Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Annu Rev Biochem ; 80: 917-41, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21548780

RESUMEN

Innate immune receptors respond to common structural patterns in microbial molecules and are called pattern recognition receptors. Toll-like receptors (TLRs) play critical roles in the innate immune system by recognizing microbial lipids, carbohydrates, nucleic acids, and proteins. Precise definition of the ligand "pattern" of TLRs has been difficult to determine primarily owing to a lack of high-resolution structures. Recently, the structures of several TLR-ligand complexes and the intracellular signaling domains have been determined by X-ray crystallography. This new structural information, combined with extensive biochemical and immunological data accumulated over decades, sheds new light on ligand-recognition and -activation mechanisms. In this review, we summarize the TLR structures and discuss proposed ligand-recognition and -activation mechanisms.


Asunto(s)
Conformación Proteica , Receptores Toll-Like/química , Animales , Sitios de Unión , Cristalografía por Rayos X , Humanos , Inmunidad Innata , Ligandos , Lipopolisacáridos/inmunología , Antígeno 96 de los Linfocitos/química , Antígeno 96 de los Linfocitos/genética , Antígeno 96 de los Linfocitos/inmunología , Modelos Moleculares , Filogenia , Multimerización de Proteína , Receptores Toll-Like/clasificación , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología
2.
Immunity ; 46(1): 38-50, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-27986454

RESUMEN

Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, binds Toll-like receptor 4 (TLR4)-MD2 complex and activates innate immune responses. LPS transfer to TLR4-MD2 is catalyzed by both LPS binding protein (LBP) and CD14. To define the sequential molecular interactions underlying this transfer, we reconstituted in vitro the entire LPS transfer process from LPS micelles to TLR4-MD2. Using electron microscopy and single-molecule approaches, we characterized the dynamic intermediate complexes for LPS transfer: LBP-LPS micelles, CD14-LBP-LPS micelle, and CD14-LPS-TLR4-MD2 complex. A single LBP molecule bound longitudinally to LPS micelles catalyzed multi-rounds of LPS transfer to CD14s that rapidly dissociated from LPB-LPS complex upon LPS transfer via electrostatic interactions. Subsequently, the single LPS molecule bound to CD14 was transferred to TLR4-MD2 in a TLR4-dependent manner. The definition of the structural determinants of the LPS transfer cascade to TLR4 may enable the development of targeted therapeutics for intervention in LPS-induced sepsis.


Asunto(s)
Proteínas de Fase Aguda/inmunología , Proteínas Portadoras/inmunología , Receptores de Lipopolisacáridos/inmunología , Lipopolisacáridos/inmunología , Antígeno 96 de los Linfocitos/inmunología , Glicoproteínas de Membrana/inmunología , Receptor Toll-Like 4/inmunología , Animales , Humanos , Ratones , Microscopía Electrónica de Transmisión , Transducción de Señal/inmunología
3.
Immunity ; 43(5): 909-22, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26546281

RESUMEN

Microbe-induced receptor trafficking has emerged as an essential means to promote innate immune signal transduction. Upon detection of bacterial lipopolysaccharides (LPS), CD14 induces an inflammatory endocytosis pathway that delivers Toll-like receptor 4 (TLR4) to endosomes. Although several regulators of CD14-dependent TLR4 endocytosis have been identified, the cargo-selection mechanism during this process remains unknown. We reveal that, in contrast to classic cytosolic interactions that promoted the endocytosis of transmembrane receptors, TLR4 was selected as cargo for inflammatory endocytosis entirely through extracellular interactions. Mechanistically, the extracellular protein MD-2 bound to and dimerized TLR4 in order to promote this endocytic event. Our analysis of LPS variants from human pathogens and gut commensals revealed a common mechanism by which bacteria prevent inflammatory endocytosis. We suggest that evasion of CD14-dependent endocytosis is an attribute that transcends the concept of pathogenesis and might be a fundamental feature of bacteria that inhabit eukaryotic hosts.


Asunto(s)
Bacterias/inmunología , Endocitosis/inmunología , Evasión Inmune/inmunología , Receptores de Lipopolisacáridos/metabolismo , Receptor Toll-Like 4/metabolismo , Células Cultivadas , Humanos , Inflamación/inmunología , Lipopolisacáridos/inmunología , Antígeno 96 de los Linfocitos/inmunología , Transporte de Proteínas/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 4/inmunología
4.
J Immunol ; 206(5): 1046-1057, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33472906

RESUMEN

The zebrafish (Danio rerio) is a powerful model organism for studies of the innate immune system. One apparent difference between human and zebrafish innate immunity is the cellular machinery for LPS sensing. In amniotes, the protein complex formed by TLR4 and myeloid differentiation factor 2 (Tlr4/Md-2) recognizes the bacterial molecule LPS and triggers an inflammatory response. It is believed that zebrafish have neither Md-2 nor Tlr4; Md-2 has not been identified outside of amniotes, whereas the zebrafish tlr4 genes appear to be paralogs, not orthologs, of amniote TLR4s We revisited these conclusions. We identified a zebrafish gene encoding Md-2, ly96 Using single-cell RNA sequencing, we found that ly96 is transcribed in cells that also transcribe genes diagnostic for innate immune cells, including the zebrafish tlr4-like genes. In larval zebrafish, ly96 is expressed in a small number of macrophage-like cells. In a functional assay, zebrafish Md-2 and Tlr4ba form a complex that activates NF-κB signaling in response to LPS. In larval zebrafish ly96 loss-of-function mutations perturbed LPS-induced cytokine production but gave little protection against LPS toxicity. Finally, by analyzing the genomic context of tlr4 genes in 11 jawed vertebrates, we found that tlr4 arose prior to the divergence of teleosts and tetrapods. Thus, an LPS-sensitive Tlr4/Md-2 complex is likely an ancestral feature shared by mammals and zebrafish, rather than a de novo invention on the tetrapod lineage. We hypothesize that zebrafish retain an ancestral, low-sensitivity Tlr4/Md-2 complex that confers LPS responsiveness to a specific subset of innate immune cells.


Asunto(s)
Antígeno 96 de los Linfocitos/genética , Receptor Toll-Like 4/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Línea Celular , Células HEK293 , Humanos , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Inflamación/genética , Inflamación/inmunología , Lipopolisacáridos/inmunología , Antígeno 96 de los Linfocitos/inmunología , Macrófagos/inmunología , Mamíferos/genética , Mamíferos/inmunología , Ratones , FN-kappa B/genética , FN-kappa B/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptor Toll-Like 4/inmunología , Pez Cebra/inmunología , Proteínas de Pez Cebra/inmunología
5.
Cell Immunol ; 355: 104146, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32702524

RESUMEN

The lipopolysaccharide (LPS) of Gram-negative bacteria is recognized on human monocytes and macrophages by TLR4 and MD2 and induces the production of inflammatory cytokines; the LPS + IgG complexes co-stimulation increases the cytokine production, mediated by the Fc-γRIIa (CD32a). We stimulated human CD14 + monocytes or THP-1 cells with LPS or LPS + soluble human IgG (sIgG) and TNF-α transcription and production, assessed RT-qPCR, ELISA, or flow cytometry, was enhanced by 30% upon LPS + sIgG compared to LPS stimulation. LPS + sIgG co-stimulation affected the NF-κB pathway (p65 phosphorylation and nucleus translocation, and IkB- α degradation). The biochemical inhibition of IRAK 1/4 and Syk kinases suppressed the enhancer effect of LPS + sIgG on TNF- α production, suggesting the involvement of both MyD88 dependent and independent pathways. Our results suggest that during LPS activation, sIgG may participate in a TLR4 - Fc-γR crosstalk.


Asunto(s)
Inmunoglobulina G/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Lipopolisacáridos/farmacología , Receptores de IgG/metabolismo , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Células Cultivadas , Citocinas/metabolismo , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Interleucina-2/metabolismo , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Antígeno 96 de los Linfocitos/inmunología , Antígeno 96 de los Linfocitos/metabolismo , Macrófagos/metabolismo , Monocitos/metabolismo , FN-kappa B/metabolismo , Receptor Cross-Talk/fisiología , Receptores de IgG/inmunología , Transducción de Señal/efectos de los fármacos , Células THP-1 , Receptor Toll-Like 4/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
6.
J Immunol ; 201(11): 3383-3391, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30348734

RESUMEN

Toll-like receptor 4 plays an important role in the regulation of the innate and adaptive immune response. The majority of TLR4 activators currently in clinical use are derivatives of its prototypic ligand LPS. The discovery of innovative TLR4 activators has the potential of providing new therapeutic immunomodulators and adjuvants. We used computational design methods to predict and optimize a total of 53 cyclic and linear peptides targeting myeloid differentiation 2 (MD2) and cluster of differentiation 14 (CD14), both coreceptors of human TLR4. Activity of the designed peptides was first assessed using NF-κB reporter cell lines expressing either TLR4/MD2 or TLR4/CD14 receptors, then binding to CD14 and MD2 confirmed and quantified using MicroScale Thermophoresis. Finally, we incubated select peptides in human whole blood and observed their ability to induce cytokine production, either alone or in synergy with LPS. Our data demonstrate the advantage of computational design for the discovery of new TLR4 peptide activators with little structural resemblance to known ligands and indicate an efficient strategy with which to identify TLR4 targeting peptides that could be used as easy-to-produce alternatives to LPS-derived molecules in a variety of settings.


Asunto(s)
Anticuerpos Biespecíficos/genética , Sitios de Unión de Anticuerpos/genética , Receptores de Lipopolisacáridos/inmunología , Antígeno 96 de los Linfocitos/inmunología , Receptor Toll-Like 4/agonistas , Anticuerpos Biespecíficos/metabolismo , Células Cultivadas , Biología Computacional , Humanos , Ligandos , Estructura Molecular , FN-kappa B/metabolismo , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas , Transducción de Señal
7.
Curr Issues Mol Biol ; 25: 43-60, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28875939

RESUMEN

Following colonization of host tissues, bacterial pathogens encounter new niches in which they must gain access to nutrients and cope with stresses and defence signals generated by the host. For some pathogens, the adaptation to a new 'within-host' lifestyle involves modifications of envelope components that bear molecular patterns normally recognized by the host innate immune system. These new modified patterns limit host recognition, therefore promoting immune evasion and pathogenicity. In this review, we describe how envelope components like the peptidoglycan or lipopolysaccharide can be altered within the host to impair responses triggered by pattern recognition receptors (PRR). We also discuss the few cases reported to date of chemical modifications that occur in the envelope of some intracellular bacterial pathogens when they reside inside eukaryotic cells. These envelope alterations may have evolved due to the sentinel role performed by PRRs over pathogen-specific molecular patterns. The available data indicate that only selected pathogens seem to evade recognition due to 'within-host' envelope changes, with most of them displaying such patterns also in non host environments. Given the importance of these alterations, future studies should focus in the responsible pathogen regulators, most yet unknown, that could be targeted to prevent immune evasion.


Asunto(s)
Cápsulas Bacterianas/química , Lipopolisacáridos/inmunología , Antígeno 96 de los Linfocitos/inmunología , Proteínas NLR/inmunología , Peptidoglicano/inmunología , Receptores Toll-Like/inmunología , Animales , Bacterias/crecimiento & desarrollo , Bacterias/inmunología , Cápsulas Bacterianas/inmunología , Células Eucariotas/inmunología , Células Eucariotas/microbiología , Regulación de la Expresión Génica , Humanos , Evasión Inmune , Inmunidad Innata , Inflamasomas/inmunología , Inflamasomas/metabolismo , Lipopolisacáridos/metabolismo , Antígeno 96 de los Linfocitos/genética , Proteínas NLR/genética , Peptidoglicano/metabolismo , Transducción de Señal , Receptores Toll-Like/genética
8.
Immunity ; 29(2): 182-91, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18701082

RESUMEN

Toll-like receptors (TLRs) play central roles in the innate immune response by recognizing conserved structural patterns in diverse microbial molecules. Here, we discuss ligand binding and activation mechanisms of the TLR family. Hydrophobic ligands of TLR1, TLR2, and TLR4 interact with internal protein pockets. In contrast, dsRNA, a hydrophilic ligand, interacts with the solvent-exposed surface of TLR3. Binding of agonistic ligands, lipopeptides or dsRNA, induces dimerization of the ectodomains of the various TLRs, forming dimers that are strikingly similar in shape. In these "m"-shaped complexes, the C termini of the extracellular domains of the TLRs converge in the middle. This observation suggests the hypothesis that dimerization of the extracellular domains forces the intracellular TIR domains to dimerize, and this initiates signaling by recruiting intracellular adaptor proteins.


Asunto(s)
Antígeno 96 de los Linfocitos/metabolismo , Estructura Terciaria de Proteína , Receptores Toll-Like/química , Receptores Toll-Like/metabolismo , Animales , Sitios de Unión , Dimerización , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Receptores de Lipopolisacáridos/inmunología , Receptores de Lipopolisacáridos/metabolismo , Lipopolisacáridos/química , Lipopolisacáridos/inmunología , Lipopolisacáridos/metabolismo , Antígeno 96 de los Linfocitos/inmunología , Receptores de Interleucina-1/metabolismo
9.
J Immunol ; 194(4): 1686-94, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25576596

RESUMEN

We previously identified a novel alternatively spliced isoform of human myeloid differentiation protein-2 (MD-2s) that competitively inhibits binding of MD-2 to TLR4 in vitro. In this study, we investigated the protective role of MD-2s in LPS-induced acute lung injury by delivering intratracheally an adenovirus construct that expressed MD-2s (Ad-MD-2s). After adenovirus-mediated gene transfer, MD-2s was strongly expressed in lung epithelial cells and readily detected in bronchoalveolar lavage fluid. Compared to adenovirus serotype 5 containing an empty vector lacking a transgene control mice, Ad-MD-2s delivery resulted in significantly less LPS-induced inflammation in the lungs, including less protein leakage, cell recruitment, and expression of proinflammatory cytokines and chemokines, such as IL-6, keratinocyte chemoattractant, and MIP-2. Bronchoalveolar lavage fluid from Ad-MD-2s mice transferred into lungs of naive mice before intratracheal LPS challenge diminished proinflammatory cytokine levels. As house dust mite (HDM) sensitization is dependent on TLR4 and HDM Der p 2, a structural homolog of MD-2, we also investigated the effect of MD-2s on HDM-induced allergic airway inflammation. Ad-MD-2s given before HDM sensitization significantly inhibited subsequent allergic airway inflammation after HDM challenge, including reductions in eosinophils, goblet cell hyperplasia, and IL-5 levels. Our study indicates that the alternatively spliced short isoform of human MD-2 could be a potential therapeutic candidate to treat human diseases induced or exacerbated by TLR4 signaling, such as Gram-negative bacterial endotoxin-induced lung injury and HDM-triggered allergic lung inflammation.


Asunto(s)
Antígeno 96 de los Linfocitos/inmunología , Neumonía/genética , Neumonía/inmunología , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/inmunología , Empalme Alternativo , Animales , Western Blotting , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Humanos , Hipersensibilidad/genética , Hipersensibilidad/inmunología , Inmunohistoquímica , Antígeno 96 de los Linfocitos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Toll-Like 4/inmunología , Transfección
10.
J Allergy Clin Immunol ; 137(5): 1506-1513.e2, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26586036

RESUMEN

BACKGROUND: The National Health and Nutrition Examination Survey identified several pollens and cat dander as among the most common allergens that induce allergic sensitization and allergic diseases. We recently reported that ragweed pollen extract (RWPE) requires Toll-like receptor 4 (TLR4) to stimulate CXCL-mediated innate neutrophilic inflammation, which in turn facilitates allergic sensitization and airway inflammation. Myeloid differentiation protein 2 (MD2) is a TLR4 coreceptor, but its role in pollen- and cat dander-induced innate and allergic inflammation has not been critically evaluated. OBJECTIVE: We sought to elucidate the role of MD2 in inducing pollen- and cat dander-induced innate and allergic airway inflammation. METHODS: TCM(Null) (TLR4(Null), CD14(Null), MD2(Null)), TLR4(Hi), and TCM(Hi) cells and human bronchial epithelial cells with small interfering RNA-induced downregulation of MD2 were stimulated with RWPE, other pollen allergic extracts, or cat dander extract (CDE), and activation of nuclear factor κB (NF-κB), secretion of the NF-κB-dependent CXCL8, or both were quantified. Wild-type mice or mice with small interfering RNA knockdown of lung MD2 were challenged intranasally with RWPE or CDE, and innate and allergic inflammation was quantified. RESULTS: RWPE stimulated MD2-dependent NF-κB activation and CXCL secretion. Likewise, Bermuda, rye, timothy, pigweed, Russian thistle, cottonwood, walnut, and CDE stimulated MD2-dependent CXCL secretion. RWPE and CDE challenge induced MD2-dependent and CD14-independent innate neutrophil recruitment. RWPE induced MD2-dependent allergic sensitization and airway inflammation. CONCLUSIONS: MD2 plays an important role in induction of allergic sensitization to cat dander and common pollens relevant to human allergic diseases.


Asunto(s)
Alérgenos/inmunología , Alérgenos Animales/inmunología , Antígeno 96 de los Linfocitos/inmunología , Polen/inmunología , Hipersensibilidad Respiratoria/inmunología , Animales , Antígenos de Plantas/inmunología , Líquido del Lavado Bronquioalveolar/inmunología , Gatos/inmunología , Línea Celular , Citocinas/inmunología , Humanos , Inmunidad Innata , Pulmón/inmunología , Pulmón/metabolismo , Antígeno 96 de los Linfocitos/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mucinas/metabolismo , FN-kappa B/inmunología , Extractos Vegetales/inmunología , ARN Mensajero/metabolismo
11.
Int J Mol Sci ; 18(11)2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29099761

RESUMEN

The interactions between sugar-containing molecules from the bacteria cell wall and pattern recognition receptors (PRR) on the plasma membrane or cytosol of specialized host cells are the first molecular events required for the activation of higher animal's immune response and inflammation. This review focuses on the role of carbohydrates of bacterial endotoxin (lipopolysaccharide, LPS, lipooligosaccharide, LOS, and lipid A), in the interaction with the host Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD-2) complex. The lipid chains and the phosphorylated disaccharide core of lipid A moiety are responsible for the TLR4 agonist action of LPS, and the specific interaction between MD-2, TLR4, and lipid A are key to the formation of the activated complex (TLR4/MD-2/LPS)2, which starts intracellular signalling leading to nuclear factors activation and to production of inflammatory cytokines. Subtle chemical variations in the lipid and sugar parts of lipid A cause dramatic changes in endotoxin activity and are also responsible for the switch from TLR4 agonism to antagonism. While the lipid A pharmacophore has been studied in detail and its structure-activity relationship is known, the contribution of core saccharides 3-deoxy-d-manno-octulosonic acid (Kdo) and heptosyl-2-keto-3-deoxy-octulosonate (Hep) to TLR4/MD-2 binding and activation by LPS and LOS has been investigated less extensively. This review focuses on the role of lipid A, but also of Kdo and Hep sugars in LPS/TLR4 signalling.


Asunto(s)
Bacterias/inmunología , Infecciones Bacterianas/inmunología , Lipopolisacáridos/inmunología , Transducción de Señal , Receptor Toll-Like 4/inmunología , Animales , Bacterias/química , Infecciones Bacterianas/microbiología , Humanos , Inmunidad Innata , Lipopolisacáridos/análisis , Antígeno 96 de los Linfocitos/análisis , Antígeno 96 de los Linfocitos/inmunología , Modelos Moleculares , Receptor Toll-Like 4/análisis
12.
J Biol Chem ; 290(35): 21305-19, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26160169

RESUMEN

Lung infection by Burkholderia species, in particular Burkholderia cenocepacia, accelerates tissue damage and increases post-lung transplant mortality in cystic fibrosis patients. Host-microbe interplay largely depends on interactions between pathogen-specific molecules and innate immune receptors such as Toll-like receptor 4 (TLR4), which recognizes the lipid A moiety of the bacterial lipopolysaccharide (LPS). The human TLR4·myeloid differentiation factor 2 (MD-2) LPS receptor complex is strongly activated by hexa-acylated lipid A and poorly activated by underacylated lipid A. Here, we report that B. cenocepacia LPS strongly activates human TLR4·MD-2 despite its lipid A having only five acyl chains. Furthermore, we show that aminoarabinose residues in lipid A contribute to TLR4-lipid A interactions, and experiments in a mouse model of LPS-induced endotoxic shock confirmed the proinflammatory potential of B. cenocepacia penta-acylated lipid A. Molecular modeling combined with mutagenesis of TLR4-MD-2 interactive surfaces suggests that longer acyl chains and the aminoarabinose residues in the B. cenocepacia lipid A allow exposure of the fifth acyl chain on the surface of MD-2 enabling interactions with TLR4 and its dimerization. Our results provide a molecular model for activation of the human TLR4·MD-2 complex by penta-acylated lipid A explaining the ability of hypoacylated B. cenocepacia LPS to promote proinflammatory responses associated with the severe pathogenicity of this opportunistic bacterium.


Asunto(s)
Infecciones por Burkholderia/inmunología , Burkholderia cenocepacia/inmunología , Lípido A/inmunología , Antígeno 96 de los Linfocitos/inmunología , Receptor Toll-Like 4/inmunología , Acilación , Animales , Burkholderia cenocepacia/química , Burkholderia cenocepacia/aislamiento & purificación , Línea Celular , Células HEK293 , Humanos , Inmunidad Innata , Inflamación/inmunología , Inflamación/microbiología , Interleucina-6/inmunología , Lípido A/química , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular
13.
J Biol Chem ; 290(21): 13440-53, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25837248

RESUMEN

Lipid A in LPS activates innate immunity through the Toll-like receptor 4 (TLR4)-MD-2 complex on host cells. Variation in lipid A has significant consequences for TLR4 activation and thus may be a means by which Gram-negative bacteria modulate host immunity. However, although even minor changes in lipid A structure have been shown to affect downstream immune responses, the mechanism by which the TLR4-MD-2 receptor complex recognizes these changes is not well understood. We previously showed that strain BP338 of the human pathogen Bordetella pertussis, the causative agent of whooping cough, modifies its lipid A by the addition of glucosamine moieties that promote TLR4 activation in human, but not mouse, macrophages. Using site-directed mutagenesis and an NFκB reporter assay screen, we have identified several charged amino acid residues in TLR4 and MD-2 that are important for these species-specific responses; some of these are novel for responses to penta-acyl B. pertussis LPS, and their mutation does not affect the response to hexa-acylated Escherichia coli LPS or tetra-acylated lipid IVA. We additionally show evidence that suggests that recognition of penta-acylated B. pertussis lipid A is dependent on uncharged amino acids in TLR4 and MD-2 and that this is true for both human and mouse TLR4-MD-2 receptors. Taken together, we have demonstrated that the TLR4-MD-2 receptor complex recognizes variation in lipid A molecules using multiple sites for receptor-ligand interaction and propose that host-specific immunity to a particular Gram-negative bacterium is, at least in part, mediated by very subtle tuning of one of the earliest interactions at the host-pathogen interface.


Asunto(s)
Aminoácidos/química , Bordetella pertussis/inmunología , Especificidad del Huésped/inmunología , Lípido A/química , Lípido A/inmunología , Antígeno 96 de los Linfocitos/metabolismo , Receptor Toll-Like 4/metabolismo , Aminoácidos/inmunología , Aminoácidos/metabolismo , Animales , Western Blotting , Células Cultivadas , Glucosamina/metabolismo , Células HEK293 , Humanos , Inmunidad Innata/inmunología , Lípido A/metabolismo , Antígeno 96 de los Linfocitos/genética , Antígeno 96 de los Linfocitos/inmunología , Ratones , Mutagénesis Sitio-Dirigida , Mutación/genética , Conformación Proteica , Transducción de Señal , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología
14.
Eur J Immunol ; 45(2): 356-70, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25476977

RESUMEN

TLRs play a central role in the innate immune response, recognizing a variety of molecular structures characteristic of pathogens. Although TLR4, together with its co-receptor myeloid differentiation-2 (MD-2), recognize bacterial LPS and therefore Gram-negative bacterial infections, it also plays a key role in many other pathophysiological processes, including sterile inflammation and viral infection. Specifically, numerous endogenous agonists of TLR4 of notably diverse nature, ranging from proteins to metal ions, have been reported. Direct activation of a single receptor by such a range of molecular signals is very difficult to explain from a structural and mechanistic point of view. It is likely that only a subset of these directly activate the TLR4-MD-2 complex. We propose three postulates aimed at distinguishing the direct agonists of TLR4 from indirect activators. These postulates are as follows: (i) that the agonist requires the TLR4/MD-2 receptor complex; (ii) that agonist formed synthetically or in situ must activate the receptor complex in order to eliminate artifacts of contamination by other agonists; and (iii) that a specific molecular interaction between the agonist and TLR4/MD-2 must be identified. The same type of postulates can be applied to pattern recognition receptors in general.


Asunto(s)
Factores Inmunológicos/farmacología , Antígeno 96 de los Linfocitos/inmunología , Receptor Cross-Talk/efectos de los fármacos , Receptor Toll-Like 4/agonistas , Cationes Bivalentes , Regulación de la Expresión Génica , Humanos , Factores Inmunológicos/química , Lípido A/química , Lípido A/farmacología , Antígeno 96 de los Linfocitos/genética , Modelos Moleculares , Níquel/química , Níquel/farmacología , Paclitaxel/química , Paclitaxel/farmacología , Unión Proteica , Receptor Cross-Talk/inmunología , Transducción de Señal , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología
15.
J Immunol ; 192(4): 1887-95, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24420921

RESUMEN

LPS exerts potent immunostimulatory effects through activation of the TLR4/MD-2 receptor complex. The hexaacylated lipid A is an agonist of mouse (mTLR4) and human TLR4/MD-2, whereas the tetraacylated lipid IVa and paclitaxel activate only mTLR4/MD-2 and antagonize activation of the human receptor complex. Hydrophobic mutants of TLR4 or MD-2 were used to investigate activation of human embryonic kidney 293 cells by different TLR4 agonists. We show that each of the hydrophobic residues F438 and F461, which are located on the convex face of leucine-rich repeats 16 and 17 of the mTLR4 ectodomain, are essential for activation of with lipid IVa and paclitaxel, which, although not a structural analog of LPS, activates cells expressing mTLR4/MD-2. Both TLR4 mutants were inactive when stimulated with lipid IVa or paclitaxel, but retained significant activation when stimulated with LPS or hexaacylated lipid A. We show that the phenylalanine residue at position 126 of mouse MD-2 is indispensable only for activation with paclitaxel. Its replacement with leucine or valine completely abolished activation with paclitaxel while preserving the responsiveness to lipid IVa and lipid A. This suggests specific interaction of paclitaxel with F126 because its replacement with leucine even augmented activation by lipid A. These results provide an insight into the molecular mechanism of TLR4 activation by two structurally very different agonists.


Asunto(s)
Glucolípidos/inmunología , Lípido A/análogos & derivados , Antígeno 96 de los Linfocitos/inmunología , Paclitaxel/farmacología , Receptor Toll-Like 4/inmunología , Moduladores de Tubulina/farmacología , Acilación , Animales , Sitios de Unión , Línea Celular , Activación Enzimática , Glucolípidos/química , Glucolípidos/farmacología , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lípido A/química , Lípido A/inmunología , Lípido A/farmacología , Antígeno 96 de los Linfocitos/química , Ratones , Paclitaxel/química , Fenilalanina/química , Unión Proteica , Estructura Terciaria de Proteína , Receptor Toll-Like 4/química
16.
J Immunol ; 193(5): 2340-8, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25049357

RESUMEN

The long pentraxin 3 (PTX3) modulates different effector pathways involved in innate resistance to Aspergillus fumigatus, including complement activation or promotion of phagocytosis by interacting with FcγRs. However, whether and how TLRs modulate PTX3 mediates antifungal resistance is not known. In this study, we demonstrate that PTX3 binds myeloid differentiation protein 2 (MD-2) in vitro and exerts its protective antifungal activity in vivo through TLR4/MD-2-mediated signaling. Similar to Tlr4(-/-) mice, Md2(-/-) mice displayed high susceptibility to pulmonary aspergillosis, a phenotype associated with a proinflammatory cytokine profile and impaired antifungal activity of polymorphonuclear neutrophils. Treating Md2(-/-) mice with PTX3 failed to confer immune protection against the fungus, whereas adoptive transfer of MD-2-competent polymorphonuclear neutrophils restored it. Mechanistically, engagement of MD-2 by PTX3-opsonized Aspergillus conidia activated the TLR4/Toll/IL-1R domain-containing adapter inducing IFN-ß-dependent signaling pathway converging on IL-10. Thus, we have identified a novel receptor mechanism, involving the TLR4/MD-2/Toll/IL-1R domain-containing adapter inducing IFN-ß-mediated signaling, whereby PTX3 elicits antifungal resistance with limited immunopathology in A. fumigatus infection.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/inmunología , Aspergilosis/inmunología , Aspergillus fumigatus/inmunología , Proteína C-Reactiva/inmunología , Antígeno 96 de los Linfocitos/inmunología , Proteínas del Tejido Nervioso/inmunología , Componente Amiloide P Sérico/inmunología , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Aspergilosis/genética , Aspergilosis/patología , Aspergillus fumigatus/genética , Proteína C-Reactiva/genética , Células HEK293 , Humanos , Interferón beta/genética , Interferón beta/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Antígeno 96 de los Linfocitos/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Componente Amiloide P Sérico/genética , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología
17.
Proc Natl Acad Sci U S A ; 110(12): 4714-9, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23471986

RESUMEN

Although endogenous ligands for Toll-like receptor (TLR)4-myeloid differentiation factor 2 (MD2) have not been well-understood, we here report that a globo-series glycosphingolipid, globotetraosylceramide (Gb4), attenuates the toxicity of lipopolysaccharides (LPSs) by binding to TLR4-MD-2. Because α1,4-galactosyltransferase (A4galt)-deficient mice lacking globo-series glycosphingolipids showed higher sensitivity to LPS than wild-type mice, we examined mechanisms by which globo-series glycosphingolipids attenuate LPS toxicity. Cultured endothelial cells lacking A4galt showed higher expression of LPS-inducible genes upon LPS treatment. In turn, introduction of A4galt cDNA resulted in the neo expression of Gb4, leading to the reduced expression of LPS-inducible genes. Exogenous Gb4 induced similar effects. As a mechanism for the suppressive effects of Gb4 on LPS signals, specific binding of Gb4 to the LPS receptor TLR4-MD-2 was demonstrated by coprecipitation of Gb4 with recombinant MD-2 and by native PAGE. A docking model also supported these data. Taken together with colocalization of TLR4-MD-2 with Gb4 in lipid rafts after LPS stimulation, it was suggested that Gb4 competes with LPS for binding to TLR4-MD-2. Finally, administration of Gb4 significantly protected mice from LPS-elicited mortality. These results suggest that Gb4 is an endogenous ligand for TLR4-MD-2 and is capable of attenuating LPS toxicity, indicating the possibility for its therapeutic application in endotoxin shock.


Asunto(s)
Globósidos/inmunología , Antígeno 96 de los Linfocitos/inmunología , Complejos Multiproteicos/inmunología , Receptor Toll-Like 4/inmunología , Animales , Galactosiltransferasas/genética , Galactosiltransferasas/inmunología , Galactosiltransferasas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Globósidos/genética , Globósidos/metabolismo , Lipopolisacáridos/toxicidad , Antígeno 96 de los Linfocitos/genética , Antígeno 96 de los Linfocitos/metabolismo , Microdominios de Membrana/genética , Microdominios de Membrana/inmunología , Microdominios de Membrana/metabolismo , Ratones , Ratones Mutantes , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Unión Proteica , Choque Séptico/inducido químicamente , Choque Séptico/genética , Choque Séptico/inmunología , Choque Séptico/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
18.
Chemistry ; 21(2): 500-19, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25353096

RESUMEN

In many Gram-negative bacteria, lipopolysaccharide (LPS) and its lipid A moiety are pivotal for bacterial survival. Depending on its structure, lipid A carries the toxic properties of the LPS and acts as a potent elicitor of the host innate immune system via the Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD-2) receptor complex. It often causes a wide variety of biological effects ranging from a remarkable enhancement of the resistance to the infection to an uncontrolled and massive immune response resulting in sepsis and septic shock. Since the bioactivity of lipid A is strongly influenced by its primary structure, a broad range of chemical syntheses of lipid A derivatives have made an enormous contribution to the characterization of lipid A bioactivity, providing novel pharmacological targets for the development of new biomedical therapies. Here, we describe and discuss the chemical aspects regarding lipid A and its role in innate immunity, from the (bio)synthesis, isolation and characterization to the molecular recognition at the atomic level.


Asunto(s)
Bacterias Gramnegativas/química , Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Inmunidad Innata , Lípido A/química , Lípido A/inmunología , Animales , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Lípido A/análogos & derivados , Antígeno 96 de los Linfocitos/inmunología , Modelos Moleculares , Receptor Toll-Like 4/inmunología
19.
Inflamm Res ; 64(2): 107-18, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25511108

RESUMEN

OBJECTIVE AND DESIGN: The human c2orf40 gene encodes a tumor suppressor gene called esophageal cancer-related gene-4 (ECRG4) with pro- and anti-inflammatory activities that depend on cell surface processing. Here, we investigated its physical and functional association with the innate immunity receptor complex. METHODS: Interactions between ECRG4 and the innate immunity receptor complex were assessed by flow cytometry, immunohistochemistry, confocal microscopy, and co-immunoprecipitation. Phage display was used for ligand targeting to cells that overexpress the TLR4-MD2-CD14. RESULTS: Immunoprecipitation and immunohistochemical studies demonstrate a physical interaction between ECRG4 and TLR4-MD2-CD14 on human granulocytes. Flow cytometry shows ECRG4 on the cell surface of a subset of CD14(+) and CD16(+) leukocytes. In a cohort of trauma patients, the C-terminal 16 amino acid domain of ECRG4 (ECRG4(133-148)) appears to be processed and shed, presumably at a thrombin-like consensus sequence. Phage targeting this putative ligand shows that this peptide sequence internalizes into cells through the TLR4/CD14/MD2 complex, but modulates inflammation through non-canonical, NFκB signal transduction. CONCLUSIONS: ECRG4 is present on the surface of human monocytes and granulocytes. Its interaction with the human innate immunity receptor complex supports a role for cell surface activation of ECRG4 during inflammation and implicates this receptor in its mechanism of action.


Asunto(s)
Granulocitos/inmunología , Monocitos/inmunología , Proteínas de Neoplasias/inmunología , Adulto , Femenino , Células HEK293 , Humanos , Inmunidad Innata , Receptores de Lipopolisacáridos/inmunología , Antígeno 96 de los Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/genética , Receptor Toll-Like 4/inmunología , Proteínas Supresoras de Tumor , Adulto Joven
20.
J Immunol ; 191(4): 1529-35, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23878318

RESUMEN

Allergic responses can be triggered by structurally diverse allergens. Most allergens are proteins, yet extensive research has not revealed how they initiate the allergic response and why the myriad of other inhaled proteins do not. Among these allergens, the cat secretoglobulin protein Fel d 1 is a major allergen and is responsible for severe allergic responses. In this study, we show that similar to the mite dust allergen Der p 2, Fel d 1 substantially enhances signaling through the innate receptors TLR4 and TLR2. In contrast to Der p 2, however, Fel d 1 does not act by mimicking the TLR4 coreceptor MD2 and is not able to bind stably to the TLR4/MD2 complex in vitro. Fel d 1 does, however, bind to the TLR4 agonist LPS, suggesting that a lipid transfer mechanism may be involved in the Fel d 1 enhancement of TLR signaling. We also show that the dog allergen Can f 6, a member of a distinct class of lipocalin allergens, has very similar properties to Fel d 1. We propose that Fel d 1 and Can f 6 belong to a group of allergen immunomodulatory proteins that enhance innate immune signaling and promote airway hypersensitivity reactions in diseases such as asthma.


Asunto(s)
Alérgenos/inmunología , Gatos/inmunología , Glicoproteínas/inmunología , Lipopolisacáridos/inmunología , Hipersensibilidad Respiratoria/inmunología , Alérgenos/química , Animales , Células Cultivadas , Citocinas/biosíntesis , Perros , Flagelina/inmunología , Glicoproteínas/química , Glicosilación , Granulocitos/inmunología , Granulocitos/metabolismo , Humanos , Inmunidad Innata , Ligandos , Lipocalinas/inmunología , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/inmunología , Lipopolisacáridos/metabolismo , Antígeno 96 de los Linfocitos/genética , Antígeno 96 de los Linfocitos/inmunología , Antígeno 96 de los Linfocitos/metabolismo , Sustancias Macromoleculares , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Modelos Inmunológicos , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/inmunología , Hipersensibilidad Respiratoria/etiología , Especificidad de la Especie , Organismos Libres de Patógenos Específicos , Relación Estructura-Actividad , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA