Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
Bull Exp Biol Med ; 176(5): 581-584, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38724817

RESUMEN

A bradykinin B1 receptors antagonist PAV-0056, an 1,4-benzodiazepin-2-one derivative, intragastrically administrated to mice at doses of 0.1 and 1 mg/kg causes analgesia in the "formalin test" not inferior to that of diclofenac sodium (10 mg/kg) and tramadol (20 mg/kg). PAV-0056 at doses of 0.1 and 10 mg/kg has no anxiolytic and central muscle relaxant effects in mice and does not damage the gastric mucosa in rats. Based on the results of the conditioned place preference test, PAV-0056 also does not induce addiction in mice.


Asunto(s)
Analgésicos , Animales , Ratones , Ratas , Masculino , Analgésicos/farmacología , Diclofenaco/farmacología , Tramadol/farmacología , Psicotrópicos/farmacología , Bradiquinina/análogos & derivados , Bradiquinina/farmacología , Ansiolíticos/farmacología , Antagonistas del Receptor de Bradiquinina B1/farmacología , Ratas Wistar , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/metabolismo , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos
2.
J Am Soc Nephrol ; 31(2): 297-307, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31772138

RESUMEN

BACKGROUND: Myeloperoxidase-specific ANCA (MPO-ANCA) are implicated in the pathogenesis of vasculitis and GN. Kinins play a major role during acute inflammation by regulating vasodilatation and vascular permeability and by modulating adhesion and migration of leukocytes. Kinin system activation occurs in patients with ANCA vasculitis. Previous studies in animal models of GN and sclerosing kidney diseases have demonstrated protective effects of bradykinin receptor 1 (B1R) blockade via interference with myeloid cell trafficking. METHODS: To investigate the role of B1R in a murine model of MPO-ANCA GN, we evaluated effects of B1R genetic ablation and pharmacologic blockade. We used bone marrow chimeric mice to determine the role of B1R in bone marrow-derived cells (leukocytes) versus nonbone marrow-derived cells. We elucidated mechanisms of B1R effects using in vitro assays for MPO-ANCA-induced neutrophil activation, endothelial adherence, endothelial transmigration, and neutrophil adhesion molecule surface display. RESULTS: B1R deficiency or blockade prevented or markedly reduced ANCA-induced glomerular crescents, necrosis, and leukocyte influx in mice. B1R was not required for in vitro MPO-ANCA-induced neutrophil activation. Leukocyte B1R deficiency, but not endothelial B1R deficiency, decreased glomerular neutrophil infiltration induced by MPO-ANCA in vivo. B1R enhanced ANCA-induced neutrophil endothelial adhesion and transmigration in vitro. ANCA-activated neutrophils exhibited changes in Mac-1 and LFA-1, important regulators of neutrophil endothelial adhesion and transmigration: ANCA-activated neutrophils increased surface expression of Mac-1 and increased shedding of LFA-1, whereas B1R blockade reduced these effects. CONCLUSIONS: The leukocyte B1R plays a critical role in the pathogenesis of MPO-ANCA-induced GN in a mouse model by modulating neutrophil-endothelial interaction. B1R blockade may have potential as a therapy for ANCA GN and vasculitis.


Asunto(s)
Anticuerpos Anticitoplasma de Neutrófilos/inmunología , Glomerulonefritis/etiología , Peroxidasa/inmunología , Receptor de Bradiquinina B1/fisiología , Animales , Antagonistas del Receptor de Bradiquinina B1/uso terapéutico , Adhesión Celular , Modelos Animales de Enfermedad , Células Endoteliales/fisiología , Glomerulonefritis/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Neutrófilos/fisiología
3.
Cell Mol Neurobiol ; 40(5): 845-857, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31865500

RESUMEN

Neuroinflammation has become an important underlying factor in many cardiovascular disorders, including hypertension. Previously we showed that elevated angiotensin II (Ang II) and angiotensin II type I receptor (AT1R) expression levels can increase neuroinflammation leading to hypertension. We also found that kinin B1 receptor (B1R) expression increased in the hypothalamic paraventricular neurons resulting in neuroinflammation and oxidative stress in neurogenic hypertension. However, whether there are any potential interactions between AT1R and B1R in neuroinflammation is not clear. In the present study, we aimed to determine whether Ang II-mediated effects on inflammation and oxidative stress are mediated by the activation of B1R in mouse neonatal primary hypothalamic neuronal cultures. Gene expression and immunostaining revealed that both B1R and AT1R are expressed on primary hypothalamic neurons. Ang II stimulation significantly increased the expression of B1R, decreased mitochondrial respiration, increased the expression of two NADPH oxidase subunits (Nox2 and Nox4), increased the oxidative potential, upregulated several proinflammatory genes (IL-1ß, IL-6, and TNFα), and increased NF-kB p65 DNA binding activity. These changes were prevented by pretreatment with the B1R-specific peptide antagonist, R715. In summary, our study demonstrates a causal relationship between B1R expression after Ang II stimulation, suggesting a possible cross talk between AT1R and B1R in neuroinflammation and oxidative stress.


Asunto(s)
Angiotensina II/metabolismo , Antagonistas del Receptor de Bradiquinina B1/uso terapéutico , Encefalitis/tratamiento farmacológico , Hipotálamo/metabolismo , Estrés Oxidativo , Receptor de Bradiquinina B1/metabolismo , Animales , Antagonistas del Receptor de Bradiquinina B1/farmacología , Hipertensión/prevención & control , Hipotálamo/efectos de los fármacos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ratones , NADPH Oxidasas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
4.
Int J Mol Sci ; 21(20)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081372

RESUMEN

The kinin B1 receptor plays a critical role in the chronic phase of pain and inflammation. The development of B1 antagonists peaked in recent years but almost all promising molecules failed in clinical trials. Little is known about these molecules' mechanisms of action and additional information will be necessary to exploit the potential of the B1 receptor. With the aim of contributing to the available knowledge of the pharmacology of B1 receptors, we designed and characterized a novel class of allosteric non-peptidic inhibitors with peculiar binding characteristics. Here, we report the binding mode analysis and pharmacological characterization of a new allosteric B1 antagonist, DFL20656. We analyzed the binding of DFL20656 by single point mutagenesis and radioligand binding assays and we further characterized its pharmacology in terms of IC50, B1 receptor internalization and in vivo activity in comparison with different known B1 antagonists. We highlighted how different binding modes of DFL20656 and a Merck compound (compound 14) within the same molecular pocket can affect the biological and pharmacological properties of B1 inhibitors. DFL20656, by its peculiar binding mode, involving tight interactions with N114, efficiently induced B1 receptor internalization and evoked a long-lasting effect in an in vivo model of neuropathic pain. The pharmacological characterization of different B1 antagonists highlighted the effects of their binding modes on activity, receptor occupancy and internalization. Our results suggest that part of the failure of most B1 inhibitors could be ascribed to a lack of knowledge about target function and engagement.


Asunto(s)
Antagonistas del Receptor de Bradiquinina B1/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Neuralgia/metabolismo , Receptor de Bradiquinina B1/química , Regulación Alostérica , Sitio Alostérico , Animales , Antagonistas del Receptor de Bradiquinina B1/química , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Humanos , Unión Proteica , Transporte de Proteínas , Receptor de Bradiquinina B1/metabolismo
5.
Int J Mol Sci ; 21(3)2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012798

RESUMEN

Kinins are mediators of pain and inflammation and evidence suggests that the inducible kinin B1 receptor (B1R) is involved in neuropathic pain (NP). This study investigates whether B1R and TRPV1 are colocalized on nociceptors and/or astrocytes to enable regulatory interaction either directly or through the cytokine pathway (IL-1ß, TNF-α) in NP. Sprague Dawley rats were subjected to unilateral partial sciatic nerve ligation (PSNL) and treated from 14 to 21 days post-PSNL with antagonists of B1R (SSR240612, 10 mg·kg-1, i.p.) or TRPV1 (SB366791, 1 mg·kg-1, i.p.). The impact of these treatments was assessed on nociceptive behavior and mRNA expression of B1R, TRPV1, TNF-α, and IL-1ß. Localization on primary sensory fibers, astrocytes, and microglia was determined by immunofluorescence in the lumbar spinal cord and dorsal root ganglion (DRG). Both antagonists suppressed PSNL-induced thermal hyperalgesia, but only SB366791 blunted mechanical and cold allodynia. SSR240612 reversed PSNL-induced enhanced protein and mRNA expression of B1R and TRPV1 mRNA levels in spinal cord while SB366791 further increased B1R mRNA/protein expression. B1R and TRPV1 were found in non-peptide sensory fibers and astrocytes, and colocalized in the spinal dorsal horn and DRG, notably with IL-1ß on astrocytes. IL-1ß mRNA further increased under B1R or TRPV1 antagonism. Data suggest that B1R and TRPV1 contribute to thermal hyperalgesia and play a distinctive role in allodynia associated with NP. Close interaction and reciprocal regulatory mechanism are suggested between B1R and TRPV1 on astrocytes and nociceptors in NP.


Asunto(s)
Neuralgia/etiología , Neuralgia/metabolismo , Receptor de Bradiquinina B1/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Astrocitos/metabolismo , Antagonistas del Receptor de Bradiquinina B1/farmacología , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Neuralgia/fisiopatología , Dolor Nociceptivo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Médula Espinal/metabolismo
6.
J Cell Physiol ; 234(3): 2851-2865, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30132865

RESUMEN

High nuclear expression of G protein-coupled receptors, including kinin B1 receptors (B1R), has been observed in several human cancers, but the clinical significance of this is unknown. We put forward the hypothesis that these "nuclearized" kinin B1R contribute to tumorigenicity and can be a new target in anticancer strategies. Our initial immunostaining and ultrastructural electron microscopy analyses demonstrated high B1R expression predominantly located at internal/nuclear compartments in the MDA-MB-231 triple-negative breast cancer (TNBC) cell line as well as in clinical samples of patients with TNBC. On the basis of these findings, in the present study, we evaluated the anticancer therapeutic potential of newly identified, cell-permeable B1R antagonists in MDA-MB-231 cells (ligand-receptor binding/activity assays and LC-MS/MS analyses). We found that these compounds (SSR240612, NG67, and N2000) were more toxic to MDA-MB-231 cells in comparison with low- or non-B1R expressing MCF-10A normal human mammary epithelial cells and COS-1 cells, respectively (clonogenic, MTT proliferative/cytocidal assays, and fluorescence-activated cell-sorting (FACS)-based apoptosis analyses). By comparison, the peptide B1R antagonist R954 unable to cross cell membrane failed to produce anticancer effects. Furthermore, the putative mechanisms underlying the anticancer activities of cell-penetrant B1R antagonists were assessed by analyzing cell cycle regulation and signaling molecules related to cell survival and apoptosis (FACS and western blot). Finally, drug combination experiments showed that cell-penetrant B1R antagonists can cooperate with suboptimal doses of chemotherapeutic agents (doxorubicin and paclitaxel) to promote TNBC death. This study provides evidence on the potential value of internally acting kinin B1R antagonists in averting growth of breast cancer.


Asunto(s)
Péptidos de Penetración Celular/farmacología , Receptor de Bradiquinina B1/genética , Receptores Acoplados a Proteínas G/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Antagonistas del Receptor de Bradiquinina B1/farmacología , Células COS , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/genética , Chlorocebus aethiops , Doxorrubicina/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Paclitaxel/farmacología , Transducción de Señal/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
7.
J Transl Med ; 17(1): 346, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31640792

RESUMEN

BACKGROUND: Tibial fracture is associated with inflammatory reaction leading to severe pain syndrome. Bradykinin receptor activation is involved in inflammatory reactions, but has never been investigated in fracture pain. METHODS: This study aims at defining the role of B1 and B2-kinin receptors (B1R and B2R) in a closed tibial fracture pain model by using knockout mice for B1R (B1KO) or B2R (B2KO) and wild-type (WT) mice treated with antagonists for B1R (SSR 240612 and R954) and B2R (HOE140) or vehicle. A cyclooxygenase (COX) inhibitor (ketoprofen) and an antagonist (SB366791) of Transient Receptor Potential Vaniloid1 (TRPV1) were also investigated since these pathways are associated with BK-induced pain in other models. The impact on mechanical and thermal hyperalgesia and locomotion was assessed by behavior tests. Gene expression of B1R and B2R and spinal cord expression of c-Fos were measured by RT-PCR and immunohistochemistry, respectively. RESULTS: B1KO and B2KO mice demonstrated a reduction in post-fracture pain sensitivity compared to WT mice that was associated with decreased c-Fos expression in the ipsilateral spinal dorsal horn in B2KO. B1R and B2R mRNA and protein levels were markedly enhanced at the fracture site. B1R and B2R antagonists and inhibition of COX and TRPV1 pathways reduced pain in WT. However, the analgesic effect of the COX-1/COX-2 inhibitor disappeared in B1KO and B2KO. In contrast, the analgesic effect of the TRPV1 antagonist persisted after gene deletion of either receptor. CONCLUSIONS: It is suggested that B1R and B2R activation contributes significantly to tibial fracture pain through COX. Hence, B1R and B2R antagonists appear potential therapeutic agents to manage post fracture pain.


Asunto(s)
Dolor/fisiopatología , Receptor de Bradiquinina B1/fisiología , Receptor de Bradiquinina B2/fisiología , Fracturas de la Tibia/fisiopatología , Animales , Antagonistas del Receptor de Bradiquinina B1/farmacología , Antagonistas del Receptor de Bradiquinina B2/farmacología , Inhibidores de la Ciclooxigenasa/farmacología , Modelos Animales de Enfermedad , Inflamación/etiología , Inflamación/patología , Inflamación/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Dolor/tratamiento farmacológico , Dolor/prevención & control , Dimensión del Dolor , Proteínas Proto-Oncogénicas c-fos/biosíntesis , ARN Mensajero , Receptor de Bradiquinina B1/deficiencia , Receptor de Bradiquinina B1/genética , Receptor de Bradiquinina B2/deficiencia , Receptor de Bradiquinina B2/genética , Canales Catiónicos TRPV/antagonistas & inhibidores , Fracturas de la Tibia/complicaciones , Fracturas de la Tibia/patología , Investigación Biomédica Traslacional
8.
Inflammopharmacology ; 27(3): 573-586, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30820720

RESUMEN

Tumour necrosis factor (TNF) and kinins have been associated with neuropathic pain-like behaviour in numerous animal models. However, the way that they interact to cause neuron sensitisation remains unclear. This study assessed the interaction of kinin receptors and TNF receptor TNFR1/p55 in mechanical hypersensitivity induced by an intraneural (i.n.) injection of rm-TNF into the lower trunk of brachial plexus in mice. The i.n. injection of rm-TNF reduced the mechanical withdrawal threshold of the right forepaw from the 3rd to the 10th day after the injection, indicating that TNF1/p55 displays a critical role in the onset of TNF-elicited neuropathic pain. The connection between TNF1/p55 and kinin B1 and B2 receptors (B1R and B2R) was confirmed using both knockout mice and mRNAs quantification in the injected nerve, DRG and spinal cord. The treatment with the B2R antagonist HOE 140 or with B1R antagonist des-Arg9-Leu8-BK reduced both BK- and DABK-induced hypersensitivity. The experiments using kinin receptor antagonists and CPM inhibitor (thiorphan) suggest that BK does not only activate B2R as an orthosteric agonist, but also seems to be converted into DABK that consequently activates B1R. These results indicate a connection between TNF and the kinin system, suggesting a relevant role for B1R and B2R in the process of sensitisation of the central nervous systems by the cross talk between the receptor and CPM after i.n. injection of rm-TNF.


Asunto(s)
Plexo Braquial/metabolismo , Neuralgia/metabolismo , Receptor de Bradiquinina B1/metabolismo , Receptor de Bradiquinina B2/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Plexo Braquial/efectos de los fármacos , Antagonistas del Receptor de Bradiquinina B1/farmacología , Antagonistas del Receptor de Bradiquinina B2/farmacología , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuralgia/tratamiento farmacológico
9.
Cytokine ; 108: 71-81, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29579546

RESUMEN

Trichloroethylene (TCE) is able to induce trichloroethylene hypersensitivity syndrome (THS) with multi-system immune injuries. In our previous study, we found kallikrein-kinin system (KKS) activation, including the bradykinin B1 receptor (B1R), which contributed to immune organ injury in TCE sensitized mice. However, the mechanism of B1R mediating immune dysfunction is not clarified. The present study initiates to investigate the potential mechanism of B1R on liver injury. We establish a TCE sensitized BALB/c mouse model to explore the mechanism with or without a B1R inhibitor R715. We found B1R expression was increased in TCE sensitization-positive mice. As expect, hepatocyte intracellular organelles and mitochondria disappeared, glycogen particles reduced significantly as well in TCE sensitization-positive mice via the transmission electron microscopic examination, meanwhile, R715 alleviated the deteriorate above. The blockade of B1R resulted in a significant decreased p-ERK1/2 and increased p-AKT expression. The expression of CD68 kupffer cell and its relative cytokine, including IL-6 and TNF-α, increased in TCE sensitization-positive mice and decreased in R715 pretreatment TCE sensitization-positive mice. Together, the results demonstrate B1R plays a key role in ERK/MAPK and PI3K/AKT signal pathway activation and inflammation cytokine expression in immune liver injury induced by TCE. B1R exerts a pivotal role in the development of TCE induced liver injury.


Asunto(s)
Antagonistas del Receptor de Bradiquinina B1/farmacología , Bradiquinina/análogos & derivados , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Transducción de Señal , Animales , Antígenos CD/inmunología , Antígenos de Diferenciación Mielomonocítica/inmunología , Bradiquinina/farmacología , Citocinas/inmunología , Femenino , Macrófagos del Hígado/inmunología , Hígado/efectos de los fármacos , Hígado/patología , Ratones , Ratones Endogámicos BALB C , Proteínas Quinasas Activadas por Mitógenos/inmunología , Fosfatidilinositol 3-Quinasas/inmunología , Receptor de Bradiquinina B1 , Tricloroetileno
10.
Mol Pharm ; 14(3): 821-829, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28094956

RESUMEN

Peptide receptors have emerged as promising targets for diagnosis and therapy. The aberrant overexpression of these receptors in different cancer subtypes allows for the adoption of new treatment strategies that complement conventional chemotherapies. Bradykinin B1 receptor (B1R) is a G protein-coupled receptor that is overexpressed in many cancers, with limited expression in healthy tissues. Previously, we developed 68Ga- and 18F-labeled derivatives of B1R antagonist peptides B9858 and B9958, and successfully targeted B1R-expressing tumor xenografts in vivo. R954 (Ac-Orn-Arg-Oic-Pro-Gly-αMePhe-Ser-d-2-Nal-Ile), a potent B1R antagonist, is reportedly more stable than B9858 against peptidase degradation. We evaluated two radiolabeled derivatives of R954 (68Ga-HTK01083 and 18F-HTK01146) for B1R PET imaging. Peptides were synthesized via solid phase strategy. Nonradioactive standards were obtain by reacting GaCl3 with DOTA-dPEG2-R954 and by clicking N-propargyl-N,N-dimethylammoniomethyl-trifluoroborate with azidoacetyl-dPEG2-R954. Binding affinity for B1R was determined by an in vitro competition binding assay. 68Ga-HTK01083 was obtained by incubating DOTA-dPEG2-R954 with 68GaCl3 under acidic conditions, while 18F-HTK01146 was prepared via an 18F-19F isotope exchange reaction. Biodistribution and imaging studies were conducted at 1 h postinjection (p.i.) in mice inoculated with B1R-expressing (B1R+) and B1R-nonexpressing (B1R-) cells. HTK01083 and HTK01146 bound B1R with good affinity (Ki = 30.5 and 24.8 nM, respectively). 68Ga/18F-labeled R954 were obtained on average in ≥10% decay-corrected radiochemical yield with >99% radiochemical purity and ≥52 GBq/µmol specific activity. For both tracers, clearance was predominantly renal with minimal involvement of the hepatobiliary system. For PET images, B1R+ tumors, kidneys, and bladder were visible. At 1 h p.i., uptake in B1R+ tumor was comparable between 68Ga-HTK01083 (8.46 ± 1.44%ID/g) and 18F-HTK01146 (9.25 ± 0.69%ID/g). B1R+ tumor-to-blood and B1R+ tumor-to-muscle ratios were 6.32 ± 1.44 and 20.7 ± 3.58 for 68Ga-HTK01083, and 7.24 ± 2.56 and 19.5 ± 4.29 for 18F-HTK01146. Our results indicate R954 is a good lead sequence for optimization of B1R tracers for cancer imaging.


Asunto(s)
Antagonistas del Receptor de Bradiquinina B1/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Radioisótopos de Galio/metabolismo , Radiofármacos/metabolismo , Receptor de Bradiquinina B1/metabolismo , Distribución Tisular/efectos de los fármacos , Animales , Línea Celular , Células HEK293 , Humanos , Masculino , Ratones , Neoplasias/diagnóstico , Neoplasias/metabolismo , Péptidos/metabolismo , Tomografía de Emisión de Positrones/métodos
11.
Mol Cell Biochem ; 428(1-2): 101-108, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28161805

RESUMEN

Cisplatin is a drug widely used in chemotherapy that frequently causes severe renal dysfunction. Organic transporters have an important role to control the absorption and excretion of cisplatin in renal cells. Deletion and blockage of kinin B1 receptor has already been show to protect against cisplatin-induced acute kidney injury. To test whether it exerts its protective function by modulating the organic transporters in kidney, we studied kinin B1 receptor knockout mice and treatment with a receptor antagonist at basal state and in presence of cisplatin. Cisplatin administration caused downregulation of renal organic transporters; in B1 receptor knockout mice, this downregulation of organic transporters in kidney was absent; and treatment by a B1 receptor antagonist attenuated the downregulation of the transporter MATE-1. Moreover, kinin B1 receptor deletion and blockage at basal state resulted in higher renal expression of MATE-1. Moreover we observed that kinin B1 receptor deletion and blockage result in less accumulation of platinum in renal tissue. Thus, we propose that B1 receptor deletion and blockage protect the kidney from cisplatin-induced acute kidney injury by upregulating the expression of MATE-1, thereby increasing the efflux of cisplatin from renal cells.


Asunto(s)
Lesión Renal Aguda/prevención & control , Antagonistas del Receptor de Bradiquinina B1/farmacología , Cisplatino/farmacocinética , Proteínas de Transporte de Catión Orgánico/genética , Receptor de Bradiquinina B1/genética , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Animales , Cisplatino/administración & dosificación , Cisplatino/efectos adversos , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Ratones , Proteínas de Transporte de Catión Orgánico/metabolismo , Receptor de Bradiquinina B1/metabolismo
12.
J Vet Pharmacol Ther ; 40(1): 70-76, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27345291

RESUMEN

The effects of a selective bradykinin 1 receptor antagonist, compound A, were evaluated in a canine model of acute inflammatory model of arthritis. Despite detection of the B1 receptor in canine type B synoviocytes using a fluorescent ligand, oral administration of compound A (9 and 27 mg/kg) did not improve weight bearing of dogs injected intra-articularly with IL-1ß in a force plate analysis. Analysis of the synovial fluid of IL-1ß-treated dogs indicated high levels of bradykinin postchallenge. Excellent exposure, coupled with evidence of the presence of the B1 receptor during an acute inflammatory model of pain, indicates an inability of the receptor to mediate inflammatory pain in canines.


Asunto(s)
Artritis/veterinaria , Antagonistas del Receptor de Bradiquinina B1/uso terapéutico , Enfermedades de los Perros/tratamiento farmacológico , Niacinamida/farmacología , Animales , Artritis/tratamiento farmacológico , Células Cultivadas , Modelos Animales de Enfermedad , Perros , Masculino , Niacinamida/análisis , Receptor de Bradiquinina B1/análisis , Sinoviocitos/química
13.
Inflammopharmacology ; 25(4): 459-469, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28160128

RESUMEN

Kinins are bioactive peptides which provide multiple functions, including critical regulation of the inflammatory response. Released during tissue injury, kinins potentiate the inflammation which represents a hallmark of numerous neurological disorders, including those of autoimmune origin such as multiple sclerosis (MS). In the present work, we assess the expression of B1 receptor (B1R) in rat brain during the course of experimental autoimmune encephalomyelitis (EAE) which is an animal model of MS. We apply pharmacological inhibition to investigate the role of this receptor in the development of neurological deficits and in shaping the cytokine/chemokine profile during the course of the disease. Overexpression of B1R is observed in brain tissue of rats subjected to EAE, beginning at the very early asymptomatic phase of the disease. This overexpression is suppressed by a specific antagonist known as DALBK. The involvement of B1R in the progression of neurological symptoms in immunized rats is confirmed. Analysis of an array of cytokines/chemokines identified a sub-group as being B1R-dependent. Increase of the protein levels for the proinflammatory cytokines (Il-6, TNF-α but not IL-1ß), chemokines attracting immune cells into nervous tissue (MCP-1, MIP-3α, LIX), and protein levels of fractalkine and vascular endothelial growth factor observed in EAE rats, were significantly diminished after DALBK administration. This may indicate the protective potential of pharmacological inhibition of B1R. However, simultaneously reduced protein levels of anti-inflammatory and neuroprotective factors (IL-10, IL-4, and CNTF) was noticed. The results show that B1R-mediated signaling regulates the cellular response profile following neuroinflammation in EAE.


Asunto(s)
Antagonistas del Receptor de Bradiquinina B1/farmacología , Encéfalo/metabolismo , Quimiocinas/biosíntesis , Citocinas/biosíntesis , Encefalomielitis Autoinmune Experimental/metabolismo , Receptor de Bradiquinina B1/biosíntesis , Animales , Bradiquinina/análogos & derivados , Bradiquinina/farmacología , Bradiquinina/uso terapéutico , Antagonistas del Receptor de Bradiquinina B1/uso terapéutico , Encéfalo/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Femenino , Ratas , Ratas Endogámicas Lew
14.
J Infect Dis ; 213(4): 532-40, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26310310

RESUMEN

BACKGROUND: This study examined the therapeutic effects of an orally active nonpeptide kinin B1 receptor antagonist, BI113823, in a clinically relevant experimental model of polymicrobial sepsis in rats. METHODS: Sepsis was induced by cecal ligation and puncture (CLP). Animals received treatment with either vehicle or BI113823. The experiment was terminated in the first set of animals 15 hours after CLP. Seven-day survival following CLP was determined in the second set of animals. RESULTS: Compared with vehicle treatment, administration of BI113823 reduced neutrophil and macrophage infiltration, reduced cytokine production, attenuated intestinal mucosal hyperpermeability, prevented hemodynamic derangement, and improved cardiac output. Furthermore, administration of BI113823 reduced inducible nitric oxide synthase expression and the injury score in the lung and attenuated nuclear factor ĸB activation and apoptosis in the liver. Treatment with BI113823 also reduced plasma levels of cardiac troponin, aspartate aminotransferase, alanine aminotransferase, urea, and lactate, as well as proteinuria. Finally, administration of BI113823 improved the 7-day survival rate following CLP in rats. CONCLUSIONS: Administration of BI113823 reduced systemic and tissue inflammatory responses, prevented hemodynamic derangement, attenuated multiorgan injury, and improved overall survival.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antagonistas del Receptor de Bradiquinina B1/uso terapéutico , Inflamación/patología , Inflamación/prevención & control , Sepsis/tratamiento farmacológico , Sepsis/patología , Animales , Modelos Animales de Enfermedad , Masculino , Ratas Wistar , Análisis de Supervivencia , Resultado del Tratamiento
15.
Ann Rheum Dis ; 75(1): 260-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25344431

RESUMEN

OBJECTIVE: Verify the role of the kinin B1 receptors (B1R) and the effect of ACE inhibitors (ACEi) on acute gout induced by monosodium urate (MSU) crystals in rodents. METHODS: Painful (overt pain and allodynia) and inflammatory parameters (joint oedema, leukocyte trafficking, interleukin-1ß levels) of acute gout attacks were assessed several hours after an intra-articular injection of MSU (1.25 or 0.5 mg/articulation) into the ankle of rats or mice, respectively. The role of B1R was investigated using pharmacological antagonism or gene deletion. Additionally, B1R immunoreactivity in ankle tissue and sensory neurons, kininase I activity and des-Arg(9)-bradykinin synovial levels were also measured. Similar tools were used to investigate the effects of ACEi on a low dose of MSU (0.0125 mg/articulation)-induced inflammation. RESULTS: Kinin B1R antagonism or gene deletion largely reduced all painful and inflammatory signs of gout. Furthermore, MSU increased B1R expression in articular tissues, the content of the B1 agonist des-Arg(9)-bradykinin and the activity of the B1 agonist-forming enzyme kininase I. A low dose of MSU crystals, which did not induce inflammation in control animals, caused signs of acute gout attacks in ACEi-treated animals that were B1R-dependent. CONCLUSIONS: Kinin B1R contributes to acute gouty attacks, including the ones facilitated by ACEi. Therefore, B1R is a potential therapeutic target for the treatment and prophylaxis of gout, especially in patients taking ACEi.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Gota/metabolismo , Receptor de Bradiquinina B1/fisiología , Enfermedad Aguda , Animales , Antagonistas del Receptor de Bradiquinina B1/uso terapéutico , Dioxoles/uso terapéutico , Edema/inducido químicamente , Edema/metabolismo , Gota/inducido químicamente , Gota/tratamiento farmacológico , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Dolor/inducido químicamente , Dolor/metabolismo , Ratas Wistar , Sulfonamidas/uso terapéutico , Ácido Úrico
16.
Toxicol Appl Pharmacol ; 305: 153-160, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27288733

RESUMEN

INTRODUCTION: The aim of the present study was to evaluate the effects of the novel kinin B1 receptor antagonist BI113823 on postinfarction cardiac remodeling and heart failure, and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin 1 converting enzyme (ACE) inhibitor in rats. METHODS AND RESULTS: Sprague Dawley rats were subjected to permanent occlusion of the left coronary artery. Cardiovascular function was determined at 6weeks postinfarction. Treatment with either B1 receptor antagonist (BI113823) or an ACE inhibitor (lisinopril) alone or in combination significantly reduced the heart weight-to-body weight and lung weight-to-body weight ratios, and improved postinfarction cardiac function as evidenced by greater cardiac output, the maximum rate of left ventricular pressure rise (±dP/dtmax), left ventricle ejection fraction, fractional shorting, better wall motion, and attenuation of elevated left ventricular end diastolic pressure (LVEDP). Furthermore, all three treatment groups exhibited significant reduction in cardiac interstitial fibrosis, collagen deposition, CD68 positive macrophages, neutrophils, and proinflammatory cytokine production (TNF-α and IL-1ß), compared to vehicle controls. CONCLUSION: The present study shows that treatment with the novel kinin B1 receptor antagonist, BI113823, reduces postinfarction cardiac remodeling and heart failure, and does not influence the cardiovascular effects of the ACE inhibitor.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Antagonistas del Receptor de Bradiquinina B1/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Lisinopril/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Remodelación Ventricular/efectos de los fármacos , Animales , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Masculino , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Ratas Sprague-Dawley , Receptor de Bradiquinina B1/genética
17.
Mol Pharm ; 13(8): 2823-32, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27348517

RESUMEN

Bradykinin B1 receptor (B1R), which is upregulated in a variety of malignancies, is an attractive cancer imaging biomarker. In this study we optimized the selection of radiolabel-chelator complex to improve tumor uptake and tumor-to-background contrast of radiolabeled analogues of B9958 (Lys-Lys-Arg-Pro-Hyp-Gly-Cpg-Ser-d-Tic-Cpg), a potent B1R antagonist. Peptide sequences were assembled on solid phase. Cold standards were prepared by incubating DOTA-/NODA-conjugated peptides with GaCl3, and by incubating AlOH-NODA-conjugated peptide with NaF. Binding affinities were measured via in vitro competition binding assays. (68)Ga and (18)F labeling experiments were performed in acidic buffer and purified by HPLC. Imaging/biodistribution studies were performed in mice bearing both B1R-positive (B1R+) HEK293T::hB1R and B1R-negative (B1R-) HEK293T tumors. Z02176 (Ga-DOTA-Pip-B9958; Pip: 4-amino-(1-carboxymethyl)piperidine), Z02137 (Ga-NODA-Mpaa-Pip-B9958; Mpaa: 4-methylphenylacetic acid), and Z04139 (AlF-NODA-Mpaa-Pip-B9958) bound hB1R with high affinity (Ki = 1.4-2.5 nM). (68)Ga-/(18)F-labeled peptides were obtained on average in ≥32% decay-corrected radiochemical yield with >99% radiochemical purity and 100-261 GBq/µmol specific activity. Biodistribution/imaging studies at 1 h postinjection showed that all tracers cleared rapidly from background tissues (except kidneys) and were excreted predominantly via the renal pathway. Only kidneys, bladders, and B1R+ tumors were clearly visualized in PET images. Uptake in B1R+ tumor was higher by using (68)Ga-Z02176 (28.9 ± 6.21 %ID/g) and (18)F-Z04139 (22.6 ± 3.41 %ID/g) than (68)Ga-Z02137 (14.0 ± 4.86 %ID/g). The B1R+ tumor-to-blood and B1R+ tumor-to-muscle contrast ratios were also higher for (68)Ga-Z02176 (56.1 ± 17.3 and 167 ± 57.6) and (18)F-Z04139 (58.0 ± 20.9 and 173 ± 42.9) than (68)Ga-Z02137 (34.3 ± 15.2 and 103 ± 30.2). With improved target-to-background contrast (68)Ga-Z02176 and (18)F-Z04139 are promising for imaging B1R expression in cancers with PET.


Asunto(s)
Antagonistas del Receptor de Bradiquinina B1/análisis , Tomografía de Emisión de Positrones/métodos , Radiofármacos/análisis , Receptor de Bradiquinina B1/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Radioisótopos de Flúor/análisis , Radioisótopos de Galio/análisis , Células HEK293 , Humanos , Masculino , Ratones , Ratones Noqueados
18.
Pharmacol Res ; 104: 132-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26747401

RESUMEN

Kinin B1 receptors are implicated in asthmatic airway inflammation. Here we tested this hypothesis by examining the anti-inflammatory effects of BI113823, a novel non-peptide orally active kinin B1 receptor antagonist in mice sensitized to ovalbumin (OVA). Male Balb-c mice were randomly assigned to four study groups: (1) control, (2) OVA+vehicle, (3) OVA+BI113823, (4) OVA+dexamethasone. Mice were sensitized intraperitoneally with 75µg ovalbumin on days 1 and 8. On days 15-17, mice were challenged intranasally with 50µg of ovalbumin. Mice received vehicle, BI113823, or dexamethasone (positive control) on days 16-18. On day 19, bronchoalveolar lavage (BAL) and lung tissue were collected for biochemical and immuno-histological analysis. Compared to controls treatment with BI113823 significantly reduced the numbers of BAL eosinophils, macrophages, neutrophils and lymphocytes by 58.3%, 61.1%, 66.4% and 56.0%, respectively. Mice treated with dexamethasone showed similar reductions in BAL cells. Treatment with BI113823 and dexamethasone also significantly reduced total protein content, IgE, TNF-α and IL-1ß in lavage fluid, reduced myeloperoxidase activity, mucus secretion in lung tissues, and reduced the expression of B1 receptors, matrix metalloproteinase (MMP)-2 and cyclooxygenase (COX)-2 compared to vehicle-treated mice. Only BI113823 reduced MMP-9 and inducible nitric oxide synthase (iNOS). BI113823 effectively reduced OVA-induced inflammatory cell, mediator and signaling pathways equal to or greater than that seen with steroids in a mouse asthma model. BI113823 might be useful in modulating inflammation in asthma.


Asunto(s)
Antiinflamatorios/uso terapéutico , Asma/tratamiento farmacológico , Antagonistas del Receptor de Bradiquinina B1/uso terapéutico , Alérgenos , Animales , Antiinflamatorios/farmacología , Asma/inmunología , Asma/metabolismo , Asma/patología , Antagonistas del Receptor de Bradiquinina B1/farmacología , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Recuento de Células , Ciclooxigenasa 2/inmunología , Dexametasona/farmacología , Inmunoglobulina E/inmunología , Interleucina-1beta/inmunología , Pulmón/metabolismo , Pulmón/patología , Masculino , Metaloproteinasa 2 de la Matriz/inmunología , Ratones Endogámicos BALB C , Moco/metabolismo , Ovalbúmina , Factor de Necrosis Tumoral alfa/inmunología
19.
Bioorg Med Chem Lett ; 26(16): 4095-100, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27390067

RESUMEN

Two fluorine-18 ((18)F) labeled bradykinin B1 receptor (B1R)-targeting small molecules, (18)F-Z02035 and (18)F-Z02165, were synthesized and evaluated for imaging with positron emission tomography (PET). Z02035 and Z02165 were derived from potent antagonists, and showed high binding affinity (0.93±0.44 and 2.80±0.50nM, respectively) to B1R. (18)F-Z02035 and (18)F-Z02165 were prepared by coupling 2-[(18)F]fluoroethyl tosylate with their respective precursors, and were obtained in 10±5 (n=4) and 22±14% (n=3), respectively, decay-corrected radiochemical yield with >99% radiochemical purity. (18)F-Z02035 and (18)F-Z02165 exhibited moderate lipophilicity (LogD7.4=1.10 and 0.59, respectively), and were stable in mouse plasma. PET imaging and biodistribution studies in mice showed that both tracers enabled visualization of the B1R-positive HEK293T::hB1R tumor xenografts with better contrast than control B1R-negative HEK293T tumors. Our data indicate that small molecule antagonists can be used as pharmacophores for the design of B1R-targeting PET tracers.


Asunto(s)
Antagonistas del Receptor de Bradiquinina B1/metabolismo , Diseño de Fármacos , Metilaminas/metabolismo , Tomografía de Emisión de Positrones , Radiofármacos/síntesis química , Receptor de Bradiquinina B1/metabolismo , Animales , Antagonistas del Receptor de Bradiquinina B1/síntesis química , Antagonistas del Receptor de Bradiquinina B1/química , Radioisótopos de Flúor/química , Células HEK293 , Humanos , Metilaminas/síntesis química , Metilaminas/química , Ratones , Neoplasias/diagnóstico por imagen , Unión Proteica , Radiofármacos/química , Radiofármacos/metabolismo , Receptor de Bradiquinina B1/química , Distribución Tisular , Trasplante Heterólogo
20.
Can J Physiol Pharmacol ; 94(7): 752-7, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27172260

RESUMEN

Kinins are the endogenous ligands of the constitutive B2 receptor (B2R) and the inducible B1 receptor (B1R). Whereas B2R prevents insulin resistance, B1R is involved in insulin resistance and metabolic syndrome. However, the contribution of B1R in type 2 diabetes associated with obesity remains uncertain. The aim of the present study was to examine the impact of 1-week treatment with a selective B1R antagonist (SSR240612, 10 mg/kg per day, by gavage) on hyperglycemia, hyperinsulinemia, leptinemia, body mass gain, and abnormal plasma fatty acids in obese Zucker diabetic fatty (ZDF) rats. Treatment with SSR240612 abolished the body mass gain and reduced polyphagia, polydipsia, and plasma fatty acid alterations in ZDF rats without affecting hyperglycemia, hyperinsulinemia, and hyperleptinemia. The present study suggests that the upregulated B1R plays a role in body mass gain and circulating fatty acid alterations in ZDF rats. However, mechanisms other than B1R induction would be implicated in glucose metabolism disorder in ZDF rats, based on the finding that SSR240612 did not reverse hyperglycemia and hyperinsulinemia.


Asunto(s)
Antagonistas del Receptor de Bradiquinina B1/uso terapéutico , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/tratamiento farmacológico , Ácidos Grasos/sangre , Obesidad/sangre , Obesidad/tratamiento farmacológico , Animales , Antagonistas del Receptor de Bradiquinina B1/farmacología , Dioxoles/farmacología , Dioxoles/uso terapéutico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Masculino , Ratas , Ratas Zucker , Receptor de Bradiquinina B1/metabolismo , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA