Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Plant Cell ; 33(3): 671-696, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33955484

RESUMEN

The plant shikimate pathway directs bulk carbon flow toward biosynthesis of aromatic amino acids (AAAs, i.e. tyrosine, phenylalanine, and tryptophan) and numerous aromatic phytochemicals. The microbial shikimate pathway is feedback inhibited by AAAs at the first enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DHS). However, AAAs generally do not inhibit DHS activities from plant extracts and how plants regulate the shikimate pathway remains elusive. Here, we characterized recombinant Arabidopsis thaliana DHSs (AthDHSs) and found that tyrosine and tryptophan inhibit AthDHS2, but not AthDHS1 or AthDHS3. Mixing AthDHS2 with AthDHS1 or 3 attenuated its inhibition. The AAA and phenylpropanoid pathway intermediates chorismate and caffeate, respectively, strongly inhibited all AthDHSs, while the arogenate intermediate counteracted the AthDHS1 or 3 inhibition by chorismate. AAAs inhibited DHS activity in young seedlings, where AthDHS2 is highly expressed, but not in mature leaves, where AthDHS1 is predominantly expressed. Arabidopsis dhs1 and dhs3 knockout mutants were hypersensitive to tyrosine and tryptophan, respectively, while dhs2 was resistant to tyrosine-mediated growth inhibition. dhs1 and dhs3 also had reduced anthocyanin accumulation under high light stress. These findings reveal the highly complex regulation of the entry reaction of the plant shikimate pathway and lay the foundation for efforts to control the production of AAAs and diverse aromatic natural products in plants.


Asunto(s)
Plantones/metabolismo , Triptófano/metabolismo , Aminoácidos Dicarboxílicos/metabolismo , Arabidopsis/metabolismo , Ciclohexenos/metabolismo , Fenilalanina/metabolismo , Ácido Shikímico/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
2.
Biochem Biophys Res Commun ; 524(1): 83-88, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-31980164

RESUMEN

Phenylacetic acid (PAA) is one type of natural auxin and widely exists in plants. Previous biochemical studies demonstrate that PAA in plants is synthesized from phenylalanine (Phe) via phenylpyruvate (PPA), but the PAA biosynthetic genes and its regulation remain unknown. In this article, we show that the AROGENATE DEHYDRATASE (ADT) family, which catalyzes the conversion of arogenate to Phe, can modulate the levels of PAA in Arabidopsis. We found that overexpression of ADT4 or ADT5 remarkably increased the amounts of PAA. Due to an increase in PAA levels, ADT4ox and ADT5ox plants can partially restore the auxin-deficient phenotypes caused by treatments with an inhibitor of the biosynthesis of indole-3-acetic acid (IAA), a main auxin in plants. In contrast, the levels of PAA were significantly reduced in adt multiple knockout mutants. Moreover, the levels of PPA are substantially increased in ADT4 or ADT5 overexpression plants but reduced in adt multiple knockout mutants, suggesting that PPA is a key intermediate of PAA biosynthesis. These results provide an evidence that members of the ADT family of Arabidopsis can modulate PAA level via the PPA-dependent pathway.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Hidroliasas/genética , Hidroliasas/metabolismo , Fenilacetatos/metabolismo , Aminoácidos Dicarboxílicos/metabolismo , Ciclohexenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Ácidos Indolacéticos/metabolismo , Mutación , Fenilalanina/metabolismo , Plantas Modificadas Genéticamente , Tirosina/análogos & derivados , Tirosina/metabolismo
3.
Cell Physiol Biochem ; 53(3): 480-495, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31486323

RESUMEN

BACKGROUND/AIMS: Hypoxia Inducible Factor-1α (HIF-1α) is involved in cancer progression and is stabilized by the chaperone HSP90 (Heat Shock Protein 90), preventing degradation. Previously identified HSP90 inhibitors bind to the N-terminal pocket of HSP90, which blocks binding to HIF-1α and induces HIF-1α degradation. N-terminal inhibitors have failed in the clinic as single therapy treatments partially because they induce a heat shock response. SM molecules are HSP90 inhibitors that bind to the C-terminus of HSP90 and do not induce a heat shock response. The effects of these C-terminal inhibitors on HIF-1α are unreported. METHODS: HCT116, MDA-MB-231, PC3, and HEK293T cells were treated with HSP90 inhibitors. qRT-PCR and western blotting was performed to assess mRNA and protein levels of HIF-1α, HSP- and RACK1-related genes. siRNA was used to knockdown RACK1, while MG262 was used to inhibit proteasome activity. Dimethyloxalylglycine (DMOG) was used to inhibit activity of the prolyl hydroxylases (PHDs). Anti-angiogenic activity of HSP90 inhibitors was assessed using a HUVEC tubule formation assay. RESULTS: We show that SM compounds decrease HIF-1α target expression at the mRNA and protein level under hypoxia in colorectal, breast and prostate cancer cells, leading to cell death, without inducing a heat shock response. Surprisingly, we found that when the C-terminal of HSP90 is inhibited, HIF-1α degradation occurs through the proteasome and prolyl hydroxylases in an oxygen-dependent manner even in very low levels of oxygen (tumor hypoxia levels). RACK1 was not required for proteasomal degradation of HIF-1α. CONCLUSION: Our results suggest that by targeting the C-terminus of HSP90 we can exploit the prolyl hydroxylase and proteasome pathway to induce HIF-1α degradation in hypoxic tumors.


Asunto(s)
Hipoxia de la Célula/fisiología , Proteínas HSP90 de Choque Térmico/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Aminoácidos Dicarboxílicos/metabolismo , Western Blotting , Hipoxia de la Célula/genética , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Células HCT116 , Células HEK293 , Proteínas HSP90 de Choque Térmico/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Células PC-3 , Prolil Hidroxilasas/genética , Prolil Hidroxilasas/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
Plant J ; 87(2): 215-29, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27125254

RESUMEN

l-Phenylalanine serves as a building block for the biosynthesis of proteins, but also as a precursor for a wide range of plant-derived compounds essential for plants and animals. Plants can synthesize Phe within the plastids using arogenate as a precursor; however, an alternative pathway using phenylpyruvate as an intermediate, described for most microorganisms, has recently been proposed. The functionality of this pathway requires the existence of enzymes with prephenate dehydratase (PDT) activity (EC 4.2.1.51) in plants. Using phylogenetic studies, functional complementation assays in yeast and biochemical analysis, we have identified the enzymes displaying PDT activity in Pinus pinaster. Through sequence alignment comparisons and site-directed mutagenesis we have identified a 22-amino acid region conferring PDT activity (PAC domain) and a single Ala314 residue critical to trigger this activity. Our results demonstrate that all plant clades include PAC domain-containing ADTs, suggesting that the PDT activity, and thus the ability to synthesize Phe using phenylpyruvate as an intermediate, has been preserved throughout the evolution of plants. Moreover, this pathway together with the arogenate pathway gives plants a broad and versatile capacity to synthesize Phe and its derived compounds. PAC domain-containing enzymes are also present in green and red algae, and glaucophytes, the three emerging clades following the primary endosymbiont event resulting in the acquisition of plastids in eukaryotes. The evolutionary prokaryotic origin of this domain is discussed.


Asunto(s)
Pinus/genética , Prefenato Deshidratasa/genética , Aminoácidos Dicarboxílicos/metabolismo , Ciclohexenos/metabolismo , Genes de Plantas/fisiología , Redes y Vías Metabólicas/fisiología , Fenilalanina/metabolismo , Ácidos Fenilpirúvicos/metabolismo , Filogenia , Pinus/enzimología , Pinus/metabolismo , Plantas , Prefenato Deshidratasa/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
5.
Plant Cell ; 26(7): 3101-14, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25070637

RESUMEN

The aromatic amino acid Phe is required for protein synthesis and serves as the precursor of abundant phenylpropanoid plant natural products. While Phe is synthesized from prephenate exclusively via a phenylpyruvate intermediate in model microbes, the alternative pathway via arogenate is predominant in plant Phe biosynthesis. However, the molecular and biochemical evolution of the plant arogenate pathway is currently unknown. Here, we conducted phylogenetically informed biochemical characterization of prephenate aminotransferases (PPA-ATs) that belong to class-Ib aspartate aminotransferases (AspAT Ibs) and catalyze the first committed step of the arogenate pathway in plants. Plant PPA-ATs and succeeding arogenate dehydratases (ADTs) were found to be most closely related to homologs from Chlorobi/Bacteroidetes bacteria. The Chlorobium tepidum PPA-AT and ADT homologs indeed efficiently converted prephenate and arogenate into arogenate and Phe, respectively. A subset of AspAT Ib enzymes exhibiting PPA-AT activity was further identified from both Plantae and prokaryotes and, together with site-directed mutagenesis, showed that Thr-84 and Lys-169 play key roles in specific recognition of dicarboxylic keto (prephenate) and amino (aspartate) acid substrates. The results suggest that, along with ADT, a gene encoding prephenate-specific PPA-AT was transferred from a Chlorobi/Bacteroidetes ancestor to a eukaryotic ancestor of Plantae, allowing efficient Phe and phenylpropanoid production via arogenate in plants today.


Asunto(s)
Aspartato Aminotransferasas/genética , Fenilalanina/metabolismo , Plantas/enzimología , Transaminasas/genética , Secuencia de Aminoácidos , Aminoácidos Dicarboxílicos/metabolismo , Aspartato Aminotransferasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Chlorobium/enzimología , Chlorobium/genética , Secuencia Conservada , Ciclohexenos/metabolismo , Evolución Molecular , Hidroliasas/genética , Hidroliasas/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Alineación de Secuencia , Transaminasas/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
6.
Ann Rheum Dis ; 75(12): 2192-2200, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27013493

RESUMEN

OBJECTIVES: This study examines the relationship between synovial hypoxia and cellular bioenergetics with synovial inflammation. METHODS: Primary rheumatoid arthritis synovial fibroblasts (RASF) were cultured with hypoxia, dimethyloxalylglycine (DMOG) or metabolic intermediates. Mitochondrial respiration, mitochondrial DNA mutations, cell invasion, cytokines, glucose and lactate were quantified using specific functional assays. RASF metabolism was assessed by the XF24-Flux Analyzer. Mitochondrial structural morphology was assessed by transmission electron microscopy (TEM). In vivo synovial tissue oxygen (tpO2 mmHg) was measured in patients with inflammatory arthritis (n=42) at arthroscopy, and markers of glycolysis/oxidative phosphorylation (glyceraldehyde 3-phosphate dehydrogenase (GAPDH), PKM2, GLUT1, ATP) were quantified by immunohistology. A subgroup of patients underwent contiguous MRI and positron emission tomography (PET)/CT imaging. RASF and human dermal microvascular endothelial cells (HMVEC) migration/angiogenesis, transcriptional activation (HIF1α, pSTAT3, Notch1-IC) and cytokines were examined in the presence of glycolytic inhibitor 3-(3-Pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). RESULTS: DMOG significantly increased mtDNA mutations, mitochondrial membrane potential, mitochondrial mass, reactive oxygen species and glycolytic RASF activity with concomitant attenuation of mitochondrial respiration and ATP activity (all p<0.01). This was coupled with altered mitochondrial morphology. Hypoxia-induced lactate levels (p<0.01), which in turn induced basic fibroblast growth factor (bFGF) secretion and RASF invasiveness (all p<0.05). In vivo glycolytic markers were inversely associated with synovial tpO2 levels <20 mm Hg, in contrast ATP was significantly reduced (all p<0.05). Decrease in GAPDH and GLUT1 was paralleled by an increase in in vivo tpO2 in tumour necrosis factor alpha inhibitor (TNFi) responders. Novel PET/MRI hybrid imaging demonstrated close association between metabolic activity and inflammation. 3PO significantly inhibited RASF invasion/migration, angiogenic tube formation, secretion of proinflammatory mediators (all p<0.05), and activation of HIF1α, pSTAT3 and Notch-1IC under normoxic and hypoxic conditions. CONCLUSIONS: Hypoxia alters cellular bioenergetics by inducing mitochondrial dysfunction and promoting a switch to glycolysis, supporting abnormal angiogenesis, cellular invasion and pannus formation.


Asunto(s)
Artritis Reumatoide/fisiopatología , Metabolismo Energético/fisiología , Fibroblastos/metabolismo , Aminoácidos Dicarboxílicos/metabolismo , Movimiento Celular/fisiología , Células Cultivadas , Citocinas/análisis , ADN Mitocondrial/metabolismo , Glucosa/análisis , Humanos , Hipoxia/metabolismo , Articulaciones/metabolismo , Ácido Láctico/análisis , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Membrana Sinovial/citología
7.
J Biol Chem ; 289(6): 3198-208, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24302739

RESUMEN

The aromatic amino acids phenylalanine and tyrosine represent essential sources of high value natural aromatic compounds for human health and industry. Depending on the organism, alternative routes exist for their synthesis. Phenylalanine and tyrosine are synthesized either via phenylpyruvate/4-hydroxyphenylpyruvate or via arogenate. In arogenate-competent microorganisms, an aminotransferase is required for the transamination of prephenate into arogenate, but the identity of the genes is still unknown. We present here the first identification of prephenate aminotransferases (PATs) in seven arogenate-competent microorganisms and the discovery that PAT activity is provided by three different classes of aminotransferase, which belong to two different fold types of pyridoxal phosphate enzymes: an aspartate aminotransferase subgroup 1ß in tested α- and ß-proteobacteria, a branched-chain aminotransferase in tested cyanobacteria, and an N-succinyldiaminopimelate aminotransferase in tested actinobacteria and in the ß-proteobacterium Nitrosomonas europaea. Recombinant PAT enzymes exhibit high activity toward prephenate, indicating that the corresponding genes encode bona fide PAT. PAT functionality was acquired without other modification of substrate specificity and is not a general catalytic property of the three classes of aminotransferases.


Asunto(s)
Aminoácidos Dicarboxílicos , Bacterias , Proteínas Bacterianas , Ciclohexenos , Evolución Molecular , Transaminasas , Tirosina/análogos & derivados , Aminoácidos Dicarboxílicos/química , Aminoácidos Dicarboxílicos/genética , Aminoácidos Dicarboxílicos/metabolismo , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ciclohexenos/química , Ciclohexenos/metabolismo , Humanos , Fosfato de Piridoxal/química , Fosfato de Piridoxal/genética , Fosfato de Piridoxal/metabolismo , Transaminasas/química , Transaminasas/genética , Transaminasas/metabolismo , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
8.
Plant Cell ; 23(7): 2738-53, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21750236

RESUMEN

Altering expression of transcription factors can be an effective means to coordinately modulate entire metabolic pathways in plants. It can also provide useful information concerning the identities of genes that constitute metabolic networks. Here, we used ectopic expression of a MYB transcription factor, Petunia hybrida ODORANT1, to alter Phe and phenylpropanoid metabolism in tomato (Solanum lycopersicum) fruits. Despite the importance of Phe and phenylpropanoids to plant and human health, the pathway for Phe synthesis has not been unambiguously determined. Microarray analysis of ripening fruits from transgenic and control plants permitted identification of a suite of coregulated genes involved in synthesis and further metabolism of Phe. The pattern of coregulated gene expression facilitated discovery of the tomato gene encoding prephenate aminotransferase, which converts prephenate to arogenate. The expression and biochemical data establish an arogenate pathway for Phe synthesis in tomato fruits. Metabolic profiling and ¹³C flux analysis of ripe fruits further revealed large increases in the levels of a specific subset of phenylpropanoid compounds. However, while increased levels of these human nutrition-related phenylpropanoids may be desirable, there were no increases in levels of Phe-derived flavor volatiles.


Asunto(s)
Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Fenilalanina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Aminoácidos Dicarboxílicos/química , Aminoácidos Dicarboxílicos/metabolismo , Ácidos Ciclohexanocarboxílicos/química , Ácidos Ciclohexanocarboxílicos/metabolismo , Ciclohexenos/química , Ciclohexenos/metabolismo , Frutas/química , Frutas/genética , Humanos , Solanum lycopersicum/química , Redes y Vías Metabólicas/genética , Análisis por Micromatrices , Datos de Secuencia Molecular , Estructura Molecular , Petunia/genética , Ácidos Fenilpirúvicos/química , Ácidos Fenilpirúvicos/metabolismo , Filogenia , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transaminasas/clasificación , Transaminasas/genética , Transaminasas/metabolismo , Tirosina/análogos & derivados , Tirosina/química , Tirosina/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/metabolismo
9.
Bioorg Med Chem Lett ; 24(23): 5512-5, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25455495

RESUMEN

Oxidative stress has been implicated in a variety of conditions, including cancer, heart failure, diabetes, neurodegeneration and other diseases. A potential biomarker for oxidative stress is the cystine/glutamate transporter, system x(C)(-). L-Aminosuberic acid (L-ASu) has been identified as a system x(C)(-) substrate. Here we report a facile method for [(11)C]N-Me labeling of L-ASu, automation of the radiochemical process, and preliminary PET imaging with EL4 tumor bearing mice. The results demonstrate uptake in the tumor above background, warranting further studies on the use of radiolabeled analogs of L-ASu as a PET imaging agent for system x(C)(-).


Asunto(s)
Aminoácidos Dicarboxílicos/metabolismo , Diagnóstico por Imagen/métodos , Neoplasias/metabolismo , Sistema de Transporte de Aminoácidos y+/metabolismo , Animales , Células Cultivadas , Proteínas de Transporte de Membrana , Ratones , Estructura Molecular , Estrés Oxidativo , Regulación hacia Arriba
10.
Biochim Biophys Acta ; 1824(2): 339-49, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22138634

RESUMEN

The joint substitution of three active-site residues in Escherichia coli (L)-aspartate aminotransferase increases the ratio of l-cysteine sulfinate desulfinase to transaminase activity 10(5)-fold. This change in reaction specificity results from combining a tyrosine-shift double mutation (Y214Q/R280Y) with a non-conservative substitution of a substrate-binding residue (I33Q). Tyr214 hydrogen bonds with O3 of the cofactor and is close to Arg374 which binds the α-carboxylate group of the substrate; Arg280 interacts with the distal carboxylate group of the substrate; and Ile33 is part of the hydrophobic patch near the entrance to the active site, presumably participating in the domain closure essential for the transamination reaction. In the triple-mutant enzyme, k(cat)' for desulfination of l-cysteine sulfinate increased to 0.5s(-1) (from 0.05s(-1) in wild-type enzyme), whereas k(cat)' for transamination of the same substrate was reduced from 510s(-1) to 0.05s(-1). Similarly, k(cat)' for ß-decarboxylation of l-aspartate increased from<0.0001s(-1) to 0.07s(-1), whereas k(cat)' for transamination was reduced from 530s(-1) to 0.13s(-1). l-Aspartate aminotransferase had thus been converted into an l-cysteine sulfinate desulfinase that catalyzes transamination and l-aspartate ß-decarboxylation as side reactions. The X-ray structures of the engineered l-cysteine sulfinate desulfinase in its pyridoxal-5'-phosphate and pyridoxamine-5'-phosphate form or liganded with a covalent coenzyme-substrate adduct identified the subtle structural changes that suffice for generating desulfinase activity and concomitantly abolishing transaminase activity toward dicarboxylic amino acids. Apparently, the triple mutation impairs the domain closure thus favoring reprotonation of alternative acceptor sites in coenzyme-substrate intermediates by bulk water.


Asunto(s)
Aspartato Aminotransferasas/química , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/genética , Dominio Catalítico/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Aminoácidos Dicarboxílicos/metabolismo , Aspartato Aminotransferasas/genética , Aspartato Aminotransferasas/metabolismo , Biocatálisis , Liasas de Carbono-Azufre/metabolismo , Cristalografía por Rayos X , Escherichia coli , Enlace de Hidrógeno , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Ingeniería de Proteínas , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Piridoxamina/análogos & derivados , Piridoxamina/química , Piridoxamina/metabolismo , Especificidad por Sustrato
11.
Plant Cell ; 22(3): 832-49, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20215586

RESUMEN

l-Phe, a protein building block and precursor of numerous phenolic compounds, is synthesized from prephenate via an arogenate and/or phenylpyruvate route in which arogenate dehydratase (ADT) or prephenate dehydratase, respectively, plays a key role. Here, we used Petunia hybrida flowers, which are rich in Phe-derived volatiles, to determine the biosynthetic routes involved in Phe formation in planta. Of the three identified petunia ADTs, expression of ADT1 was the highest in petunia petals and positively correlated with endogenous Phe levels throughout flower development. ADT1 showed strict substrate specificity toward arogenate, although with the lowest catalytic efficiency among the three ADTs. ADT1 suppression via RNA interference in petunia petals significantly reduced ADT activity, levels of Phe, and downstream phenylpropanoid/benzenoid volatiles. Unexpectedly, arogenate levels were unaltered, while shikimate and Trp levels were decreased in transgenic petals. Stable isotope labeling experiments showed that ADT1 suppression led to downregulation of carbon flux toward shikimic acid. However, an exogenous supply of shikimate bypassed this negative regulation and resulted in elevated arogenate accumulation. Feeding with shikimate also led to prephenate and phenylpyruvate accumulation and a partial recovery of the reduced Phe level in transgenic petals, suggesting that the phenylpyruvate route can also operate in planta. These results provide genetic evidence that Phe is synthesized predominantly via arogenate in petunia petals and uncover a novel posttranscriptional regulation of the shikimate pathway.


Asunto(s)
Hidroliasas/metabolismo , Petunia/genética , Fenilalanina/biosíntesis , Proteínas de Plantas/metabolismo , Aminoácidos Dicarboxílicos/metabolismo , Ciclohexenos/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hidroliasas/genética , Petunia/enzimología , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Interferencia de ARN , ARN de Planta/genética , Ácido Shikímico/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Compuestos Orgánicos Volátiles/análisis
12.
J Immunol ; 186(7): 4367-74, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21357264

RESUMEN

Intestinal ischemia/reperfusion injury (IR) is characterized by intermittent loss of perfusion to the gut, resulting in dramatic increases in morbidity and mortality. Based on previous studies indicating an anti-inflammatory role for hypoxia-inducible factor (HIF)-1-elicited enhancement of extracellular adenosine production via ecto-5'-nucleotidase (CD73) and signaling through the A2B adenosine receptor (A2BAR), we targeted HIF-1 during IR using pharmacological or genetic approaches. Initial studies with pharmacological HIF activation indicated attenuation of intestinal injury with dimethyloxallyl glycine (DMOG) treatment during murine IR. Although DMOG treatment was associated with induction of CD73 transcript and protein, DMOG protection was abolished in cd73(-/-) mice. Similarly, DMOG treatment enhanced A2BAR transcript and protein levels, whereas DMOG protection was abolished in A2BAR(-/-) mice. Finally, studies of mice with conditional HIF-1α deletion in intestinal epithelia or pharmacological inhibition of HIF-1 with 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin revealed enhanced tissue injury during IR. These studies indicated a tissue-protective role of HIF-dependent enhancement of intestinal adenosine generation and signaling during intestinal IR.


Asunto(s)
5'-Nucleotidasa/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/uso terapéutico , Receptor de Adenosina A2B/fisiología , Daño por Reperfusión/prevención & control , 5'-Nucleotidasa/deficiencia , 5'-Nucleotidasa/genética , Aminoácidos Dicarboxílicos/metabolismo , Aminoácidos Dicarboxílicos/uso terapéutico , Animales , Colitis/enzimología , Colitis/fisiopatología , Colitis/prevención & control , Glicina/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/deficiencia , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Mucosa Intestinal/enzimología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , ARN Mensajero/biosíntesis , Daño por Reperfusión/enzimología , Daño por Reperfusión/fisiopatología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología
13.
Pflugers Arch ; 464(4): 367-74, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22875277

RESUMEN

2-Oxoglutarate or α-ketoglutarate (αKG) is a substrate of HIF prolyl hydroxylases 1-3 that decrease cellular levels of the hypoxia-inducible factor 1α (HIF-1α) in the presence of oxygen. αKG analogs are applied to stabilize HIF-1α even in the presence of oxygen and thus provide a novel therapeutic option in treating kidney diseases. In the kidneys, the organic anion transporters 1 and 3 (OAT1 and OAT3, respectively) in cooperation with the sodium-dependent dicarboxylate transporter 3 (NaDC3) and the OAT4 might be responsible for the uptake of αKG analogs into and the efflux out of the tubular cells. Using the radiolabelled substrates p-aminohippurate (PAH, OAT1), estrone-3-sulfate (ES; OAT3, OAT4), and succinate (NaDC3), N-oxalylglycine (NOG), dimethyloxalyl glycine (DMOG), 2,4-diethylpyridine dicarboxylate (2,4-DPD), and pyridine-2,4-dicarboxylic acid (PDCA) were tested in cis-inhibition and trans-stimulation experiments. None of these αKG analogs interacted with NaDC3. 2,4-DPD and PDCA inhibited ES uptake by OAT3 moderately. NOG, 2,4-DPD and PDCA, but not DMOG, inhibited PAH uptake by OAT1 significantly. trans-Stimulation experiments and experiments demonstrating stabilization of HIF-1α revealed that NOG and PDCA, but not 2,4-DPD, are translocated by OAT1. All compounds trans-stimulated ES uptake by OAT4, but only PDCA stabilized HIF-1α. The data suggest that OAT1 is involved in the uptake of NOG and PDCA across the basolateral membrane of proximal tubule cells, whereas OAT4 may release these compounds into the primary urine.


Asunto(s)
Dioxigenasas/antagonistas & inhibidores , Ácidos Cetoglutáricos/metabolismo , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/metabolismo , Procolágeno-Prolina Dioxigenasa/antagonistas & inhibidores , Aminoácidos Dicarboxílicos/metabolismo , Transporte Biológico Activo , Estrona/análogos & derivados , Estrona/metabolismo , Células HEK293 , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Transportadores de Anión Orgánico/efectos de los fármacos , Transportadores de Anión Orgánico Sodio-Dependiente/efectos de los fármacos , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Piridinas/metabolismo , Ácido Succínico/metabolismo , Simportadores/efectos de los fármacos , Simportadores/metabolismo , Ácido p-Aminohipúrico/metabolismo
14.
Neurochem Res ; 35(5): 735-42, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20143158

RESUMEN

Astrocytic excitatory amino acid transporters (EAATs) regulate excitatory transmission and limit excitotoxicity. Evidence for a functional interface between EAATs and glial fibrillary acidic protein (GFAP) relevant to astrocytic morphology led to investigations of actions of transportable (D-Aspartate (D-Asp) and (2S,3S,4R)-2-(carboxycyclopropyl)glycine (L-CCG-III)) and non-transportable (DL-threo-beta-benzyloxyaspartate (DL-TBOA)) inhibitors of Glu uptake in murine astrocytes. D-Asp (1 mM), L-CCG-III (0.5 mM) and DL-TBOA (0.5 mM) produced time-dependent (24-72 h) reductions in (3)[H]D-Asp uptake (approximately 30-70%) with little or no gliotoxicity. All drugs induced a profound change in phenotype from cobblestone to stellate morphology and image analysis revealed increases in the intensity of GFAP immunolabelling for L-CCG-III and DL-TBOA. Cytochemistry indicated localized changes in F-actin distribution. Cell surface expression of EAAT2, but not EAAT1, was elevated at 72 h. Blockade of Glu uptake by both types of EAAT inhibitor exerts longer-term effects on astrocytic morphology and a compensatory homeostatic rise in EAAT2 abundance.


Asunto(s)
Astrocitos/efectos de los fármacos , Transportador 2 de Aminoácidos Excitadores/genética , Glutamatos/metabolismo , Aminoácidos Dicarboxílicos/metabolismo , Aminoácidos Dicarboxílicos/farmacología , Animales , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacología , Astrocitos/citología , Células Cultivadas , Antagonistas de Aminoácidos Excitadores , Transportador 1 de Aminoácidos Excitadores/biosíntesis , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Ratones
15.
Eukaryot Cell ; 8(3): 339-52, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19168757

RESUMEN

We identified agtA, a gene that encodes the specific dicarboxylic amino acid transporter of Aspergillus nidulans. The deletion of the gene resulted in loss of utilization of aspartate as a nitrogen source and of aspartate uptake, while not completely abolishing glutamate utilization. Kinetic constants showed that AgtA is a high-affinity dicarboxylic amino acid transporter and are in agreement with those determined for a cognate transporter activity identified previously. The gene is extremely sensitive to nitrogen metabolite repression, depends on AreA for its expression, and is seemingly independent from specific induction. We showed that the localization of AgtA in the plasma membrane necessitates the ShrA protein and that an active process elicited by ammonium results in internalization and targeting of AgtA to the vacuole, followed by degradation. Thus, nitrogen metabolite repression and ammonium-promoted vacuolar degradation act in concert to downregulate dicarboxylic amino acid transport activity.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Aspergillus nidulans/metabolismo , Regulación hacia Abajo , Endocitosis , Proteínas Fúngicas/metabolismo , Nitrógeno/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos Dicarboxílicos/metabolismo , Aspergillus nidulans/química , Aspergillus nidulans/genética , Transporte Biológico , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
17.
Biochem J ; 416(3): 387-94, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18713068

RESUMEN

The transcription factor HIF (hypoxia-inducible factor) mediates a highly pleiotrophic response to hypoxia. Many recent studies have focused on defining the extent of this transcriptional response. In the present study we have analysed regulation by hypoxia among transcripts encoding human Fe(II)- and 2-oxoglutarate-dependent oxygenases. Our results show that many of these genes are regulated by hypoxia and define two groups of histone demethylases as new classes of hypoxia-regulated genes. Patterns of induction were consistent across a range of cell lines with JMJD1A (where JMJD is Jumonji-domain containing) and JMJD2B demonstrating robust, and JMJD2C more modest, up-regulation by hypoxia. Functional genetic and chromatin immunoprecipitation studies demonstrated the importance of HIF-1alpha in mediating these responses. Given the importance of histone methylation status in defining patterns of gene expression under different physiological and pathophysiological conditions, these findings predict a role for the HIF system in epigenetic regulation.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia , Proteínas de Neoplasias/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Factores de Transcripción/metabolismo , Aminoácidos Dicarboxílicos/metabolismo , Línea Celular , Deferoxamina/metabolismo , Perfilación de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Histona Demetilasas con Dominio de Jumonji , Ácidos Cetoglutáricos/metabolismo , Datos de Secuencia Molecular , Proteínas de Neoplasias/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidorreductasas N-Desmetilantes/genética , Oxigenasas/genética , Oxigenasas/metabolismo , Regiones Promotoras Genéticas , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Sideróforos/metabolismo , Factores de Transcripción/genética
18.
Nat Commun ; 10(1): 15, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30604768

RESUMEN

In addition to being a vital component of proteins, phenylalanine is also a precursor of numerous aromatic primary and secondary metabolites with broad physiological functions. In plants phenylalanine is synthesized predominantly via the arogenate pathway in plastids. Here, we describe the structure, molecular players and subcellular localization of a microbial-like phenylpyruvate pathway for phenylalanine biosynthesis in plants. Using a reverse genetic approach and metabolic flux analysis, we provide evidence that the cytosolic chorismate mutase is responsible for directing carbon flux towards cytosolic phenylalanine production via the phenylpyruvate pathway. We also show that an alternative transcription start site of a known plastidial enzyme produces a functional cytosolic prephenate dehydratase that catalyzes the conversion of prephenate to phenylpyruvate, the intermediate step between chorismate mutase and phenylpyruvate aminotransferase. Thus, our results complete elucidation of phenylalanine biosynthesis via phenylpyruvate in plants, showing that this pathway splits from the known plastidial arogenate pathway at chorismate, instead of prephenate as previously thought, and the complete pathway is localized in the cytosol.


Asunto(s)
Vías Biosintéticas , Corismato Mutasa/metabolismo , Fenilalanina/metabolismo , Ácidos Fenilpirúvicos/metabolismo , Plantas/metabolismo , Aminoácidos Dicarboxílicos/metabolismo , Ácidos Ciclohexanocarboxílicos/metabolismo , Ciclohexenos/metabolismo , Citosol/metabolismo , Plantas/genética , Plastidios/genética , Plastidios/metabolismo , Prefenato Deshidratasa/genética , Prefenato Deshidratasa/metabolismo , Transaminasas/metabolismo , Sitio de Iniciación de la Transcripción , Tirosina/análogos & derivados , Tirosina/metabolismo
19.
Methods Mol Biol ; 1742: 37-44, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29330788

RESUMEN

Here we describe a simple method based on secreted luciferase driven by a hypoxia-inducible factor (HIF) response element (HRE) that allows the acquisition of dynamic and high-throughput data on HIF transcriptional activity during hypoxia and pharmacological activation of HIF. The sensitivity of the assay allows for the secreted luciferase to be consecutively sampled (as little as 1% of the total supernatant) over an extended time period, thus allowing the acquisition of time-resolved HIF transcriptional activity.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Luciferasas/genética , Elementos de Respuesta , Aminoácidos Dicarboxílicos/metabolismo , Hipoxia de la Célula , Células HEK293 , Humanos , Regiones Promotoras Genéticas , Proteínas Recombinantes , Activación Transcripcional
20.
Mol Cell Biol ; 1(5): 426-38, 1981 May.
Artículo en Inglés | MEDLINE | ID: mdl-6152855

RESUMEN

The recently characterized amino acid L-arogenate (Zamir et al., J. Am. Chem. Soc. 102:4499-4504, 1980) may be a precursor of either L-phenylalanine or L-tyrosine in nature. Euglena gracilis is the first example of an organism that uses L-arogenate as the sole precursor of both L-tyrosine and L-phenylalanine, thereby creating a pathway in which L-arogenate rather than prephenate becomes the metabolic branch point. E. gracilis ATCC 12796 was cultured in the light under myxotrophic conditions and harvested in late exponential phase before extract preparation for enzymological assays. Arogenate dehydrogenase was dependent upon nicotinamide adenine dinucleotide phosphate for activity. L-Tyrosine inhibited activity effectively with kinetics that were competitive with respect to L-arogenate and noncompetitive with respect to nicotinamide adenine dinucleotide phosphate. The possible inhibition of arogenate dehydratase by L-phenylalanine has not yet been determined. Beyond the latter uncertainty, the overall regulation of aromatic biosynthesis was studied through the characterization of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase and chorismate mutase. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase was subject to noncompetitive inhibition by L-tyrosine with respect to either of the two substrates. Chorismate mutase was feedback inhibited with equal effectiveness by either L-tyrosine or L-phenylalanine. L-Tryptophan activated activity of chorismate mutase, a pH-dependent effect in which increased activation was dramatic above pH 7.8 L-Arogenate did not affect activity of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase or of chorismate mutase. Four species of prephenate aminotransferase activity were separated after ion-exchange chromatography. One aminotransferase exhibited a narrow range of substrate specificity, recognizing only the combination of L-glutamate with prephenate, phenylpyruvate, or 4-hydroxyphenylpyruvate. Possible natural relationships between Euglena spp. and fungi previously considered in the literature are discussed in terms of data currently available to define enzymological variation in the shikimate pathway.


Asunto(s)
Aminoácidos Dicarboxílicos/metabolismo , Aminoácidos/metabolismo , Euglena gracilis/metabolismo , Liasas de Fósforo-Oxígeno , Prefenato Deshidrogenasa , Tirosina/análogos & derivados , 3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Animales , Evolución Biológica , Ciclohexenos , Hidroliasas/metabolismo , Liasas/metabolismo , Oxidorreductasas/metabolismo , Fenilalanina/metabolismo , Ácido Shikímico/metabolismo , Transaminasas/metabolismo , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA