Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mar Drugs ; 18(4)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230878

RESUMEN

Organisms belonging to Synechococcus sp. genera are observed in all freshwater, brackish, and marine waters of the world. They play a relevant role in these ecosystems, since they are one of the main primary producers, especially in open ocean. Eventually, they form mass blooms in coastal areas, which are potentially dangerous for the functioning of marine ecosystems. Allelopathy could be an important factor promoting the proliferation of these organisms. According to the authors' best knowledge, there is no information on the allelopathic activity and allelopathic compounds exhibited by different Synechococcus sp. phenotypes. Therefore, the research conducted here aimed to study the bioactivity of compounds produced by three phenotypes of Synechococcus sp. by studying their influence on the growth, chlorophyll fluorescence, and photosynthetic pigments of eighteen cyanobacteria and microalgae species. We demonstrated that three different Synechococcus sp. phenotypes, including a phycocyanin (PC)-rich strain (Type 1; green strain) and phycoerythrin (PE)-rich strains containing phycoerythrobilin (PEB) and phycocyanobilin (PCB) (Type 2; red strain and Type 3a; brown strain), had a significant allelopathic effect on the selected species of cyanobacteria, diatoms, and green algae. For all green algae, a decrease in cell abundance under the influence of phenotypes of donor cyanobacteria was shown, whereas, among some target cyanobacteria and diatom species, the cell-free filtrate was observed to have a stimulatory effect. Our estimates of the stress on photosystem II (Fv/Fm) showed a similar pattern, although for some diatoms, there was an effect of stress on photosynthesis, while a stimulatory effect on growth was also displayed. The pigment content was affected by allelopathy in most cases, particularly for chlorophyll a, whilst it was a bit less significant for carotenoids. Our results showed that Synechococcus sp. Type 3a had the strongest effect on target species, while Synechococcus sp. Type 1 had the weakest allelopathic effect. Furthermore, GC-MS analysis produced different biochemical profiles for the Synechococcus strains. For every phenotype, the most abundant compound was different, with oxime-, methoxy-phenyl- being the most abundant substance for Synechococcus Type 1, eicosane for Synechococcus Type 2, and silanediol for Synechococcus Type 3a.


Asunto(s)
Floraciones de Algas Nocivas/fisiología , Feromonas/metabolismo , Fitoplancton/fisiología , Synechococcus/fisiología , Microbiología del Agua , Alelopatía/fisiología , Proliferación Celular/fisiología , Feromonas/química , Fotosíntesis , Ficobilinas/metabolismo , Ficocianina/metabolismo , Ficoeritrina/metabolismo , Fitoplancton/química , Silanos/metabolismo , Synechococcus/química
2.
Environ Microbiol ; 19(6): 2483-2494, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28464383

RESUMEN

Interactions among microbes determine the prevalence of harmful algal blooms that threaten water quality. These interactions can be indirectly mediated by shared resources or consumers, or through interference by the production of allelochemicals. Allelopathic interactions and resource competition have been shown to occur among algae and associated microbes. However, little work has considered seasonal influences on ecosystem structure and function. Here, we report results of our investigations on seasonal changes in the interactions between benthic microbial assemblies and the bloom forming cyanobacterium Microcystis aeruginosa. We show that phosphorus (P) competition and allelopathy by the microbial assembly vary seasonally and inhibit growth of M. aeruginosa. The interactions per unit biomass of the microbial assembly are stronger under winter than summer conditions and inhibit the recruitment of the cyanobacteria, thereby preventing the reoccurrence of cyanobacterial blooms in the following summer. The seasonality of these interactions correlates with changes in composition, metabolic activity and functional diversity of the microbial assembly. Our findings highlight the importance of competitive and allelopathic interactions in regulating the occurrence of harmful algal blooms. Our results also imply that seasonal variation of competition and allelopathy of the microbial assembly might be beneficial to adjust aquatic ecosystem structure and function.


Asunto(s)
Alelopatía/fisiología , Floraciones de Algas Nocivas , Microcystis/crecimiento & desarrollo , Microcystis/metabolismo , Fósforo/metabolismo , Biomasa , Ecosistema , Feromonas/biosíntesis , Estaciones del Año
3.
An Acad Bras Cienc ; 89(2): 919-926, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28640346

RESUMEN

This study aims to determine the allelopathic potential of Amaranthus retroflexus (Ar) with different climatic zones on seed germination and growth of A. tricolor (At) treated with a gradient N addition. Ar leaf extracts only displayed significantly allelopathic potential on the underground growth of Ar but not the aboveground growth of At. The allelopathic potential of Ar leaf extracts on root length of At were enhanced under N addition and there may be a N-concentration-dependent relationship. The effects of the extracts of Ar leaves that collected from Zhenjiang on seed germination and growth of At may be higher than that collected from Jinan especially on root length of At under medium N addition. This reason may be the contained higher concentration of secondary metabolites for the leaves of plants that growths in high latitudes compare with that growth in low latitudes. This phenomenon may also partly be attributed to the fact that Ar originated in America and/or south-eastern Asia which have higher similarity climate conditions as Zhenjiang rather than Jinan. The allelopathic potential of Ar on seed germination and growth of acceptor species may play an important role in its successful invasion especially in the distribution region with low latitudes.


Asunto(s)
Alelopatía/fisiología , Amaranthus/química , Amaranthus/fisiología , Nitrógeno/química , Análisis de Varianza , China , Extractos Vegetales/química , Hojas de la Planta/química , Semillas/química , Semillas/fisiología , Estadísticas no Paramétricas
4.
Chem Biodivers ; 14(4)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27685082

RESUMEN

Citharexylum spinosum L. (Verbenaceae) also known as Citharexylum quadrangulare Jacq. or Citharexylum fruticosum L. is an exotic tree introduced many years ago in Tunisia, specially used as a street and park ornamental tree. Essential oils (EOs) were obtained by hydrodistillation of the different parts (roots, stems, leaves, flowers and fruits; drupes) collected from trees grown in the area of Monastir (Tunisia). In total, 84 compounds, representing 90.1 - 98.4% of the whole oil composition, were identified by GC-FID and GC/MS analyses. The root EO was distinguished by its high content in monoterpene hydrocarbons (α-phellandrene; 30.8%) whereas that obtained from stems was dominated by sesquiterpene hydrocarbons (cuparene; 16.4%). The leaf oil was rich in an apocarotenoid derivative (hexahydrofarnesylacetone; 26%) and an aliphatic hydrocarbon (nonadecane; 14.5%). Flowers oil was rich in esters (2-phenylethyl benzoate; 33.5%). Finally, drupes oil was rich in oxygenated sesquiterpenes (ß-eudesmol; 33.1%). Flowers oil showed a significant phytotoxic effect against lettuce seeds germination, it induces a total inhibition when tested at 1 mg/ml. Root and shoot elongation seemed to be more affected than germination. The inhibition of the shoot length varied from 3.6% to 100% and that of the root from 16.1% to 100%. The highest inhibition of 100% was detected for flower oil tested at 1 mg/ml. Our in vitro studies suggest a possible and new alternative use of C. spinosum EOs in herbicidal formulations, further experiments involving field conditions are necessary to confirm its herbicidal potential.


Asunto(s)
Alelopatía/fisiología , Aceites Volátiles/química , Verbenaceae/química , Destilación , Ésteres/aislamiento & purificación , Flores/toxicidad , Cromatografía de Gases y Espectrometría de Masas , Germinación/efectos de los fármacos , Herbicidas/aislamiento & purificación , Lactuca/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Monoterpenos/aislamiento & purificación , Aceites Volátiles/farmacología , Estructuras de las Plantas/química , Sesquiterpenos/aislamiento & purificación , Túnez
5.
Naturwissenschaften ; 102(3-4): 12, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25740225

RESUMEN

Biological invasions have become a major global issue in ecosystem conservation. As formalized in the "novel weapon hypothesis", the allelopathic abilities of species are actively involved in invasion success. Here, we assume that allelopathy can also increase the biotic resistance of native species against invasion. We tested this hypothesis by studying the impact of the native species Sambucus ebulus on the colonization of propagules of the invasive species Fallopiaxbohemica and the subsequent development of plants from these. Achenes and rhizome fragments from two natural populations were grown in a greenhouse experiment for 50 days. We used an experimental design that involved "donor" and "target" pots in order to separate resource competition from allelopathy. An allelopathic treatment effect was observed for plant growth but not for propagule establishment. Treatment affected, in particular, the growth of Fallopia plants originating from achenes, but there was less influence on plants originating from rhizomes. By day 50, shoot height had decreased by 27% for plants originating from rhizomes and by 38% for plants originating from achenes. The number of leaves for plants originating from achenes had only decreased by 20%. Leaf and above- and below-ground dry masses decreased with treatment by 40, 41 and 25% for plants originating from rhizomes and 70, 61 and 55% for plants originating from achenes, respectively. S. ebulus extracts were analysed using high-performance chromatography, and the choice of test molecules was narrowed down. Our results suggest native species use allelopathy as a biotic containment mechanism against the naturalization of invasive species.


Asunto(s)
Alelopatía/fisiología , Especies Introducidas , Polygonaceae/fisiología , Sambucus/fisiología , Ecosistema , Europa (Continente)
6.
Mar Drugs ; 13(11): 6703-22, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26528991

RESUMEN

Cylindrospermopsin (CYN) is a toxic secondary metabolite produced by filamentous cyanobacteria which could work as an allelopathic substance, although its ecological role in cyanobacterial-algal assemblages is mostly unclear. The competition between the CYN-producing cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum, and the benthic green alga Chlorococcum sp. was investigated in mixed cultures, and the effects of CYN-containing cyanobacterial crude extract on Chlorococcum sp. were tested by treatments with crude extracts containing total cell debris, and with cell debris free crude extracts, modelling the collapse of a cyanobacterial water bloom. The growth inhibition of Chlorococcum sp. increased with the increasing ratio of the cyanobacterium in mixed cultures (inhibition ranged from 26% to 87% compared to control). Interestingly, inhibition of the cyanobacterium growth also occurred in mixed cultures, and it was more pronounced than it was expected. The inhibitory effects of cyanobacterial crude extracts on Chlorococcum cultures were concentration-dependent. The presence of C. ovalisporum in mixed cultures did not cause significant differences in nutrient content compared to Chlorococcum control culture, so the growth inhibition of the green alga could be linked to the presence of CYN and/or other bioactive compounds.


Asunto(s)
Alelopatía/fisiología , Aphanizomenon/metabolismo , Chlorophyta/metabolismo , Uracilo/análogos & derivados , Alcaloides , Toxinas Bacterianas/aislamiento & purificación , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidad , Mezclas Complejas/metabolismo , Toxinas de Cianobacterias , Metabolismo Secundario , Uracilo/aislamiento & purificación , Uracilo/metabolismo , Uracilo/toxicidad
7.
Bull Environ Contam Toxicol ; 94(2): 225-31, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25416545

RESUMEN

In order to explore the growth inhibition and physiological responses of unicellular and colonial Microcystis aeruginosa during coexistence with Acorus calamus, algal densities, chlorophyll a contents, exopolysaccharide (EPS) concentrations, malondialdehyde (MDA) contents, catalase (CAT) activities, and peroxidase (POD) activities of the two algae strains were analyzed. Although the unicellular and colonial strains of M. aeruginosa were both inhibited by A. calamus, unicellular algae were more sensitive than the colonial algae. The measurement results for EPS, MDA, CAT, and POD showed that unicellular M. aeruginosa had higher levels of stress related damage than colonial strains when they were exposed to the same density of A. calamus, and the cellular defense system of colonial M. aeruginosa was stronger than that of unicellular M. aeruginosa. Natural blooms of Microcystis are typically composed of colonial forms of M. aeruginosa, therefore future efforts to control such blooms, possibly through the development of new algicides, should focus on the unique characteristics of colonial M. aeruginosa strains.


Asunto(s)
Acorus/fisiología , Microcystis/fisiología , Alelopatía/fisiología , Animales , Microcystis/citología
8.
Environ Technol ; 36(1-4): 54-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25409583

RESUMEN

The present study evaluated the combined effects of four typical predatory zooplankton and allelopathic aquatic macrophytes on algal control in a microcosm system. It would determine the effects of diverse species and biological restoration on the growth of harmful water-bloom microalgae in great lakes polluted by excess nutrients. It was found that the mixtures of each zooplankton and the floating plant Nymphoides peltatum had stronger inhibitory effects on harmful water-bloom microalgae than the individual species in clean or eutrophic water bodies. In addition, a community of four zooplankton types had a synergistic effect on algal inhibition. Algal suppression by the zooplankton community was enhanced significantly when the macrophyte was co-cultured in the microcosm. Furthermore, Chlorella pyrenoidosa was more susceptible than Microcystis aeruginosa when exposed to grazing by zooplankton and the allelopathic potential of the macrophyte. Algal inhibition was also weaker in eutrophic conditions compared with the control. These findings indicate that diverse species may enhance algal inhibition. Therefore, it is necessary to restore biological diversity and rebuild an ecologically balanced food chain or web to facilitate the control of harmful algal blooms in eutrophic lakes.


Asunto(s)
Floraciones de Algas Nocivas , Fenómenos Fisiológicos de las Plantas , Conducta Predatoria/fisiología , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Zooplancton/fisiología , Alelopatía/fisiología , Animales , Biodegradación Ambiental , Ecosistema , Contaminantes Químicos del Agua/metabolismo
9.
Transgenic Res ; 23(5): 767-77, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24927812

RESUMEN

A 4-year field trial for the salt tolerant Eucalyptus globulus Labill. harboring the choline oxidase (codA) gene derived from the halobacterium Arthrobacter globiformis was conducted to assess the impact of transgenic versus non-transgenic trees on biomass production, the adjacent soil microbial communities and vegetation by monitoring growth parameters, seasonal changes in soil microbes and the allelopathic activity of leaves. Three independently-derived lines of transgenic E. globulus were compared with three independent non-transgenic lines including two elite clones. No significant differences in biomass production were detected between transgenic lines and non-transgenic controls derived from same seed bulk, while differences were seen compared to two elite clones. Significant differences in the number of soil microbes present were also detected at different sampling times but not between transgenic and non-transgenic lines. The allelopathic activity of leaves from both transgenic and non-transgenic lines also varied significantly with sampling time, but the allelopathic activity of leaves from transgenic lines did not differ significantly from those from non-transgenic lines. These results indicate that, for the observed variables, the impact on the environment of codA-transgenic E. globulus did not differ significantly from that of the non-transformed controls on this field trial.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Arthrobacter/genética , Ambiente , Eucalyptus/crecimiento & desarrollo , Eucalyptus/genética , Genes Bacterianos/genética , Plantas Modificadas Genéticamente/genética , Alelopatía/genética , Alelopatía/fisiología , Análisis de Varianza , Arthrobacter/enzimología , Biomasa , Técnicas de Transferencia de Gen , Japón , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Estaciones del Año , Microbiología del Suelo
10.
J Theor Biol ; 351: 9-24, 2014 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-24560723

RESUMEN

Allelopathy is added to a familiar mathematical model of competition between two species for two essential resources in a chemostat environment. Both species store the resources, and each produces a toxin that induces mortality in the other species. The corresponding model without toxins displays outcomes of competitive exclusion independent of initial conditions, competitive exclusion that depends on initial conditions (bistability), and globally stable coexistence, depending on tradeoffs between competitors in growth requirements and consumption of the resources. Introducing toxins that act only between, and not within species, can destabilize coexistence leading to bistability or other multiple attractors. Invasibility of the missing species into a resident׳s semitrivial equilibrium is related to competitive outcomes. Mutual invasibility is necessary and sufficient for a globally stable coexistence equilibrium, but is not necessary for coexistence at a locally stable equilibrium. Invasibility of one semitrivial equilibrium but not the other is necessary but not sufficient for competitive exclusion independent of initial conditions. Mutual non-invasibility is necessary but not sufficient for bistability. Numerical analysis suggests that when competitors display bistability in the absence of toxin production, increases in the overall magnitude of resource supply cause bistability to arise over a larger range of supply ratios between the two resources. When competitors display coexistence in the absence of toxin production, increases in overall resource supply destabilize coexistence and produce bistability or other configurations of multiple attractors over large ranges of supply ratios. The emergence of multiple attractors at high resource supplies suggests that blooms of harmful algae producing allelopathic toxins could be difficult to predict under such rich conditions.


Asunto(s)
Alelopatía/fisiología , Conducta Competitiva/fisiología , Modelos Biológicos , Algoritmos , Animales , Biomasa , Ecosistema , Floraciones de Algas Nocivas/fisiología , Feromonas/biosíntesis , Especificidad de la Especie
11.
ScientificWorldJournal ; 2013: 695404, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24260020

RESUMEN

This study investigated the allelopathic effect of Axonopus compressus litter on Asystasia gangetica and Pennisetum polystachion. In experiment 1 the bioassays with 0, 10, 30, and 50 g L⁻¹ of aqueous A. compressus litter leachate were conducted. Experiment 2 was carried out by incorporating 0, 10, 20, 30, 40, and 50 g L⁻¹ of A. compressus litter leachate into soil. In experiment 3, the fate of A. compressus litter leachate phenolics in the soil was investigated. A. compressus leachates did not affect the germination percentage of A. gangetica and P. polystachion, but delayed germination of A. gangetica seeds and decreased seed germination time of P. polystachion. A. compressus litter leachates affected weeds hypocotyl length. Hypocotyl length reductions of 18 and 31% were observed at the highest concentration (50 g L⁻¹) compared to the control in A. gangetica and P. polystachion, respectively. When concentration of A. compressus litter leachate-amended soil increased A. gangetica and P. polystachion seedling shoot length, root length, seedling weight and chlorophyll concentration were not affected. The 5-week decomposition study of A. compressus showed that the phenolic compounds in A. compressus litter abruptly decreased about 52% after two weeks and remained steady until the end of the incubation.


Asunto(s)
Alelopatía/fisiología , Poaceae/clasificación , Poaceae/crecimiento & desarrollo , Suelo , Control de Malezas/métodos
12.
Toxins (Basel) ; 13(7)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34357978

RESUMEN

Allelopathy between phytoplankton species can promote cellular stress and programmed cell death (PCD). The raphidophyte Chattonella marina var. marina, and the dinoflagellates Margalefidinium polykrikoides and Gymnodinium impudicum have allelopathic effects on Gymnodinium catenatum; however, the physiological mechanisms are unknown. We evaluated whether the allelopathic effect promotes cellular stress and activates PCD in G. catenatum. Cultures of G. catenatum were exposed to cell-free media of C. marina var. marina, M. polykrikoides and G. impudicum. The mortality, superoxide radical (O2●-) production, thiobarbituric acid reactive substances (TBARS) levels, superoxide dismutase (SOD) activity, protein content, and caspase-3 activity were quantified. Mortality (between 57 and 79%) was registered in G. catenatum after exposure to cell-free media of the three species. The maximal O2●- production occurred with C. marina var. marina cell-free media. The highest TBARS levels and SOD activity in G. catenatum were recorded with cell-free media from G. impudicum. The highest protein content was recorded with cell-free media from M. polykrikoides. All cell-free media caused an increase in the activity of caspase-3. These results indicate that the allelopathic effect in G. catenatum promotes cell stress and caspase-3 activation, as a signal for the induction of programmed cell death.


Asunto(s)
Alelopatía/fisiología , Dinoflagelados , Toxinas Marinas/toxicidad , Estrés Fisiológico/fisiología , Muerte Celular , Fitoplancton , Superóxidos
13.
Biol Futur ; 72(4): 489-495, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34554494

RESUMEN

Tradescantia spathacea Sw. (Commelinaceae) is widely cultivated as an ornamental and medicinal plant in Southeast Asia, and its pharmacological properties are well known. On the other hand, this plant species is classified as an invasive weed in some countries. As a noxious weed, T. spathacea has been reported to disrupt the growth of native plants. However, no study has reported on its allelopathic activity. Thus, we investigated the allelopathic property and inhibitory substance of T. spathacea. The extracts of T. spathacea significantly inhibited the shoots and roots of alfalfa (Medicago sativa L.), cress (Lepidium sativum L.), lettuce (Lactuca sativa L.), barnyard grass (Echinochloa crus-galli (L.) P. Beauv.), Italian ryegrass (Lolium multiflorum Lam.), and timothy (Phleum pratense L.) at concentrations ≥ 3 mg dry weight (D.W.) equivalent extract/mL. As the extract concentration increased, the growth of the shoots and roots decreased. The I50 values of the test plant shoots and roots were 11.6-72.4 and 5.4-19.5 mg D.W. equivalent extract/mL, respectively. The extracts were purified by column chromatography, and an inhibitory substance was separated, which inhibited the shoots and roots of cress to 18.8 and 11.6% of control growth, respectively. The results of present findings indicate that T. spathacea extracts possess an allelopathic property, and its inhibitory substance may contribute this activity.


Asunto(s)
Alelopatía/fisiología , Tradescantia/metabolismo , Control de Malezas/normas , Extractos Vegetales/análisis , Tradescantia/enzimología , Control de Malezas/métodos
14.
PLoS One ; 16(2): e0246685, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33561161

RESUMEN

According to the 'novel weapons hypothesis', invasive success depends on harmful plant biochemicals, including allelopathic antimicrobial roots exudate that directly inhibit plant growth and soil microbial activity. However, the combination of direct and soil-mediated impacts of invasive plants via allelopathy remains poorly understood. Here, we addressed the allelopathic effects of an invasive plant species (Rhus typhina) on a cultivated plant (Tagetes erecta), soil properties and microbial communities. We grew T. erecta on soil samples at increasing concentrations of R. typhina root extracts and measured both plant growth and soil physiological profile with community-level physiological profiles (CLPP) using Biolog Eco-plates incubation. We found that R. typhina root extracts inhibit both plant growth and soil microbial activity. Plant height, Root length, soil organic carbon (SOC), total nitrogen (TN) and AWCD were significantly decreased with increasing root extract concentration, and plant above-ground biomass (AGB), below-ground biomass (BGB) and total biomass (TB) were significantly decreased at 10 mg·mL-1 of root extracts. In particular, root extracts significantly reduced the carbon source utilization of carbohydrates, carboxylic acids and polymers, but enhanced phenolic acid. Redundancy analysis shows that soil pH, TN, SOC and EC were the major driving factors of soil microbial activity. Our results indicate that strong allelopathic impact of root extracts on plant growth and soil microbial activity by mimicking roots exudate, providing novel insights into the role of plant-soil microbe interactions in mediating invasion success.


Asunto(s)
Alelopatía/fisiología , Desarrollo de la Planta/fisiología , Suelo/química , Biomasa , Carbono/metabolismo , Especies Introducidas/tendencias , Microbiota/fisiología , Nitrógeno/metabolismo , Raíces de Plantas/fisiología , Plantas/metabolismo , Plantas/microbiología , Rhus/metabolismo , Rhus/toxicidad , Microbiología del Suelo , Tagetes/crecimiento & desarrollo , Tagetes/metabolismo
15.
Sci Rep ; 11(1): 4303, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33619315

RESUMEN

Allelopathy means that one plant produces chemical substances to affect the growth and development of other plants. Usually, allelochemicals can stimulate or inhibit the germination and growth of plants, which have been considered as potential strategy for drug development of environmentally friendly biological herbicides. Obviously, the discovery of plant materials with extensive sources, low cost and markedly allelopathic effect will have far-reaching ecological impacts as the biological herbicide. At present, a large number of researches have already reported that certain plant-derived allelochemicals can inhibit weed growth. In this study, the allelopathic effect of Artemisia argyi was investigated via a series of laboratory experiments and field trial. Firstly, water-soluble extracts exhibited the strongest allelopathic inhibitory effects on various plants under incubator conditions, after the different extracts authenticated by UPLC-Q-TOF-MS. Then, the allelopathic effect of the A. argyi was systematacially evaluated on the seed germination and growth of Brassica pekinensis, Lactuca sativa, Oryza sativa, Portulaca oleracea, Oxalis corniculata and Setaria viridis in pot experiments, it suggested that the A. argyi could inhibit both dicotyledons and monocotyledons not only by seed germination but also by seedling growth. Furthermore, field trial showed that the A. argyi significantly inhibited the growth of weeds in Chrysanthemum morifolium field with no adverse effect on the growth of C. morifolium. At last, RNA-Seq analysis and key gene detection analysis indicated that A.argyi inhibited the germination and growth of weed via multi-targets and multi-paths while the inhibiting of chlorophyll synthesis of target plants was one of the key mechanisms. In summary, the A. argyi was confirmed as a potential raw material for the development of preventive herbicides against various weeds in this research. Importantly, this discovery maybe provide scientific evidence for the research and development of environmentally friendly herbicides in the future.


Asunto(s)
Alelopatía/fisiología , Artemisia/fisiología , Germinación , Malezas/crecimiento & desarrollo , Artemisia/química , Regulación de la Expresión Génica de las Plantas , Germinación/efectos de los fármacos , Feromonas/biosíntesis , Feromonas/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Malezas/efectos de los fármacos
16.
Sci Rep ; 11(1): 22465, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789815

RESUMEN

After a century of investigations, the function of the obligate betaproteobacterial endosymbionts accommodated in leaf nodules of tropical Rubiaceae remained enigmatic. We report that the α-D-glucose analogue (+)-streptol, systemically supplied by mature Ca. Burkholderia kirkii nodules to their Psychotria hosts, exhibits potent and selective root growth inhibiting activity. We provide compelling evidence that (+)-streptol specifically affects meristematic root cells transitioning to anisotropic elongation by disrupting cell wall organization in a mechanism of action that is distinct from canonical cellulose biosynthesis inhibitors. We observed no inhibitory or cytotoxic effects on organisms other than seed plants, further suggesting (+)-streptol as a bona fide allelochemical. We propose that the suppression of growth of plant competitors is a major driver of the formation and maintenance of the Psychotria-Burkholderia association. In addition to potential agricultural applications as a herbicidal agent, (+)-streptol might also prove useful to dissect plant cell and organ growth processes.


Asunto(s)
Alelopatía/fisiología , Burkholderia/metabolismo , Ciclohexanoles/farmacología , Feromonas/farmacología , Extractos Vegetales/farmacología , Hojas de la Planta/química , Hojas de la Planta/microbiología , Psychotria/química , Psychotria/microbiología , Simbiosis/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Germinación/efectos de los fármacos , Lactuca/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Meristema/efectos de los fármacos , Meristema/crecimiento & desarrollo , Planta de la Mostaza/efectos de los fármacos , Planta de la Mostaza/crecimiento & desarrollo , Filogenia , Hojas de la Planta/metabolismo , Psychotria/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo
17.
J Vis Exp ; (155)2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-32065172

RESUMEN

Weed competition contributes significantly to yield losses in cropping systems worldwide. The evolution of resistance in many weed species to continuously applied herbicides has presented the need for additional management methods. Allelopathy is a physiological process that some plant species possess that provide the plant with an advantage over its neighbors. Allelopathic crop varieties would be equipped with the ability to suppress the growth of surrounding competitors, thus reducing potential yield loss due to weed interference. This paper focuses on the construction and operation of a stair-step assay used for the screening of the allelopathic potential of a donor species (Oryza sativa) against a receiver weed species (Echinochloa crus-galli) in a greenhouse setting. The structure described in this paper serves as a stand for the plant samples and incorporates a timed watering system for the accumulation and distribution of allelochemicals. Allelochemicals produced by the plant roots are allowed to flow downward through a series of four pots separately into a collection tank and recycled back to the top plant through electric pumps. This method of screening provides an avenue for the allelochemicals from the donor plant to reach receiver plants without any resource competition, thus allowing quantitative measurement of the allelopathic potential of the selected donor plant. The allelopathic potential is measurable through the height reduction of the receiver plants. Preliminary screening data for the effectiveness of this method demonstrated height reduction in the receiver species, barnyardgrass (E. crus-galli), and thus the presence of allelopathic residues from the donor plant, weedy rice (Oryza sativa).


Asunto(s)
Alelopatía/fisiología , Oryza/química , Raíces de Plantas/química
18.
PLoS One ; 14(1): e0206165, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30673697

RESUMEN

Many ecosystems may suffer from both nutrient enrichment and exotic plant invasions simultaneously. Much has been known that nutrient inputs can promote growth and expansion of exotic invasive plants in wetlands, and that allelopathic effects of the exotic invasive plants can inhibit the growth of coexisting native plants, contributing to their invasion success. Thus, we hypothesized that allelopathic effects of exotics on natives in invaded ecosystems can be enhanced by nutrient enrichment. To test this hypothesis, we conducted two greenhouse hydroponic experiments. One is the monoculture experiment in which a widespread exotic invasive perennial Alternanthera philoxeroides and a native perennial Ludwigia peploides subsp. stipulacea in monoculture were subjected to five levels of nutrient supply. The other is the mixture experiment in which the two species in mixture were subjected to five levels of nutrient supply, each with and without activated carbon addition. Both A. philoxeroides and L. peploides grew better under higher level of nutrient availability in monoculture experiment. In the mixture experiment, A. philoxeroides formed less total and root biomass while L. peploides formed more in response to activated carbon addition and all of the responses had larger degree at higher level of nutrient availability, indicating A. philoxeroides had significant allelopathic effects on L. peploides and the effects was significantly enhanced by nutrient enrichment. Such results support our hypothesis and reveal a novel mechanism for exotic plant invasion in eutrophicated and invaded wetlands, i.e. nutrient enhancement of allelopathic effects of exotics on natives.


Asunto(s)
Alelopatía/fisiología , Amaranthaceae/metabolismo , Especies Introducidas , Nutrientes/metabolismo , Onagraceae/metabolismo , Carbón Orgánico/metabolismo , China , Humedales
19.
Sci Total Environ ; 682: 151-159, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31112816

RESUMEN

Napropamide is a chiral acetamide herbicide commonly applied to control Echinochloa crus-galli in maize. The inhibition effect may be enantioselective for Echinochloa crus-galli and maize. It may also be affected by the potential allelopathy at field condition. To investigate this, we have examined the inhibition effect of napropamide on Echinochloa crus-galli mono-cultured or co-cultured with maize at field conditions. Our results on morphology, physiology, chlorophyll content and chlorophyll fluorescence suggest that R-napropamide has stronger inhibitory effect than Rac-napropamide and S-napropamide on Echinochloa crus-galli, while none of them affects maize. We found that both glutathione-S-transferase (GST) genes and oxidative enzymes (superoxide dismutase, malondialdehyde) played roles in the inhibition. Accumulations of napropamide in Echinochloa crus-galli were more prominent in roots than in shoots, and no enantioselectivity was found in medium dissipation. We have observed relative allelopathy when applying napropamide to Echinochloa crus-galli co-cultured with maize. The results warrant further field studies on the enantioselectivity and allelopathy of herbicides.


Asunto(s)
Alelopatía/fisiología , Echinochloa/efectos de los fármacos , Herbicidas/farmacología , Naftalenos/farmacología , Zea mays/efectos de los fármacos , Echinochloa/anatomía & histología , Echinochloa/genética , Echinochloa/fisiología , Herbicidas/toxicidad , Naftalenos/toxicidad , Estereoisomerismo , Zea mays/anatomía & histología , Zea mays/genética , Zea mays/fisiología
20.
Harmful Algae ; 71: 50-56, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29306396

RESUMEN

Harmful algae are known to utilize allelopathy, the release of compounds that inhibit competitors, as a form of interference competition. Competitor responses to allelopathy are species-specific and allelopathic potency of producing algae is variable. In the current study, the biological variability in allelopathic potency was mapped to the underlying chemical variation in the exuded metabolomes of five genetic strains of the red tide dinoflagellate Karenia brevis using 1H nuclear magnetic resonance (NMR) spectroscopy. The impacts of K. brevis allelopathy on growth of a model competitor, Asterionellopsis glacialis, ranged from strongly inhibitory to negligible to strongly stimulatory. Unique metabolomes of K. brevis were visualized as chemical fingerprints, suggesting three distinct metabolic modalities - allelopathic, non-allelopathic, and stimulatory - with each modality distinguished from the others by different concentrations of several metabolites. Allelopathic K. brevis was characterized by enhanced concentrations of fatty acid-derived lipids and aromatic or other polyunsaturated compounds, relative to less allelopathic K. brevis. These findings point to a previously untapped source of information in the study of allelopathy: the chemical variability of phytoplankton, which has been underutilized in the study of bloom dynamics and plankton chemical ecology.


Asunto(s)
Alelopatía/fisiología , Floraciones de Algas Nocivas , Metaboloma , Fitoplancton/fisiología , Diatomeas/fisiología , Dinoflagelados/fisiología , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA