activation modulates the neural representation of an odor. The mechanisms behind the modulation of olfactory response by trigeminal activation are still poorly understood. We addressed this question by looking at the olfactory epithelium (OE), where olfactory sensory neurons (OSNs) and trigeminal sensory fibers co-localize and where the olfactory signal is generated. Our study was conducted in a mouse model. Both sexes, males and females, were included. We characterize the trigeminal activation in response to five different odorants by measuring intracellular Ca2+ changes from primary cultures of trigeminal neurons (TGNs). We also measured responses from mice lacking TRPA1 and TRPV1 channels known to mediate some trigeminal responses. Next, we tested how trigeminal activation affects the olfactory response in the olfactory epithelium using electro-olfactogram (EOG) recordings from wild-type (WT) and TRPA1/V1-knock out (KO) mice. The trigeminal modulation of the olfactory response was determined by measuring responses to the odorant, 2-phenylethanol (PEA), an odorant with little trigeminal potency after stimulation with a trigeminal agonist. Trigeminal agonists induced a decrease in the EOG response to PEA, which depended on the level of TRPA1 and TRPV1 activation induced by the trigeminal agonist. This suggests that trigeminal activation can alter odorant responses even at the earliest stage of the olfactory sensory transduction.SIGNIFICANCE STATEMENT Most odorants reaching the olfactory epithelium (OE) can simultaneously activate olfactory and trigeminal systems. Although these two systems constitute two separate sensory modalities, trigeminal activation can alter odor perception. Here, we analyzed the trigeminal activity induced by different odorants proposing an objective quantification of their trigeminal potency independent from human perception. We show that trigeminal activation by odorants reduces the olfactory response in the olfactory epithelium and that such modulation correlates with the trigeminal potency of the trigeminal agonist. These results show that the trigeminal system impacts the olfactory response from its earliest stage.


Asunto(s)
Neuronas Receptoras Olfatorias , Alcohol Feniletílico , Masculino , Humanos , Femenino , Ratones , Animales , Olfato/fisiología , Neuronas Receptoras Olfatorias/fisiología , Mucosa Olfatoria , Odorantes , Ratones Noqueados , Alcohol Feniletílico/farmacología , Mamíferos
2.
Biol Pharm Bull ; 47(1): 303-310, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38281774

RESUMEN

Methotrexate (MTX) is an indispensable drug used for the treatment of many autoimmune and cancerous diseases. However, its clinical use is associated with serious side effects, such as lung fibrosis. The main objective of this study is to test the hypothesis that hydroxytyrosol (HT) can mitigate MTX-induced lung fibrosis in rats while synergizing MTX anticancer effects. Pulmonary fibrosis was induced in the rats using MTX (14 mg/kg/week, per os (p.o.)). The rats were treated with or without HT (10, 20, and 40 mg/kg/d p.o.) or dexamethasone (DEX; 0.5 mg/kg/d, intraperitoneally (i.p.)) for two weeks concomitantly with MTX. Transforming growth factor beta 1 (TGF-ß1), interleukin-4 (IL-4), thromboxane A2 (TXA2), vascular endothelial growth factor (VEGF), 8-hydroxy-2-deoxy-guanosine (8-OHdG), tissue factor (TF) and fibrin were assessed using enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and RT-PCR. Pulmonary fibrosis was manifested by an excessive extracellular matrix (ECM) deposition and a marked increase in TGF-ß1 and IL-4 in lung tissues. Furthermore, cotreatment with HT or dexamethasone (DEX) significantly attenuated MTX-induced ECM deposition, TGF-ß1, and IL-4 expression. Similarly, HT or DEX notably reduced hydroxyproline contents, TXA2, fibrin, and TF expression in lung tissues. Moreover, using HT or DEX downregulated the gene expression of TF. A significant decrease in lung contents of VEGF, IL-8, and 8-OHdG was also observed in HT + MTX- or DEX + MTX -treated animals in a dose-dependent manner. Collectively, the results of our study suggest that HT might represent a potential protective agent against MTX-induced pulmonary fibrosis.


Asunto(s)
Metotrexato , Alcohol Feniletílico , Fibrosis Pulmonar , Animales , Ratas , Dexametasona/farmacología , Fibrina/metabolismo , Interleucina-4/metabolismo , Pulmón/patología , Metotrexato/efectos adversos , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/prevención & control , Tromboplastina/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Cell Biochem Funct ; 42(2): e3942, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38379263

RESUMEN

Colorectal cancer (CRC) is among the most prevalent gastrointestinal cancers of epithelial origin worldwide, with over 2 million cases detected every year. Emerging evidence suggests a significant increase in the levels of inflammatory and stress-related markers in patients with CRC, indicating that oxidative stress and lipid peroxidation may influence signalling cascades involved in the progression of the disease. However, the precise molecular and cellular basis underlying CRC and their modulations during bioactive compound exposure have not yet been deciphered. This study examines the effect of caffeic acid phenethyl ester (CAPE), a natural bioactive compound, in HT29 CRC cells grown under serum-supplemented and serum-deprived conditions. We found that CAPE inhibited cell cycle progression in the G2/M phase and induced apoptosis. Migration assay confirmed that CAPE repressed cancer invasiveness. Protein localisation by immunofluorescence microscopy and protein expression by western blot analysis reveal increased expressions of key inflammatory signalling mediators such as p38α, Jun N-terminal kinase and extracellular signal-regulated kinase (ERK) proteins. Molecular docking data demonstrates that CAPE shows a higher docking score of -5.35 versus -4.59 to known p38 inhibitor SB203580 as well as a docking score of -4.17 versus -3.86 to known ERK1/2 inhibitor AZD0364. Co-immunoprecipitation data reveals that CAPE treatment effectively downregulates heat shock protein (HSP) expression in both sera-supplemented and limited conditions through its interaction with mitogen-activated protein kinase 14 (MAPK14). These results suggest that stress induction via serum starvation in HT29 CRC cells leads to the induction of apoptosis and co-ordinated activation of MAPK-HSP pathways. Molecular docking studies support that CAPE could serve as an effective inhibitor to target p38 and MAPK compared to their currently known inhibitors.


Asunto(s)
Neoplasias del Colon , Alcohol Feniletílico , Alcohol Feniletílico/análogos & derivados , Humanos , Línea Celular Tumoral , Proteínas de Choque Térmico , Simulación del Acoplamiento Molecular , Apoptosis , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/metabolismo , Alcohol Feniletílico/farmacología , Alcohol Feniletílico/metabolismo , Neoplasias del Colon/tratamiento farmacológico
4.
Cell Biochem Funct ; 42(1): e3900, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38111127

RESUMEN

The deadliest type of skin cancer, malignant melanoma, is also the reason for the majority of skin cancer-related deaths. The objective of this article was to investigate the efficiency of free caffeic acid phenethyl ester (CAPE) and liposomal CAPE in inducing apoptosis in melanoma cells (A375) in in vitro. CAPE was loaded into liposomes made up of hydrogenated soybean phosphatidylcholine, cholesterol, and 1,2-distearoyl-sn-glycero-3 phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000], and their physicochemical properties were assessed. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test was performed for comparing the cytotoxicity of free CAPE and liposomal CAPE at dosages of 10, 15, 25, 50, 75 and the highest dose of 100 µg/mL for period of 24 and 48 h on A375 cell line to calculate IC50. Apoptosis and necrosis were evaluated in A375 melanoma cancer cells using flow cytometry. Atomic force microscopy was utilized to determine the nanomechanical attributes of the membrane structure of A375 cells. To determine whether there were any effects on apoptosis, the expression of PI3K/AKT1 and BAX/BCL2 genes was analyzed using the real-time polymerase chain reaction technique. According to our results, the maximum amount of drug release from nanoliposomes was determined to be 91% and the encapsulation efficiency of CAPE in liposomes was 85.24%. Also, the release of free CAPE was assessed to be 97%. Compared with liposomal CAPE, free CAPE showed a greater effect on reducing the cancer cell survival after 24 and 48 h. Therefore, IC50 values of A375 cells treated with free and liposomal CAPE were calculated as 47.34 and 63.39 µg/mL for 24 h. After 48 h of incubation of A375 cells with free and liposomal CAPE, IC50 values were determined as 30.55 and 44.83 µg/mL, respectively. The flow cytometry analysis revealed that the apoptosis induced in A375 cancer cells was greater when treated with free CAPE than when treated with liposomal CAPE. The highest nanomechanical changes in the amount of cell adhesion forces, and elastic modulus value were seen in free CAPE. Subsequently, the greatest decrease in PI3K/AKT1 gene expression ratio occurred in free CAPE.


Asunto(s)
Melanoma , Alcohol Feniletílico , Neoplasias Cutáneas , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Línea Celular Tumoral , Liposomas , Alcohol Feniletílico/farmacología , Alcohol Feniletílico/uso terapéutico , Neoplasias Cutáneas/patología , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/química , Ácidos Cafeicos/uso terapéutico , Apoptosis , Fosfatidilinositol 3-Quinasas/metabolismo
5.
Ecotoxicol Environ Saf ; 279: 116497, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805827

RESUMEN

Methamphetamine (METH) is a highly abused substance on a global scale and has the capacity to elicit toxicity within the central nervous system. The neurotoxicity induced by METH encompasses neuronal degeneration and cellular demise within the substantia nigra-striatum and hippocampus. Caffeic acid phenethyl ester (CAPE), a constituent of propolis, is a diminutive compound that demonstrates antioxidative and anti-inflammatory characteristics. Numerous investigations have demonstrated the safeguarding effects of CAPE in various neurodegenerative ailments. Our hypothesis posits that CAPE may exert a neuroprotective influence on METH-induced neurotoxicity via specific mechanisms. In order to validate the hypothesis, a series of experimental techniques including behavioral tests, immunofluorescence labeling, RNA sequencing, and western blotting were employed to investigate the neurotoxic effects of METH and the potential protective effects of CAPE. The results of our study demonstrate that CAPE effectively ameliorates cognitive memory deficits and anxiety symptoms induced by METH in mice. Furthermore, CAPE has been observed to attenuate the upregulation of neurotoxicity-associated proteins that are induced by METH exposure and also reduced the loss of hippocampal neurons in mice. Moreover, transcriptomics analysis was conducted to determine alterations in gene expression within the hippocampus of mice. Subsequently, bioinformatics analysis was employed to investigate the divergent outcomes and identify potential key genes. Interferon-stimulated gene 15 (ISG15) was successfully identified and confirmed through RT-qPCR, western blotting, and immunofluorescence techniques. Our research findings unequivocally demonstrated the neuroprotective effect of CAPE against METH-induced neurotoxicity, with ISG15 may have an important role in the underlying protective mechanism. These results offer novel perspectives on the treatment of METH-induced neurotoxicity.


Asunto(s)
Ácidos Cafeicos , Metanfetamina , Fármacos Neuroprotectores , Síndromes de Neurotoxicidad , Alcohol Feniletílico , Animales , Ácidos Cafeicos/farmacología , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Metanfetamina/toxicidad , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratones , Masculino , Síndromes de Neurotoxicidad/prevención & control , Síndromes de Neurotoxicidad/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos
6.
Reprod Domest Anim ; 59(6): e14588, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38822558

RESUMEN

Semen cryopreservation is one of the most important reproduction techniques in the livestock and poultry industry. Cryopreservation induces cold stress, generating reactive oxygen species (ROS) and oxidative stress causing structural and biochemical damages in sperm. In this study, we evaluated the effects of the hydroxytyrosol (HT), as an antioxidant, at the concentrations of 0, 25, 50, and 100 µg/mL on post-thaw semen quality metrics in rooster. Semen samples were collected twice a week from 10 roosters (29 weeks), processed and frozen according to experimental groups. Different quality parameters, including total motility, progressive motility, viability, morphology, membrane integrity, and malondialdehyde were measured after thawing. Results showed that 25 and 50 µg/mL of HT produced the highest percentage of total motility (51.01 ± 2.19 and 50.15 ± 2.19, respectively) and progressive motility (35.74 ± 1.34 and 35.15 ± 1.34, respectively), membrane integrity (48.00 ± 2.18 and 46.75 ± 2.18, respectively) as well as viability (53.00 ± 2.17 and 52.50 ± 2.17, respectively) compared with the other groups (p < .05). The group with 25 µg/mL of HT showed the lowest significant (p < .05) MDA concentration (1.81 ± 0.25). Our results showed that the effect of HT was not dose-dependent and optimum concentration of HT could improve functional parameters of rooster sperm after freezing-thawing. These findings suggest that HT may have protective effects on the rooster sperm during the freezing-thawing process.


Asunto(s)
Antioxidantes , Pollos , Criopreservación , Alcohol Feniletílico , Preservación de Semen , Motilidad Espermática , Espermatozoides , Animales , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Masculino , Criopreservación/veterinaria , Criopreservación/métodos , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Espermatozoides/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Antioxidantes/farmacología , Análisis de Semen/veterinaria , Crioprotectores/farmacología , Malondialdehído/análisis
7.
Ren Fail ; 46(1): 2350235, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38721924

RESUMEN

Increasing evidence suggests that peritoneal fibrosis induced by peritoneal dialysis (PD) is linked to oxidative stress. However, there are currently no effective interventions for peritoneal fibrosis. In the present study, we explored whether adding caffeic acid phenethyl ester (CAPE) to peritoneal dialysis fluid (PDF) improved peritoneal fibrosis caused by PD and explored the molecular mechanism. We established a peritoneal fibrosis model in Sprague-Dawley rats through intraperitoneal injection of PDF and lipopolysaccharide (LPS). Rats in the PD group showed increased peritoneal thickness, submesothelial collagen deposition, and the expression of TGFß1 and α-SMA. Adding CAPE to PDF significantly inhibited PD-induced submesothelial thickening, reduced TGFß1 and α-SMA expression, alleviated peritoneal fibrosis, and improved the peritoneal ultrafiltration function. In vitro, peritoneal mesothelial cells (PMCs) treated with PDF showed inhibition of the AMPK/SIRT1 pathway, mitochondrial membrane potential depolarization, overproduction of mitochondrial reactive oxygen species (ROS), decreased ATP synthesis, and induction of mesothelial-mesenchymal transition (MMT). CAPE activated the AMPK/SIRT1 pathway, thereby inhibiting mitochondrial membrane potential depolarization, reducing mitochondrial ROS generation, and maintaining ATP synthesis. However, the beneficial effects of CAPE were counteracted by an AMPK inhibitor and siSIRT1. Our results suggest that CAPE maintains mitochondrial homeostasis by upregulating the AMPK/SIRT1 pathway, which alleviates oxidative stress and MMT, thereby mitigating the damage to the peritoneal structure and function caused by PD. These findings suggest that adding CAPE to PDF may prevent and treat peritoneal fibrosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Ácidos Cafeicos , Diálisis Peritoneal , Fibrosis Peritoneal , Alcohol Feniletílico , Sirtuina 1 , Animales , Ratas , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/uso terapéutico , Soluciones para Diálisis , Modelos Animales de Enfermedad , Homeostasis/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Diálisis Peritoneal/efectos adversos , Fibrosis Peritoneal/etiología , Fibrosis Peritoneal/metabolismo , Fibrosis Peritoneal/prevención & control , Peritoneo/patología , Peritoneo/efectos de los fármacos , Peritoneo/metabolismo , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Sirtuina 1/efectos de los fármacos , Sirtuina 1/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
8.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732018

RESUMEN

Hydroxytyrosol (HT) is a bioactive olive oil phenol with beneficial effects in a number of pathological situations. We have previously demonstrated that an HT-enriched diet could serve as a beneficial therapeutic approach to attenuate ischemic-stroke-associated damage in mice. Our exploratory pilot study examined this effect in humans. Particularly, a nutritional supplement containing 15 mg of HT/day was administered to patients 24 h after the onset of stroke, for 45 days. Biochemical and oxidative-stress-related parameters, blood pressure levels, serum proteome, and neurological and functional outcomes were evaluated at 45 and 90 days and compared to a control group. The main findings were that the daily administration of HT after stroke could: (i) favor the decrease in the percentage of glycated hemoglobin and diastolic blood pressure, (ii) control the increase in nitric oxide and exert a plausible protective effect in oxidative stress, (iii) modulate the evolution of the serum proteome and, particularly, the expression of apolipoproteins, and (iv) be beneficial for certain neurological and functional outcomes. Although a larger trial is necessary, this study suggests that HT could be a beneficial nutritional complement in the management of human stroke.


Asunto(s)
Suplementos Dietéticos , Estrés Oxidativo , Alcohol Feniletílico , Accidente Cerebrovascular , Humanos , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Alcohol Feniletílico/uso terapéutico , Masculino , Accidente Cerebrovascular/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Femenino , Anciano , Proyectos Piloto , Persona de Mediana Edad , Presión Sanguínea/efectos de los fármacos , Óxido Nítrico/metabolismo
9.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891778

RESUMEN

Infants and young animals often suffer from intestinal damage caused by oxidative stress, which may adversely affect their overall health. Hydroxytyrosol, a plant polyphenol, has shown potential in decreasing intestinal oxidative stress, but its application and mechanism of action in infants and young animals are still inadequately documented. This study selected piglets as a model to investigate the alleviating effects of hydroxytyrosol on intestinal oxidative stress induced by diquat and its potential mechanism. Hydroxytyrosol improved intestinal morphology, characterized by higher villus height and villus height/crypt depth. Meanwhile, hydroxytyrosol led to higher expression of Occludin, MUC2, Nrf2, and its downstream genes, and lower expression of cytokines IL-1ß, IL-6, and TNF-α. Both oxidative stress and hydroxytyrosol resulted in a higher abundance of Clostridium_sensu_stricto_1, and a lower abundance of Lactobacillus and Streptococcus, without a significant effect on short-chain fatty acids levels. Oxidative stress also led to disorders in bile acid (BA) metabolism, such as the lower levels of primary BAs, hyocholic acid, hyodeoxycholic acid, and tauroursodeoxycholic acid, which were partially restored by hydroxytyrosol. Correlation analysis revealed a positive correlation between these BA levels and the expression of Nrf2 and its downstream genes. Collectively, hydroxytyrosol may reduce oxidative stress-induced intestinal damage by regulating BA metabolism.


Asunto(s)
Ácidos y Sales Biliares , Mucosa Intestinal , Estrés Oxidativo , Alcohol Feniletílico , Animales , Estrés Oxidativo/efectos de los fármacos , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Porcinos , Ácidos y Sales Biliares/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Intestinos/efectos de los fármacos , Intestinos/patología , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética
10.
Appl Environ Microbiol ; 89(2): e0156822, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36752618

RESUMEN

The compound 2-phenylethanol (2-PE) is a bulk flavor and fragrance with a rose-like aroma that can be produced by microbial cell factories, but its cellular toxicity inhibits cellular growth and limits strain performance. Specifically, the microbe Bacillus licheniformis has shown a strong tolerance to 2-PE. Understanding these tolerance mechanisms is crucial for achieving the hyperproduction of 2-PE. In this report, the mechanisms of B. licheniformis DW2 resistance to 2-PE were studied by multi-omics technology coupled with physiological and molecular biological approaches. 2-PE induced reactive oxygen species formation and affected nucleic acid, ribosome, and cell wall synthesis. To manage 2-PE stress, the antioxidant and global stress response systems were activated; the repair system of proteins and homeostasis of the ion and osmotic were initiated. Furthermore, the tricarboxylic acid cycle and NADPH synthesis pathways were upregulated; correspondingly, scanning electron microscopy revealed that cell morphology was changed. These results provide deeper insights into the adaptive mechanisms of B. licheniformis to 2-PE and highlight the potential targets for genetic manipulation to enhance 2-PE resistance. IMPORTANCE The ability to tolerate organic solvents is essential for bacteria producing these chemicals with high titer, yield, and productivity. As exemplified by 2-PE, bioproduction of 2-PE represents a promising alternative to chemical synthesis and plant extraction approaches, but its toxicity hinders successful large-scale microbial production. Here, a multi-omics approach is employed to systematically study the mechanisms of B. licheniformis DW2 resistance to 2-PE. As a 2-PE-tolerant strain, B. licheniformis displays multifactorial mechanisms of 2-PE tolerance, including activating global stress response and repair systems, increasing NADPH supply, changing cell morphology and membrane composition, and remodeling metabolic pathways. The current work yields novel insights into the mechanisms of B. licheniformis resistance to 2-PE. This knowledge can also be used as a clue for improving bacterial performances to achieve industrial-scale production of 2-PE and potentially applied to the production of other relevant organic solvents, such as tyrosol and hydroxytyrosol.


Asunto(s)
Bacillus licheniformis , Alcohol Feniletílico , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Alcohol Feniletílico/farmacología , NADP/metabolismo , Ciclo del Ácido Cítrico , Redes y Vías Metabólicas
11.
Chem Res Toxicol ; 36(6): 859-869, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37184291

RESUMEN

Propolis is a resin-like material produced by bees from the buds of poplar and cone-bearing trees and is used in beehive construction. Propolis is a common additive in various biocosmetics and health-related products, despite the fact that it is a well-known cause of contact allergy. Caffeic acid and its esters have been the primary suspects behind the sensitization potency of propolis-induced contact allergy. However, the chemical structures of the protein adducts formed between these haptens and skin proteins during the process of skin sensitization remain unknown. In this study, the reactivity of three main contact allergens found in propolis, namely, caffeic acid (CA), caffeic acid 1,1-dimethylallyl ester (CAAE), and caffeic acid phenethyl ester (CAPE), was investigated. These compounds were initially subjected to the kinetic direct peptide reactivity assay to categorize the sensitization potency of CA, CAAE, and CAPE, but the data obtained was deemed too unreliable to confidently classify their skin sensitization potential based on this assay alone. To further investigate the chemistry involved in generating possible skin allergy-inducing protein adducts, model peptide reactions with CA, CAAE, and CAPE were conducted and analyzed via liquid chromatography-high-resolution mass spectrometry. Reactions between CA, CAAE, and CAPE and a cysteine-containing peptide in the presence of oxygen, both in closed and open systems, were monitored at specific time points. These studies revealed the formation of two different adducts, one corresponding to thiol addition to the α,ß-unsaturated carbonyl region of the caffeic structure and the second corresponding to thiol addition to the catechol, after air oxidation to o-quinone. Observation of these peptide adducts classifies these compounds as prehaptens. Interestingly, no adduct formation was observed when the same reactions were performed under oxygen-free conditions, highlighting the importance of air oxidation processes in CA, CAAE, and CAPE adduct formation. Additionally, through NMR analysis, we found that thiol addition occurs at the C-2 position in the aromatic ring of the CA derivatives. Our results emphasize the importance of air oxidation in the sensitization potency of propolis and shed light on the chemical structures of the resultant haptens which could trigger allergic reactions in vivo.


Asunto(s)
Hipersensibilidad , Alcohol Feniletílico , Própolis , Humanos , Própolis/química , Ésteres , Alcohol Feniletílico/farmacología , Cisteína , Haptenos
12.
Biotechnol Lett ; 45(11-12): 1541-1554, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37831285

RESUMEN

OBJECTIVES: The applicability of a simple and high-throughput method for quantitative characterization of biofilm formation by Candida boidinii was tested in order to evaluate the effects of exogenous tyrosol on yeast growth and biofilm formation capacity. RESULTS: Significant concentration-, temperature and time-dependent effect of tyrosol (2-(4-hydroxyphenyl)ethanol) was demonstrated, but it differentially affected the growth and biofilm formation (characterized by crystal violet staining and XTT-reduction assay) of Candida boidinii. Testing biofilm based on metabolic activity displayed sensitively the differences in the intensity of biofilm in terms of temperature, tyrosol concentration, and exposure time. At 22 °C after 24 h none of the tyrosol concentrations had significant effect, while at 30 °C tyrosol-mediated inhibition was observed at 50 mM and 100 mM concentration. After 48 h and 72 h at 22 °C, biofilm formation was stimulated at 6.25-25 mM concentrations, meanwhile at 30 °C tyrosol decreased the biofilm metabolic activity proportionally with the concentration. CONCLUSIONS: The research concludes that exogenous tyrosol exerts unusual effects on Candida boidinii growth and biofilm formation ability and predicts its potential application as a regulating factor of various fermentations by Candida boidinii.


Asunto(s)
Alcohol Feniletílico , Saccharomycetales , Biopelículas , Alcohol Feniletílico/farmacología , Alcohol Feniletílico/metabolismo , Saccharomycetales/metabolismo , Candida albicans
13.
Phytother Res ; 37(3): 1115-1135, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36562210

RESUMEN

Caffeic acid phenethyl ester (CAPE), a main active component of propolis and a flavonoid, is one of the natural products that has attracted attention in recent years. CAPE, which has many properties such as anti-cancer, anti-inflammatory, antioxidant, antibacterial and anti-fungal, has shown many pharmacological potentials, including protective effects on multiple organs. Interestingly, molecular docking studies showed the possibility of binding of CAPE with replication enzyme. In addition, it was seen that in order to increase the binding security of the replication enzyme and CAPE, modifications can be made at three sites on the CAPE molecule, which leads to the possibility of the compound working more powerfully and usefully to prevent the proliferation of cancer cells and reduce its rate. Also, it was found that CAPE has an inhibitory effect against the main protease enzyme and may be effective in the treatment of SARS-CoV-2. This review covers in detail the importance of CAPE in alternative medicine, its pharmacological value, its potential as a cancer anti-proliferative agent, its dual role in radioprotection and radiosensitization, and its use against coronavirus disease 2019 (COVID-19).


Asunto(s)
COVID-19 , Alcohol Feniletílico , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Alcohol Feniletílico/química , Alcohol Feniletílico/metabolismo , Alcohol Feniletílico/farmacología , Ácidos Cafeicos/química , Antiinflamatorios/farmacología , Radicales Libres
14.
Int J Mol Sci ; 24(13)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37446206

RESUMEN

Immunosenescence and inflammaging facilitate the insurgence of chronic diseases. The Mediterranean diet is a non-invasive intervention to improve the chronic low-grade inflammatory status associated with aging. Olive oil oleuropein (OLE) and hydroxytyrosol (HT) demonstrated a controversial modulatory action on inflammation in vitro when tested at concentrations exceeding those detectable in human plasma. We studied the potential anti-inflammatory effects of OLE and HT at nutritionally relevant concentrations on peripheral blood mononuclear cells (PBMCs) as regards cell viability, frequency of leukocyte subsets, and cytokine release, performing an age-focused analysis on two groups of subjects: Adult (age 18-64 years) and Senior (age ≥ 65 years). OLE and HT were used alone or as a pre-treatment before challenging PBMCs with lipopolysaccharide (LPS). Both polyphenols had no effect on cell viability irrespective of LPS, but 5 µM HT had an LPS-like effect on monocytes, reducing the intermediate subset in Adult subjects. OLE and HT had no effect on LPS-triggered release of TNF-α, IL-6 and IL-8, but 5 µM HT reduced IL-10 secretion by PBMCs from Adult vs. Senior group. In summary, nutritionally relevant concentrations of OLE and HT elicit no anti-inflammatory effect and influence the frequency of immune cell subsets with age-related different outcomes.


Asunto(s)
Leucocitos Mononucleares , Alcohol Feniletílico , Adulto , Humanos , Adolescente , Adulto Joven , Persona de Mediana Edad , Anciano , Lipopolisacáridos/toxicidad , Polifenoles/farmacología , Alcohol Feniletílico/farmacología
15.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36834980

RESUMEN

Caffeic acid phenylethyl ester (CAPE) is an antioxidative agent originally derived from propolis. Oxidative stress is a significant pathogenic factor in most retinal diseases. Our previous study revealed that CAPE suppresses mitochondrial ROS production in ARPE-19 cells by regulating UCP2. The present study explores the ability of CAPE to provide longer-term protection to RPE cells and the underlying signal pathways involved. ARPE-19 cells were given CAPE pretreatment followed by t-BHP stimulation. We used in situ live cell staining with CellROX and MitoSOX to measure ROS accumulation; Annexin V-FITC/PI assay to evaluate cell apoptosis; ZO-1 immunostaining to observe tight junction integrity in the cells; RNA-seq to analyze changes in gene expression; q-PCR to validate the RNA-seq data; and Western Blot to examine MAPK signal pathway activation. CAPE significantly reduced both cellular and mitochondria ROS overproduction, restored the loss of ZO-1 expression, and inhibited apoptosis induced by t-BHP stimulation. We also demonstrated that CAPE reverses the overexpression of immediate early genes (IEGs) and activation of the p38-MAPK/CREB signal pathway. Either genetic or chemical deletion of UCP2 largely abolished the protective effects of CAPE. CAPE restrained ROS generation and preserved the tight junction structure of ARPE-19 cells against oxidative stress-induced apoptosis. These effects were mediated via UCP2 regulation of p38/MAPK-CREB-IEGs pathway.


Asunto(s)
Ácidos Cafeicos , Estrés Oxidativo , Alcohol Feniletílico , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Ácidos Cafeicos/farmacología , Estrés Oxidativo/efectos de los fármacos , Alcohol Feniletílico/farmacología , Especies Reactivas de Oxígeno/metabolismo , Humanos
16.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37372967

RESUMEN

Caffeic acid phenethyl ester (CAPE) contains antibiotic and anticancer activities. Therefore, we aimed to investigate the anticancer properties and mechanisms of CAPE and caffeamide derivatives in the oral squamous cell carcinoma cell (OSCC) lines SAS and OECM-1. The anti-OSCC effects of CAPE and the caffeamide derivatives (26G, 36C, 36H, 36K, and 36M) were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test. Cell cycle and total reactive oxygen species (ROS) production were analyzed using flow cytometry. The relative protein expression of malignant phenotypes was determined via Western blot analysis. The results showed that 26G and 36M were more cytotoxic than the other compounds in SAS cells. After 26G or 36M treatment for 48 h, cell cycle S phase or G2/M phase arrest was induced, and cellular ROS increased at 24 h, and then decreased at 48 h in both cell lines. The expression levels of cell cycle regulatory and anti-ROS proteins were downregulated. In addition, 26G or 36M treatment inhibited malignant phenotypes through mTOR-ULK1-P62-LC3 autophagic signaling activated by ROS generation. These results showed that 26G and 36M induce cancer cell death by activating autophagy signaling, which is correlated with altered cellular oxidative stress.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Alcohol Feniletílico , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Neoplasias de la Boca/tratamiento farmacológico , Alcohol Feniletílico/farmacología , Ácidos Cafeicos/farmacología , Línea Celular Tumoral , Apoptosis
17.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835384

RESUMEN

Hydroxytyrosol (HT) is an olive polyphenol with anti-inflammatory and antioxidant properties. This study aimed to investigate the effect of HT treatment on epithelial-mesenchymal transition (EMT) in primary human respiratory epithelial cells (RECs) isolated from human nasal turbinate. HT dose-response study and growth kinetic study on RECs was performed. Several approaches on HT treatment and TGFß1 induction with varying durations and methods was studied. RECs morphology and migration ability were evaluated. Vimentin and E-cadherin immunofluorescence staining and Western blotting [E-cadherin, vimentin, SNAIL/SLUG, AKT, phosphorylated (p)AKT, SMAD2/3 and pSMAD2/3] were performed after 72-h treatment. In silico analysis (molecular docking) of HT was performed to evaluate the potential of HT to bind with the TGFß receptor. The viability of the HT-treated RECs was concentration-dependent, where the median effective concentration (EC50) was 19.04 µg/mL. Testing of the effects of 1 and 10 µg/mL HT revealed that HT suppressed expression of the protein markers vimentin and SNAIL/SLUG while preserving E-cadherin protein expression. Supplementation with HT protected against SMAD and AKT pathway activation in the TGFß1-induced RECs. Furthermore, HT demonstrated the potential to bind with ALK5 (a TGFß receptor component) in comparison to oleuropein. TGFß1-induced EMT in RECs and HT exerted a positive effect in modulating the effects of EMT.


Asunto(s)
Células Epiteliales Alveolares , Suplementos Dietéticos , Transición Epitelial-Mesenquimal , Alcohol Feniletílico , Proteínas Proto-Oncogénicas c-akt , Humanos , Cadherinas/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Vimentina/metabolismo , Alcohol Feniletílico/farmacología , Células Epiteliales Alveolares/efectos de los fármacos
18.
Molecules ; 28(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36838850

RESUMEN

Pharmacologists have been emphasizing and applying plant and herbal-based treatments in vascular diseases for decades now. Olives, for example, are a traditional symbol of the Mediterranean diet. Hydroxytyrosol is an olive-derived compound known for its antioxidant and cardioprotective effects. Acknowledging the merit of antioxidants in maintaining endothelial function warrants the application of hydroxytyrosol in endothelial dysfunction salvage and recovery. Endothelial dysfunction (ED) is an impairment of endothelial cells that adversely affects vascular homeostasis. Disturbance in endothelial functioning is a known precursor for atherosclerosis and, subsequently, coronary and peripheral artery disease. However, the effects of hydroxytyrosol on endothelial functioning were not extensively studied, limiting its value either as a nutraceutical supplement or in clinical trials. The action of hydroxytyrosol in endothelial functioning at a cellular and molecular level is gathered and summarized in this review. The favorable effects of hydroxytyrosol in the improvement of endothelial functioning from in vitro and in vivo studies were scrutinized. We conclude that hydroxytyrosol is capable to counteract oxidative stress, inflammation, vascular aging, and arterial stiffness; thus, it is beneficial to preserve endothelial function both in vitro and in vivo. Although not specifically for endothelial dysfunction, hydroxytyrosol safety and efficacy had been demonstrated via in vivo and clinical trials for cardiovascular-related studies.


Asunto(s)
Olea , Alcohol Feniletílico , Aceite de Oliva/farmacología , Células Endoteliales , Antioxidantes/farmacología , Alcohol Feniletílico/farmacología
19.
Molecules ; 28(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37570782

RESUMEN

Caffeic acid phenethyl ester (CAPE) belongs to the phenols found in propolis. It has already shown strong antiproliferative, cytotoxic and pro-apoptotic activities against head and neck cancers and against breast, colorectal, lung and leukemia cancer cells. Ovarian cancer is one of the most dangerous gynecological cancers. Its treatment involves intensive chemotherapy with platinum salts and paclitaxel (PTX). The purpose of this study was to evaluate whether the combined use of CAPE and paclitaxel increases the effectiveness of chemotherapeutic agents. The experiment was performed on three ovarian cancer lines: OV7, HTB78, and CRL1572. The effect of the tested compounds was assessed using H-E staining, a wound-healing test, MTT and the cell death detection ELISAPLUS test. The experiment proved that very low doses of PTX (10 nM) showed a cytotoxic effect against all the cell lines tested. Also, the selected doses of CAPE had a cytotoxic effect on the tested ovarian cancer cells. An increase in the cytotoxic effect was observed in the OV7 line after the simultaneous administration of 10 nM PTX and 100 µM CAPE. The increase in the cytotoxicity was dependent on the CAPE dosage (50 vs. 100 µM) and on the duration of the experiment. In the other cell lines tested, the cytotoxic effect of PTX did not increase after the CAPE administration. The administration of PTX together with CAPE increased the percentage of apoptotic cells in the tested ovarian cancer cell lines. Moreover, the simultaneous administration of PTX and CAPE enhanced the anti-migration activity of the chemotherapeutic used in this study.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Alcohol Feniletílico , Humanos , Femenino , Paclitaxel/farmacología , Línea Celular Tumoral , Apoptosis , Proliferación Celular , Antineoplásicos/farmacología , Alcohol Feniletílico/farmacología , Ácidos Cafeicos/farmacología , Neoplasias Ováricas/tratamiento farmacológico
20.
Niger J Clin Pract ; 26(6): 686-693, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37470640

RESUMEN

Background: Organophosphate (Op)-containing herbicides continue to be widely used in the world. Although its usage and intoxication are widespread, the studies on organophosphate-induced neurotoxicity and treatment protocols are very few in the literature. Aims: This study aimed to investigate any potential effects of caffeic acid phenyl ester with/without intralipid on neurotoxicity produced by acute intoxication of glyphosate isopropylamine in an experimental rat model. Materials And Methods: Forty-nine wistar albino rats were randomly allotted into seven experimental groups: I, control; II, intralipid (IL); III, caffeic acid phenyl esther (CAPE); IV, glyphosate isopropylamine (GI); V, GI + IL; VI, GI + CAPE; and VII, GI + IL + CAPE. Total antioxidant and oxidant status levels were gauged, and the oxidative stress index was calculated in the serum samples. On the other hand, the tissues were analyzed with hematoxylin-eosin (HE) staining protocol and counted up by immunohistochemical method. Statistical evaluations were conducted using SPSS 11.5 for Windows (SPSS, Chicago, IL, USA). Results: Compared to the control, IL, and GI + IL + CAPE groups, the GI group significantly decreased the total antioxidant levels in brain tissues. In a supportive nature, a significant increase in the oxidative site index (OSI) in the GI group compared to other groups. Especially standing out point of these findings is the significant difference between the GI + IL + CAPE and the GI group. Parallelly, histopathological analysis extended severe neurotoxicity in the GI group. Neurotoxic status was reduced significantly in the GI + CAPE + IL group. The histopathologic examinations confirmed biochemical results. The results also revealed that CAPE and IL, probably their antioxidant effects, have a rehabilitative effect on neurotoxicity caused by GI. Conclusion: Therefore, CAPE and IL may function as potential cleansing and scavenger agents for supportive therapy regarding tissue damage or facilitate the therapeutic effects of the routine treatment of the patient with GI poisoning.


Asunto(s)
Intoxicación por Organofosfatos , Alcohol Feniletílico , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Intoxicación por Organofosfatos/tratamiento farmacológico , Alcohol Feniletílico/farmacología , Alcohol Feniletílico/uso terapéutico , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/uso terapéutico , Estrés Oxidativo , Ratas Wistar , Organofosfatos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA