Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 888
Filtrar
1.
Nature ; 620(7972): 163-171, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37495694

RESUMEN

An outstanding mystery in biology is why some species, such as the axolotl, can regenerate tissues whereas mammals cannot1. Here, we demonstrate that rapid activation of protein synthesis is a unique feature of the injury response critical for limb regeneration in the axolotl (Ambystoma mexicanum). By applying polysome sequencing, we identify hundreds of transcripts, including antioxidants and ribosome components that are selectively activated at the level of translation from pre-existing messenger RNAs in response to injury. By contrast, protein synthesis is not activated in response to non-regenerative digit amputation in the mouse. We identify the mTORC1 pathway as a key upstream signal that mediates tissue regeneration and translational control in the axolotl. We discover unique expansions in mTOR protein sequence among urodele amphibians. By engineering an axolotl mTOR (axmTOR) in human cells, we show that these changes create a hypersensitive kinase that allows axolotls to maintain this pathway in a highly labile state primed for rapid activation. This change renders axolotl mTOR more sensitive to nutrient sensing, and inhibition of amino acid transport is sufficient to inhibit tissue regeneration. Together, these findings highlight the unanticipated impact of the translatome on orchestrating the early steps of wound healing in a highly regenerative species and provide a missing link in our understanding of vertebrate regenerative potential.


Asunto(s)
Ambystoma mexicanum , Evolución Biológica , Biosíntesis de Proteínas , Regeneración , Serina-Treonina Quinasas TOR , Animales , Humanos , Ratones , Ambystoma mexicanum/fisiología , Secuencia de Aminoácidos , Extremidades/fisiología , Regeneración/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Cicatrización de Heridas , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Especificidad de la Especie , Antioxidantes/metabolismo , Nutrientes/metabolismo , Polirribosomas/genética , Polirribosomas/metabolismo
2.
Cell ; 151(1): 111-22, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23021219

RESUMEN

Collapse of membrane lipid asymmetry is a hallmark of blood coagulation. TMEM16F of the TMEM16 family that includes TMEM16A/B Ca(2+)-activated Cl(-) channels (CaCCs) is linked to Scott syndrome with deficient Ca(2+)-dependent lipid scrambling. We generated TMEM16F knockout mice that exhibit bleeding defects and protection in an arterial thrombosis model associated with platelet deficiency in Ca(2+)-dependent phosphatidylserine exposure and procoagulant activity and lack a Ca(2+)-activated cation current in the platelet precursor megakaryocytes. Heterologous expression of TMEM16F generates a small-conductance Ca(2+)-activated nonselective cation (SCAN) current with subpicosiemens single-channel conductance rather than a CaCC. TMEM16F-SCAN channels permeate both monovalent and divalent cations, including Ca(2+), and exhibit synergistic gating by Ca(2+) and voltage. We further pinpointed a residue in the putative pore region important for the cation versus anion selectivity of TMEM16F-SCAN and TMEM16A-CaCC channels. This study thus identifies a Ca(2+)-activated channel permeable to Ca(2+) and critical for Ca(2+)-dependent scramblase activity during blood coagulation. PAPERFLICK:


Asunto(s)
Coagulación Sanguínea , Plaquetas/metabolismo , Calcio/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Ambystoma mexicanum , Animales , Anoctamina-1 , Anoctaminas , Canales de Cloruro/metabolismo , Hemostasis , Metabolismo de los Lípidos , Megacariocitos/metabolismo , Ratones , Ratones Noqueados , Oocitos/metabolismo , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Transferencia de Fosfolípidos/genética , Xenopus
3.
PLoS Biol ; 21(6): e3002121, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37315073

RESUMEN

Pluripotency defines the unlimited potential of individual cells of vertebrate embryos, from which all adult somatic cells and germ cells are derived. Understanding how the programming of pluripotency evolved has been obscured in part by a lack of data from lower vertebrates; in model systems such as frogs and zebrafish, the function of the pluripotency genes NANOG and POU5F1 have diverged. Here, we investigated how the axolotl ortholog of NANOG programs pluripotency during development. Axolotl NANOG is absolutely required for gastrulation and germ-layer commitment. We show that in axolotl primitive ectoderm (animal caps; ACs) NANOG and NODAL activity, as well as the epigenetic modifying enzyme DPY30, are required for the mass deposition of H3K4me3 in pluripotent chromatin. We also demonstrate that all 3 protein activities are required for ACs to establish the competency to differentiate toward mesoderm. Our results suggest the ancient function of NANOG may be establishing the competence for lineage differentiation in early cells. These observations provide insights into embryonic development in the tetrapod ancestor from which terrestrial vertebrates evolved.


Asunto(s)
Proteínas de Homeodominio , Células Madre Pluripotentes , Animales , Proteínas de Homeodominio/metabolismo , Ambystoma mexicanum/genética , Ambystoma mexicanum/metabolismo , Pez Cebra/genética , Diferenciación Celular , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Regulación del Desarrollo de la Expresión Génica
4.
Dev Biol ; 515: 151-159, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39067503

RESUMEN

Many salamanders can completely regenerate a fully functional limb. Limb regeneration is a carefully coordinated process involving several defined stages. One key event during the regeneration process is the patterning of the blastema to inform cells of what they must differentiate into. Although it is known that many genes involved in the initial development of the limb are re-used during regeneration, the exact molecular circuitry involved in this process is not fully understood. Several large-scale transcriptional profiling studies of axolotl limb regeneration have identified many transcription factors that are up-regulated after limb amputation. Sall4 is a transcription factor that has been identified to play essential roles in maintaining cells in an undifferentiated state during development and also plays a unique role in limb development. Inactivation of Sall4 during limb bud development results in defects in anterior-posterior patterning of the limb. Sall4 has been found to be up-regulated during limb regeneration in both Xenopus and salamanders, but to date it function has been untested. We confirmed that Sall4 is up-regulated during limb regeneration in the axolotl using qRT-PCR and identified that it is present in the skin cells and also in cells within the blastema. Using CRISPR technology we microinjected gRNAs specific for Sall4 complexed with cas9 protein into the blastema to specifically knockout Sall4 in blastema cells only. This resulted in limb regenerate defects, including missing digits, fusion of digit elements, and defects in the radius and ulna. This suggests that during regeneration Sall4 may play a similar role in regulating the specification of anterior-proximal skeletal elements.


Asunto(s)
Ambystoma mexicanum , Tipificación del Cuerpo , Extremidades , Regeneración , Factores de Transcripción , Animales , Regeneración/genética , Regeneración/fisiología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Extremidades/fisiología , Extremidades/embriología , Ambystoma mexicanum/genética , Ambystoma mexicanum/fisiología , Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Anfibias/genética , Proteínas Anfibias/metabolismo
5.
Development ; 149(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35266986

RESUMEN

Regulation of cell cycle progression is essential for cell proliferation during regeneration following injury. After appendage amputation, the axolotl (Ambystoma mexicanum) regenerates missing structures through an accumulation of proliferating cells known as the blastema. To study cell division during blastema growth, we generated a transgenic line of axolotls that ubiquitously expresses a bicistronic version of the fluorescent ubiquitination-based cell-cycle indicator (FUCCI). We demonstrate near-ubiquitous FUCCI expression in developing and adult tissues, and validate these expression patterns with DNA synthesis and mitosis phase markers. We demonstrate the utility of FUCCI for live and whole-mount imaging, showing the predominantly local contribution of cells during limb and tail regeneration. We also show that spinal cord amputation results in increased proliferation at least 5 mm from the site of injury. Finally, we use multimodal staining to provide cell type information for cycling cells by combining fluorescence in situ hybridization, EdU click-chemistry and immunohistochemistry on a single FUCCI tissue section. This new line of animals will be useful for studying cell cycle dynamics using in situ endpoint assays and in vivo imaging in developing and regenerating animals.


Asunto(s)
Ambystoma mexicanum , Mitosis , Animales , Ciclo Celular , Extremidades/fisiología , Hibridación Fluorescente in Situ , Ubiquitinación
6.
Development ; 149(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35156681

RESUMEN

Axolotls are an important model organism for multiple types of regeneration, including functional spinal cord regeneration. Remarkably, axolotls can repair their spinal cord after a small lesion injury and can also regenerate their entire tail following amputation. Several classical signaling pathways that are used during development are reactivated during regeneration, but how this is regulated remains a mystery. We have previously identified miR-200a as a key factor that promotes successful spinal cord regeneration. Here, using RNA-seq analysis, we discovered that the inhibition of miR-200a results in an upregulation of the classical mesodermal marker brachyury in spinal cord cells after injury. However, these cells still express the neural stem cell marker sox2. In vivo cell tracking allowed us to determine that these cells can give rise to cells of both the neural and mesoderm lineage. Additionally, we found that miR-200a can directly regulate brachyury via a seed sequence in the 3'UTR of the gene. Our data indicate that miR-200a represses mesodermal cell fate after a small lesion injury in the spinal cord when only glial cells and neurons need to be replaced.


Asunto(s)
MicroARNs/metabolismo , Regeneración de la Medula Espinal/genética , Médula Espinal/metabolismo , Regiones no Traducidas 3' , Ambystoma mexicanum/metabolismo , Animales , Antagomirs/metabolismo , Diferenciación Celular , Proteínas Fetales/genética , Proteínas Fetales/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Médula Espinal/citología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Células Madre/citología , Células Madre/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Cola (estructura animal)/fisiología , Vía de Señalización Wnt , beta Catenina/antagonistas & inhibidores , beta Catenina/química , beta Catenina/metabolismo
7.
Am J Physiol Cell Physiol ; 326(2): C505-C512, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38105753

RESUMEN

Cellular reprogramming is characterized by the induced dedifferentiation of mature cells into a more plastic and potent state. This process can occur through artificial reprogramming manipulations in the laboratory such as nuclear reprogramming and induced pluripotent stem cell (iPSC) generation, and endogenously in vivo during amphibian limb regeneration. In amphibians such as the Mexican axolotl, a regeneration permissive environment is formed by nerve-dependent signaling in the wounded limb tissue. When exposed to these signals, limb connective tissue cells dedifferentiate into a limb progenitor-like state. This state allows the cells to acquire new pattern information, a property called positional plasticity. Here, we review our current understanding of endogenous reprogramming and why it is important for successful regeneration. We will also explore how naturally induced dedifferentiation and plasticity were leveraged to study how the missing pattern is established in the regenerating limb tissue.


Asunto(s)
Ambystoma mexicanum , Transducción de Señal , Animales , Reprogramación Celular
8.
Dev Biol ; 498: 14-25, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36963624

RESUMEN

Axolotls have been considered to be able to regenerate their skin completely. Our recent study updated this theory with the finding that the lattice structure of dermal collagen fibers was not fully regenerated after skin injury. We also discovered that nerves induce the regeneration of collagen fibers. The mechanism of collagen fiber regeneration remains unknown, however. In this study, we focused on the structure of collagen fibers with collagen braiding cells, and cell origin in axolotl skin regeneration. In the wounded dermis, cells involved in skin repair/regeneration were derived from both the surrounding dermis and the subcutaneous tissue. Regardless of cell origin, cells acquired the proper cell morphology to braid collagen fiber with nerve presence. We also found that FGF signaling could substitute for the nerve roles in the conversion of subcutaneous fibroblasts to lattice-shaped dermal fibroblasts. Our findings contribute to the elucidation of the fundamental mechanisms of true skin regeneration and provide useful insights for pioneering new skin treatments.


Asunto(s)
Ambystoma mexicanum , Cicatrización de Heridas , Animales , Ambystoma mexicanum/fisiología , Cicatrización de Heridas/fisiología , Piel/lesiones , Colágeno , Matriz Extracelular , Fibroblastos
9.
Dev Biol ; 500: 31-39, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37271360

RESUMEN

The Hippo pathway plays an imperative role in cellular processes such as differentiation, regeneration, cell migration, organ growth, apoptosis, and cell cycle. Transcription coregulator component of Hippo pathway, YAP1, promotes transcription of genes involved in cell proliferation, migration, differentiation, and suppressing apoptosis. However, its role in epimorphic regeneration has not been fully explored. The axolotl is a well-established model organism for developmental biology and regeneration studies. By exploiting its remarkable regenerative capacity, we investigated the role of Yap1 in the early blastema stage of limb regeneration. Depleting Yap1 using gene-specific morpholinos attenuated the competence of axolotl limb regeneration evident in bone formation defects. To explore the affected downstream pathways from Yap1 down-regulation, the gene expression profile was examined by employing LC-MS/MS technology. Based on the generated data, we provided a new layer of evidence on the putative roles of increased protease inhibition and immune system activities and altered ECM composition in diminished bone formation capacity during axolotl limb regeneration upon Yap1 deficiency. We believe that new insights into the roles of the Hippo pathway in complex structure regeneration were granted in this study.


Asunto(s)
Ambystoma mexicanum , Osteogénesis , Animales , Ambystoma mexicanum/genética , Regulación hacia Abajo , Cromatografía Liquida , Transducción de Señal , Espectrometría de Masas en Tándem , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
10.
Dev Biol ; 504: 98-112, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37778717

RESUMEN

Severe muscle injury causes distress and difficulty in humans. Studying the high regenerative ability of the axolotls may provide hints for the development of an effective treatment for severe injuries to muscle tissue. Here, we examined the regenerative process in response to a muscle injury in axolotls. We found that axolotls are capable of complete regeneration in response to a partial muscle resection called volumetric muscle loss (VML), which mammals cannot perfectly regenerate. We investigated the mechanisms underlying this high regenerative capacity in response to VML, focusing on the migration of muscle satellite cells and the extracellular matrix (ECM) formed during VML injury. Axolotls form tenascin-C (TN-C)-enriched ECM after VML injury. This TN-C-enriched ECM promotes the satellite cell migration. We confirmed the importance of TN-C in successful axolotl muscle regeneration by creating TN-C mutant animals. Our results suggest that the maintenance of a TN-C-enriched ECM environment after muscle injury promotes the release of muscle satellite cells and supports eventually high muscle regenerative capacity. In the future, better muscle regeneration may be achieved in mammals through the maintenance of TN-C expression.


Asunto(s)
Ambystoma mexicanum , Tenascina , Animales , Humanos , Tenascina/genética , Tenascina/metabolismo , Ambystoma mexicanum/metabolismo , Matriz Extracelular/metabolismo , Músculos/metabolismo , Mamíferos/metabolismo , Músculo Esquelético/metabolismo
11.
J Neurophysiol ; 131(1): 124-136, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38116604

RESUMEN

Previous work has shown that activation of tiger salamander retinal radial glial cells by extracellular ATP induces a pronounced extracellular acidification, which has been proposed to be a potent modulator of neurotransmitter release. This study demonstrates that low micromolar concentrations of extracellular ATP similarly induce significant H+ effluxes from Müller cells isolated from the axolotl retina. Müller cells were enzymatically isolated from axolotl retina and H+ fluxes were measured from individual cells using self-referencing H+-selective microelectrodes. The increased H+ efflux from axolotl Müller cells induced by extracellular ATP required activation of metabotropic purinergic receptors and was dependent upon calcium released from internal stores. We further found that the ATP-evoked increase in H+ efflux from Müller cells of both tiger salamander and axolotl were sensitive to pharmacological agents known to interrupt calmodulin and protein kinase C (PKC) activity: chlorpromazine (CLP), trifluoperazine (TFP), and W-7 (all calmodulin inhibitors) and chelerythrine, a PKC inhibitor, all attenuated ATP-elicited increases in H+ efflux. ATP-initiated H+ fluxes of axolotl Müller cells were also significantly reduced by amiloride, suggesting a significant contribution by sodium-hydrogen exchangers (NHEs). In addition, α-cyano-4-hydroxycinnamate (4-cin), a monocarboxylate transport (MCT) inhibitor, also reduced the ATP-induced increase in H+ efflux in both axolotl and tiger salamander Müller cells, and when combined with amiloride, abolished ATP-evoked increase in H+ efflux. These data suggest that axolotl Müller cells are likely to be an excellent model system to understand the cell-signaling pathways regulating H+ release from glia and the role this may play in modulating neuronal signaling.NEW & NOTEWORTHY Glial cells are a key structural part of the tripartite synapse and have been suggested to regulate synaptic transmission, but the regulatory mechanisms remain unclear. We show that extracellular ATP, a potent glial cell activator, induces H+ efflux from axolotl retinal Müller (glial) cells through a calcium-dependent pathway that is likely to involve calmodulin, PKC, Na+/H+ exchange, and monocarboxylate transport, and suggest that such H+ release may play a key role in modulating neuronal transmission.


Asunto(s)
Ambystoma mexicanum , Células Ependimogliales , Animales , Células Ependimogliales/metabolismo , Ambystoma mexicanum/metabolismo , Calmodulina/metabolismo , Calcio/metabolismo , Amilorida/metabolismo , Adenosina Trifosfato/metabolismo , Neuroglía/metabolismo , Retina
12.
J Exp Biol ; 227(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38916053

RESUMEN

Amphibians are a classical object for physiological studies, and they are of great value for developmental studies owing to their transition from an aquatic larval form to an adult form with a terrestrial lifestyle. Axolotls (Ambystoma mexicanum) are of special interest for such studies because of their neoteny and facultative pedomorphosis, as in these animals, metamorphosis can be induced and fully controlled in laboratory conditions. It has been suggested that their metamorphosis, associated with gross anatomical changes in the heart, also involves physiological and electrical remodeling of the myocardium. We used whole-cell patch clamp to investigate possible changes caused by metamorphosis in electrical activity and major ionic currents in cardiomyocytes isolated from paedomorphic and metamorphic axolotls. T4-induced metamorphosis caused shortening of atrial and ventricular action potentials (APs), with no changes in resting membrane potential or maximum velocity of AP upstroke, favoring higher heart rate possible in metamorphic animals. Potential-dependent potassium currents in axolotl myocardium were represented by delayed rectifier currents IKr and IKs, and upregulation of IKs caused by metamorphosis probably underlies AP shortening. Metamorphosis was associated with downregulation of inward rectifier current IK1, probably serving to increase the excitability of myocardium in metamorphic animals. Metamorphosis also led to a slight increase in fast sodium current INa with no changes in its steady-state kinetics and to a significant upregulation of ICa in both atrial and ventricular cells, indicating stronger Ca2+ influx for higher cardiac contractility in metamorphic salamanders. Taken together, these changes serve to increase cardiac reserve in metamorphic animals.


Asunto(s)
Potenciales de Acción , Ambystoma mexicanum , Metamorfosis Biológica , Miocitos Cardíacos , Animales , Ambystoma mexicanum/fisiología , Ambystoma mexicanum/crecimiento & desarrollo , Miocitos Cardíacos/fisiología , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Corazón/crecimiento & desarrollo , Corazón/fisiología , Miocardio/metabolismo
13.
Microb Ecol ; 87(1): 98, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046491

RESUMEN

Skin microbiomes in amphibians are complex systems that can be influenced by biotic and abiotic factors. In this study, we examined the effect of host species and environmental conditions on the skin bacterial and fungal microbiota of four obligate paedomorphic salamander species, commonly known as axolotls (Ambystoma andersoni, A. dumerilii, A. mexicanum, and A. taylori), all of them endemic to the Trans-Mexican Volcanic Belt. We found that despite their permanent aquatic lifestyle, these species present a host-specific skin microbiota that is distinct from aquatic communities. We identified skin-associated taxa that were unique to each host species and that differentiated axolotl species based on alpha and beta diversity metrics. Moreover, we identified a set of microbial taxa that were shared across hosts with high relative abundances across skin samples. Specifically, bacterial communities were dominated by Burkholderiales and Pseudomonadales bacterial orders and Capnodiales and Pleosporales fungal orders. Host species and environmental variables collectively explained more microbial composition variation in bacteria (R2 = 0.46) in comparison to fungi (R2 = 0.2). Our results contribute to a better understanding of the factors shaping the diversity and composition of skin microbial communities in Ambystoma. Additional studies are needed to disentangle the effects of specific host associated and environmental factors that could influence the skin microbiome of these endangered species.


Asunto(s)
Bacterias , Hongos , Microbiota , Piel , Animales , Piel/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , México , Hongos/clasificación , Hongos/aislamiento & purificación , Hongos/genética , Ambystoma mexicanum/microbiología , Especificidad del Huésped , Ambiente , Biodiversidad
14.
Nature ; 554(7690): 50-55, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29364872

RESUMEN

Salamanders serve as important tetrapod models for developmental, regeneration and evolutionary studies. An extensive molecular toolkit makes the Mexican axolotl (Ambystoma mexicanum) a key representative salamander for molecular investigations. Here we report the sequencing and assembly of the 32-gigabase-pair axolotl genome using an approach that combined long-read sequencing, optical mapping and development of a new genome assembler (MARVEL). We observed a size expansion of introns and intergenic regions, largely attributable to multiplication of long terminal repeat retroelements. We provide evidence that intron size in developmental genes is under constraint and that species-restricted genes may contribute to limb regeneration. The axolotl genome assembly does not contain the essential developmental gene Pax3. However, mutation of the axolotl Pax3 paralogue Pax7 resulted in an axolotl phenotype that was similar to those seen in Pax3-/- and Pax7-/- mutant mice. The axolotl genome provides a rich biological resource for developmental and evolutionary studies.


Asunto(s)
Ambystoma mexicanum/genética , Evolución Molecular , Genoma/genética , Genómica , Animales , ADN Intergénico/genética , Genes Esenciales/genética , Proteínas de Homeodominio/genética , Intrones/genética , Masculino , Ratones , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX7/genética , Picea/genética , Pinus/genética , Regeneración/genética , Retroelementos/genética , Secuencias Repetidas Terminales/genética
15.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33827918

RESUMEN

Vertebrates harbor recognizably orthologous gene complements but vary 100-fold in genome size. How chromosomal organization scales with genome expansion is unclear, and how acute changes in gene regulation, as during axolotl limb regeneration, occur in the context of a vast genome has remained a riddle. Here, we describe the chromosome-scale assembly of the giant, 32 Gb axolotl genome. Hi-C contact data revealed the scaling properties of interphase and mitotic chromosome organization. Analysis of the assembly yielded understanding of the evolution of large, syntenic multigene clusters, including the Major Histocompatibility Complex (MHC) and the functional regulatory landscape of the Fibroblast Growth Factor 8 (Axfgf8) region. The axolotl serves as a primary model for studying successful regeneration.


Asunto(s)
Ambystoma mexicanum/genética , Evolución Molecular , Genoma , Animales , Cromosomas/genética , Sitios Genéticos , Transcriptoma
16.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33888580

RESUMEN

The North American tiger salamander species complex, including its best-known species, the Mexican axolotl, has long been a source of biological fascination. The complex exhibits a wide range of variation in developmental life history strategies, including populations and individuals that undergo metamorphosis; those able to forego metamorphosis and retain a larval, aquatic lifestyle (i.e., paedomorphosis); and those that do both. The evolution of a paedomorphic life history state is thought to lead to increased population genetic differentiation and ultimately reproductive isolation and speciation, but the degree to which it has shaped population- and species-level divergence is poorly understood. Using a large multilocus dataset from hundreds of samples across North America, we identified genetic clusters across the geographic range of the tiger salamander complex. These clusters often contain a mixture of paedomorphic and metamorphic taxa, indicating that geographic isolation has played a larger role in lineage divergence than paedomorphosis in this system. This conclusion is bolstered by geography-informed analyses indicating no effect of life history strategy on population genetic differentiation and by model-based population genetic analyses demonstrating gene flow between adjacent metamorphic and paedomorphic populations. This fine-scale genetic perspective on life history variation establishes a framework for understanding how plasticity, local adaptation, and gene flow contribute to lineage divergence. Many members of the tiger salamander complex are endangered, and the Mexican axolotl is an important model system in regenerative and biomedical research. Our results chart a course for more informed use of these taxa in experimental, ecological, and conservation research.


Asunto(s)
Ambystoma/genética , Ambystoma/metabolismo , Ambystoma mexicanum/genética , Animales , Bases de Datos Genéticas , Flujo Génico , Genética de Población/métodos , Geografía , Larva/genética , Metamorfosis Biológica/genética , América del Norte , Filogenia
17.
J Zoo Wildl Med ; 54(4): 670-680, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38251990

RESUMEN

The objectives of this study were to describe the gross anatomy and ultrasonographic appearance of coelomic organs in subadult and adult axolotls (Ambystoma mexicanum), to describe an ultrasound technique, and to test correlations of ultrasonographic measurement with body length, width, and weight. Necropsies of coelomic organs were conducted on 10 axolotls (females = 5; males = 5) and ultrasound on 11 (males = 5; females = 6). Animals were kept in water and maintained conscious during ultrasound. The heart, caudal vena cava, liver, gallbladder, spleen, esophagus, stomach, colon, kidneys, ovaries, and fat bodies were identified in all study subjects, although testicles were identified in only 6/7 subjects. The pancreas and adrenal glands could not be identified in any animals, either during necropsy or ultrasonography. Coelomic and pericardial effusion was present in all animals. Ultrasonographic measurements of the liver, spleen, myocardial thickness, and right and left kidney length were highly repeatable (correlation value [CV] < 5%) and the esophagus, spleen, caudal vena cava, fat bodies, gallbladder, colon thickness, right kidney height and width, and right testicle diameter were statistically repeatable (CV < 10%).


Asunto(s)
Ambystoma mexicanum , Hígado , Animales , Femenino , Masculino , Riñón/diagnóstico por imagen , Glándulas Suprarrenales , Estómago
18.
Development ; 147(14)2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32665245

RESUMEN

Amputation of a salamander limb triggers a regeneration process that is perfect. A limited number of genes have been studied in this context and even fewer have been analyzed functionally. In this work, we use the BMP signaling inhibitor LDN193189 on Ambystoma mexicanum to explore the role of BMPs in regeneration. We find that BMP signaling is required for proper expression of various patterning genes and that its inhibition causes major defects in the regenerated limbs. Fgf8 is downregulated when BMP signaling is blocked, but ectopic injection of either human or axolotl protein did not rescue the defects. By administering LDN193189 treatments at different time points during regeneration, we show clearly that limb regeneration progresses in a proximal to distal fashion. This demonstrates that BMPs play a major role in patterning of regenerated limbs and that regeneration is a progressive process like development.


Asunto(s)
Ambystoma mexicanum/metabolismo , Proteínas Anfibias/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Extremidades/fisiología , Regeneración/fisiología , Transducción de Señal , Ambystoma mexicanum/crecimiento & desarrollo , Proteínas Anfibias/genética , Animales , Proteínas Morfogenéticas Óseas/genética , Proliferación Celular/efectos de los fármacos , Factor 8 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Factor de Transcripción MSX1/genética , Factor de Transcripción MSX1/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Pirazoles/farmacología , Pirimidinas/farmacología , Regeneración/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo
19.
PLoS Biol ; 18(7): e3000811, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32735558

RESUMEN

One of the earliest and most prevalent barriers to successful reproduction is polyspermy, or fertilization of an egg by multiple sperm. To prevent these supernumerary fertilizations, eggs have evolved multiple mechanisms. It has recently been proposed that zinc released by mammalian eggs at fertilization may block additional sperm from entering. Here, we demonstrate that eggs from amphibia and teleost fish also release zinc. Using Xenopus laevis as a model, we document that zinc reversibly blocks fertilization. Finally, we demonstrate that extracellular zinc similarly disrupts early embryonic development in eggs from diverse phyla, including Cnidaria, Echinodermata, and Chordata. Our study reveals that a fundamental strategy protecting human eggs from fertilization by multiple sperm may have evolved more than 650 million years ago.


Asunto(s)
Fertilización , Oocitos/metabolismo , Zinc/metabolismo , Ambystoma mexicanum , Animales , Femenino , Hidrozoos , Masculino , Strongylocentrotus purpuratus , Xenopus laevis , Pez Cebra
20.
Nucleic Acids Res ; 49(19): e114, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34403470

RESUMEN

Haplotype phasing plays an important role in understanding the genetic data of diploid eukaryotic organisms. Different sequencing technologies (such as next-generation sequencing or third-generation sequencing) produce various genetic data that require haplotype assembly. Although multiple diploid haplotype phasing algorithms exist, only a few will work equally well across all sequencing technologies. In this work, we propose SpecHap, a novel haplotype assembly tool that leverages spectral graph theory. On both in silico and whole-genome sequencing datasets, SpecHap consumed less memory and required less CPU time, yet achieved comparable accuracy with state-of-art methods across all the test instances, which comprises sequencing data from next-generation sequencing, linked-reads, high-throughput chromosome conformation capture, PacBio single-molecule real-time, and Oxford Nanopore long-reads. Furthermore, SpecHap successfully phased an individual Ambystoma mexicanum, a species with gigantic diploid genomes, within 6 CPU hours and 945MB peak memory usage, while other tools failed to yield results either due to memory overflow (40GB) or time limit exceeded (5 days). Our results demonstrated that SpecHap is scalable, efficient, and accurate for diploid phasing across many sequencing platforms.


Asunto(s)
Algoritmos , Ambystoma mexicanum/genética , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Análisis de Secuencia de ADN/métodos , Secuenciación Completa del Genoma/estadística & datos numéricos , Animales , Benchmarking , Conjuntos de Datos como Asunto , Diploidia , Haplotipos , Humanos , Nanoporos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA