Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 356
Filtrar
1.
Nature ; 630(8017): 769-776, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718836

RESUMEN

Angiogenin, an RNase-A-family protein, promotes angiogenesis and has been implicated in cancer, neurodegenerative diseases and epigenetic inheritance1-10. After activation during cellular stress, angiogenin cleaves tRNAs at the anticodon loop, resulting in translation repression11-15. However, the catalytic activity of isolated angiogenin is very low, and the mechanisms of the enzyme activation and tRNA specificity have remained a puzzle3,16-23. Here we identify these mechanisms using biochemical assays and cryogenic electron microscopy (cryo-EM). Our study reveals that the cytosolic ribosome is the activator of angiogenin. A cryo-EM structure features angiogenin bound in the A site of the 80S ribosome. The C-terminal tail of angiogenin is rearranged by interactions with the ribosome to activate the RNase catalytic centre, making the enzyme several orders of magnitude more efficient in tRNA cleavage. Additional 80S-angiogenin structures capture how tRNA substrate is directed by the ribosome into angiogenin's active site, demonstrating that the ribosome acts as the specificity factor. Our findings therefore suggest that angiogenin is activated by ribosomes with a vacant A site, the abundance of which increases during cellular stress24-27. These results may facilitate the development of therapeutics to treat cancer and neurodegenerative diseases.


Asunto(s)
Microscopía por Crioelectrón , Ribonucleasa Pancreática , Ribosomas , Humanos , Anticodón/química , Anticodón/genética , Anticodón/metabolismo , Anticodón/ultraestructura , Dominio Catalítico , Citosol/metabolismo , Activación Enzimática , Modelos Moleculares , Ribonucleasa Pancreática/química , Ribonucleasa Pancreática/metabolismo , Ribonucleasa Pancreática/ultraestructura , Ribosomas/metabolismo , Ribosomas/química , Ribosomas/ultraestructura , División del ARN , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Especificidad por Sustrato , Sitios de Unión , Estrés Fisiológico
2.
Nature ; 613(7945): 751-758, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631608

RESUMEN

Cognate tRNAs deliver specific amino acids to translating ribosomes according to the standard genetic code, and three codons with no cognate tRNAs serve as stop codons. Some protists have reassigned all stop codons as sense codons, neglecting this fundamental principle1-4. Here we analyse the in-frame stop codons in 7,259 predicted protein-coding genes of a previously undescribed trypanosomatid, Blastocrithidia nonstop. We reveal that in this species in-frame stop codons are underrepresented in genes expressed at high levels and that UAA serves as the only termination codon. Whereas new tRNAsGlu fully cognate to UAG and UAA evolved to reassign these stop codons, the UGA reassignment followed a different path through shortening the anticodon stem of tRNATrpCCA from five to four base pairs (bp). The canonical 5-bp tRNATrp recognizes UGG as dictated by the genetic code, whereas its shortened 4-bp variant incorporates tryptophan also into in-frame UGA. Mimicking this evolutionary twist by engineering both variants from B. nonstop, Trypanosoma brucei and Saccharomyces cerevisiae and expressing them in the last two species, we recorded a significantly higher readthrough for all 4-bp variants. Furthermore, a gene encoding B. nonstop release factor 1 acquired a mutation that specifically restricts UGA recognition, robustly potentiating the UGA reassignment. Virtually the same strategy has been adopted by the ciliate Condylostoma magnum. Hence, we describe a previously unknown, universal mechanism that has been exploited in unrelated eukaryotes with reassigned stop codons.


Asunto(s)
Anticodón , Codón de Terminación , Células Eucariotas , Código Genético , Mutación , Factores de Terminación de Péptidos , ARN de Transferencia , Anticodón/química , Anticodón/genética , Anticodón/metabolismo , Cilióforos/genética , Codón de Terminación/genética , Código Genético/genética , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN de Transferencia de Triptófano/genética , Saccharomyces cerevisiae/genética , ARN de Transferencia de Ácido Glutámico/genética , Trypanosoma brucei brucei/genética
3.
Nucleic Acids Res ; 52(11): 6586-6595, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38572748

RESUMEN

Ribosomal incorporation of ß-amino acids into nascent peptides is much less efficient than that of the canonical α-amino acids. To overcome this, we have engineered a tRNA chimera bearing T-stem of tRNAGlu and D-arm of tRNAPro1, referred to as tRNAPro1E2, which efficiently recruits EF-Tu and EF-P. Using tRNAPro1E2 indeed improved ß-amino acid incorporation. However, multiple/consecutive incorporations of ß-amino acids are still detrimentally poor. Here, we attempted fine-tuning of the anticodon arm of tRNAPro1E2 aiming at further enhancement of ß-amino acid incorporation. By screening various mutations introduced into tRNAPro1E2, C31G39/C28G42 mutation showed an approximately 3-fold enhancement of two consecutive incorporation of ß-homophenylglycine (ßPhg) at CCG codons. The use of this tRNA made it possible for the first time to elongate up to ten consecutive ßPhg's. Since the enhancement effect of anticodon arm mutations differs depending on the codon used for ß-amino acid incorporation, we optimized anticodon arm sequences for five codons (CCG, CAU, CAG, ACU and UGG). Combination of the five optimal tRNAs for these codons made it possible to introduce five different kinds of ß-amino acids and analogs simultaneously into model peptides, including a macrocyclic scaffold. This strategy would enable ribosomal synthesis of libraries of macrocyclic peptides containing multiple ß-amino acids.


Asunto(s)
Aminoácidos , Anticodón , Anticodón/genética , Anticodón/química , Aminoácidos/química , Aminoácidos/genética , ARN de Transferencia/genética , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Mutación , Codón/genética , Ribosomas/metabolismo , Ribosomas/genética , Biosíntesis de Proteínas , ARN de Transferencia de Prolina/genética , ARN de Transferencia de Prolina/metabolismo , ARN de Transferencia de Prolina/química , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
4.
Annu Rev Genet ; 51: 45-62, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-28853922

RESUMEN

The standard genetic code (SGC) is virtually universal among extant life forms. Although many deviations from the universal code exist, particularly in organelles and prokaryotes with small genomes, they are limited in scope and obviously secondary. The universality of the code likely results from the combination of a frozen accident, i.e., the deleterious effect of codon reassignment in the SGC, and the inhibitory effect of changes in the code on horizontal gene transfer. The structure of the SGC is nonrandom and ensures high robustness of the code to mutational and translational errors. However, this error minimization is most likely a by-product of the primordial code expansion driven by the diversification of the repertoire of protein amino acids, rather than a direct result of selection. Phylogenetic analysis of translation system components, in particular aminoacyl-tRNA synthetases, shows that, at a stage of evolution when the translation system had already attained high fidelity, the correspondence between amino acids and cognate codons was determined by recognition of amino acids by RNA molecules, i.e., proto-tRNAs. We propose an experimentally testable scenario for the evolution of the code that combines recognition of amino acids by unique sites on proto-tRNAs (distinct from the anticodons), expansion of the code via proto-tRNA duplication, and frozen accident.


Asunto(s)
Biota/genética , Evolución Molecular , Código Genético , Genoma , Modelos Genéticos , Biosíntesis de Proteínas , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Anticodón/química , Anticodón/metabolismo , Codón/química , Codón/metabolismo , Extinción Biológica , Transferencia de Gen Horizontal , Filogenia , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
5.
J Biol Chem ; 299(4): 104608, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36924943

RESUMEN

Rapid and accurate translation is essential in all organisms to produce properly folded and functional proteins. mRNA codons that define the protein-coding sequences are decoded by tRNAs on the ribosome in the aminoacyl (A) binding site. The mRNA codon and the tRNA anticodon interaction is extensively monitored by the ribosome to ensure accuracy in tRNA selection. While other polymerases that synthesize DNA and RNA can correct for misincorporations, the ribosome is unable to correct mistakes. Instead, when a misincorporation occurs, the mismatched tRNA-mRNA pair moves to the peptidyl (P) site and, from this location, causes a reduction in the fidelity at the A site, triggering post-peptidyl transfer quality control. This reduced fidelity allows for additional incorrect tRNAs to be accepted and for release factor 2 (RF2) to recognize sense codons, leading to hydrolysis of the aberrant peptide. Here, we present crystal structures of the ribosome containing a tRNALys in the P site with a U•U mismatch with the mRNA codon. We find that when the mismatch occurs in the second position of the P-site codon-anticodon interaction, the first nucleotide of the A-site codon flips from the mRNA path to engage highly conserved 16S rRNA nucleotide A1493 in the decoding center. We propose that this mRNA nucleotide mispositioning leads to reduced fidelity at the A site. Further, this state may provide an opportunity for RF2 to initiate premature termination before erroneous nascent chains disrupt the cellular proteome.


Asunto(s)
Anticodón , Codón , ARN Ribosómico , Ribosomas , Anticodón/química , Anticodón/genética , Anticodón/metabolismo , Codón/química , Codón/genética , Codón/metabolismo , Conformación de Ácido Nucleico , Nucleótidos/química , Nucleótidos/metabolismo , Biosíntesis de Proteínas , Ribosomas/química , Ribosomas/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Disparidad de Par Base , Modelos Moleculares , ARN Ribosómico/química , ARN Ribosómico/metabolismo
6.
J Am Chem Soc ; 146(18): 12857-12863, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38676654

RESUMEN

The ribosome brings 3'-aminoacyl-tRNA and 3'-peptidyl-tRNAs together to enable peptidyl transfer by binding them in two major ways. First, their anticodon loops are bound to mRNA, itself anchored at the ribosomal subunit interface, by contiguous anticodon:codon pairing augmented by interactions with the decoding center of the small ribosomal subunit. Second, their acceptor stems are bound by the peptidyl transferase center, which aligns the 3'-aminoacyl- and 3'-peptidyl-termini for optimal interaction of the nucleophilic amino group and electrophilic ester carbonyl group. Reasoning that intrinsic codon:anticodon binding might have been a major contributor to bringing tRNA 3'-termini into proximity at an early stage of ribosomal peptide synthesis, we wondered if primordial amino acids might have been assigned to those codons that bind the corresponding anticodon loops most tightly. By measuring the binding of anticodon stem loops to short oligonucleotides, we determined that family-box codon:anticodon pairings are typically tighter than split-box codon:anticodon pairings. Furthermore, we find that two family-box anticodon stem loops can tightly bind a pair of contiguous codons simultaneously, whereas two split-box anticodon stem loops cannot. The amino acids assigned to family boxes correspond to those accessible by what has been termed cyanosulfidic chemistry, supporting the contention that these limited amino acids might have been the first used in primordial coded peptide synthesis.


Asunto(s)
Aminoácidos , Anticodón , Codón , Anticodón/química , Anticodón/genética , Aminoácidos/química , Codón/química , Codón/genética , Ribosomas/metabolismo , Ribosomas/química , Sitios de Unión , Modelos Moleculares
7.
RNA ; 27(11): 1330-1338, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34315814

RESUMEN

During protein synthesis on ribosome, tRNA recognizes its cognate codon of mRNA through base-pairing with the anticodon. The 5'-end nucleotide of the anticodon is capable of wobble base-pairing, offering a molecular basis for codon degeneracy. The wobble nucleotide is often targeted for post-transcriptional modification, which affects the specificity and fidelity of the decoding process. Flipping-out of a wobble nucleotide in the anticodon loop has been proposed to be necessary for modifying enzymes to access the target nucleotide, which has been captured in selective structures of protein-bound complexes. Meanwhile, all other structures of free or ribosome-bound tRNA display anticodon bases arranged in stacked conformation. We report the X-ray crystal structure of unbound tRNAVal1 to a 2.04 Å resolution showing two different conformational states of wobble uridine in the anticodon loop, one stacked on the neighboring base and the other swiveled out toward solvent. In addition, the structure reveals a rare magnesium ion coordination to the nitrogen atom of a nucleobase, which has been sampled very rarely among known structures of nucleic acids.


Asunto(s)
Anticodón/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN de Transferencia de Valina/metabolismo , Ribosomas/metabolismo , Anticodón/química , Anticodón/genética , Emparejamiento Base , Escherichia coli/genética , Escherichia coli/metabolismo , Metales/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Mensajero/química , ARN Mensajero/genética , ARN de Transferencia de Valina/química , ARN de Transferencia de Valina/genética , Ribosomas/genética
8.
RNA ; 27(2): 202-220, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33214333

RESUMEN

Transfer RNA (tRNA) is the most diversely modified RNA. Although the strictly conserved purine position 37 in the anticodon stem-loop undergoes modifications that are phylogenetically distributed, we do not yet fully understand the roles of these modifications. Therefore, molecular dynamics simulations are used to provide molecular-level details for how such modifications impact the structure and function of tRNA. A focus is placed on three hypermodified base families that include the parent i6A, t6A, and yW modifications, as well as derivatives. Our data reveal that the hypermodifications exhibit significant conformational flexibility in tRNA, which can be modulated by additional chemical functionalization. Although the overall structure of the tRNA anticodon stem remains intact regardless of the modification considered, the anticodon loop must rearrange to accommodate the bulky, dynamic hypermodifications, which includes changes in the nucleotide glycosidic and backbone conformations, and enhanced or completely new nucleobase-nucleobase interactions compared to unmodified tRNA or tRNA containing smaller (m1G) modifications at the 37th position. Importantly, the extent of the changes in the anticodon loop is influenced by the addition of small functional groups to parent modifications, implying each substituent can further fine-tune tRNA structure. Although the dominant conformation of the ASL is achieved in different ways for each modification, the molecular features of all modified tRNA drive the ASL domain to adopt the functional open-loop conformation. Importantly, the impact of the hypermodifications is preserved in different sequence contexts. These findings highlight the likely role of regulating mRNA structure and translation.


Asunto(s)
Adenosina/análogos & derivados , Anticodón/química , Escherichia coli/genética , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Lisina/química , ARN de Transferencia de Fenilalanina/química , Adenosina/metabolismo , Anticodón/genética , Anticodón/metabolismo , Emparejamiento Base , Secuencia de Bases , Escherichia coli/metabolismo , Isopenteniladenosina/química , Isopenteniladenosina/metabolismo , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Nucleósidos/química , Nucleósidos/metabolismo , ARN de Transferencia de Lisina/genética , ARN de Transferencia de Lisina/metabolismo , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo
9.
RNA ; 27(1): 27-39, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33008837

RESUMEN

Viruses commonly use specifically folded RNA elements that interact with both host and viral proteins to perform functions important for diverse viral processes. Examples are found at the 3' termini of certain positive-sense ssRNA virus genomes where they partially mimic tRNAs, including being aminoacylated by host cell enzymes. Valine-accepting tRNA-like structures (TLSVal) are an example that share some clear homology with canonical tRNAs but have several important structural differences. Although many examples of TLSVal have been identified, we lacked a full understanding of their structural diversity and phylogenetic distribution. To address this, we undertook an in-depth bioinformatic and biochemical investigation of these RNAs, guided by recent high-resolution structures of a TLSVal We cataloged many new examples in plant-infecting viruses but also in unrelated insect-specific viruses. Using biochemical and structural approaches, we verified the secondary structure of representative TLSVal substrates and tested their ability to be valylated, confirming previous observations of structural heterogeneity within this class. In a few cases, large stem-loop structures are inserted within variable regions located in an area of the TLS distal to known host cell factor binding sites. In addition, we identified one virus whose TLS has switched its anticodon away from valine, causing a loss of valylation activity; the implications of this remain unclear. These results refine our understanding of the structural and functional mechanistic details of tRNA mimicry and how this may be used in viral infection.


Asunto(s)
Variación Genética , Virus de Insectos/genética , Filogenia , Virus de Plantas/genética , ARN de Transferencia de Valina/química , ARN Viral/química , Anticodón/química , Anticodón/metabolismo , Secuencia de Bases , Sitios de Unión , Biología Computacional , Virus de Insectos/clasificación , Virus de Insectos/metabolismo , Modelos Moleculares , Imitación Molecular , Virus de Plantas/clasificación , Virus de Plantas/metabolismo , Pliegue del ARN , ARN de Transferencia de Valina/genética , ARN de Transferencia de Valina/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Homología de Secuencia de Ácido Nucleico , Valina/metabolismo
10.
RNA ; 27(1): 40-53, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33008838

RESUMEN

A recent crystal structure of a ribosome complex undergoing partial translocation in the absence of elongation factor EF-G showed disruption of codon-anticodon pairing and slippage of the reading frame by -1, directly implicating EF-G in preservation of the translational reading frame. Among mutations identified in a random screen for dominant-lethal mutations of EF-G were a cluster of six that map to the tip of domain IV, which has been shown to contact the codon-anticodon duplex in trapped translocation intermediates. In vitro synthesis of a full-length protein using these mutant EF-Gs revealed dramatically increased -1 frameshifting, providing new evidence for a role for domain IV of EF-G in maintaining the reading frame. These mutations also caused decreased rates of mRNA translocation and rotational movement of the head and body domains of the 30S ribosomal subunit during translocation. Our results are in general agreement with recent findings from Rodnina and coworkers based on in vitro translation of an oligopeptide using EF-Gs containing mutations at two positions in domain IV, who found an inverse correlation between the degree of frameshifting and rates of translocation. Four of our six mutations are substitutions at positions that interact with the translocating tRNA, in each case contacting the RNA backbone of the anticodon loop. We suggest that EF-G helps to preserve the translational reading frame by preventing uncoupled movement of the tRNA through these contacts; a further possibility is that these interactions may stabilize a conformation of the anticodon that favors base-pairing with its codon.


Asunto(s)
Escherichia coli/genética , Sistema de Lectura Ribosómico , Mutación , Extensión de la Cadena Peptídica de Translación , Factor G de Elongación Peptídica/genética , Ribosomas/genética , Anticodón/química , Anticodón/metabolismo , Sitios de Unión , Codón/química , Codón/metabolismo , Escherichia coli/metabolismo , Histidina/genética , Histidina/metabolismo , Oligopéptidos/genética , Oligopéptidos/metabolismo , Factor G de Elongación Peptídica/química , Factor G de Elongación Peptídica/metabolismo , Unión Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , ARN Mensajero , ARN de Transferencia , Sistemas de Lectura , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribosomas/metabolismo
11.
Nature ; 546(7656): 113-117, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28538735

RESUMEN

Gene translation depends on accurate decoding of mRNA, the structural mechanism of which remains poorly understood. Ribosomes decode mRNA codons by selecting cognate aminoacyl-tRNAs delivered by elongation factor Tu (EF-Tu). Here we present high-resolution structural ensembles of ribosomes with cognate or near-cognate aminoacyl-tRNAs delivered by EF-Tu. Both cognate and near-cognate tRNA anticodons explore the aminoacyl-tRNA-binding site (A site) of an open 30S subunit, while inactive EF-Tu is separated from the 50S subunit. A transient conformation of decoding-centre nucleotide G530 stabilizes the cognate codon-anticodon helix, initiating step-wise 'latching' of the decoding centre. The resulting closure of the 30S subunit docks EF-Tu at the sarcin-ricin loop of the 50S subunit, activating EF-Tu for GTP hydrolysis and enabling accommodation of the aminoacyl-tRNA. By contrast, near-cognate complexes fail to induce the G530 latch, thus favouring open 30S pre-accommodation intermediates with inactive EF-Tu. This work reveals long-sought structural differences between the pre-accommodation of cognate and near-cognate tRNAs that elucidate the mechanism of accurate decoding.


Asunto(s)
Microscopía por Crioelectrón , Biosíntesis de Proteínas , Ribosomas/metabolismo , Ribosomas/ultraestructura , Anticodón/química , Anticodón/genética , Anticodón/ultraestructura , Codón/química , Codón/genética , Codón/ultraestructura , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/ultraestructura , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/ultraestructura , Guanosina Trifosfato/metabolismo , Hidrólisis , Modelos Moleculares , Factor Tu de Elongación Peptídica/metabolismo , Factor Tu de Elongación Peptídica/ultraestructura , Dominios Proteicos , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , ARN Ribosómico 16S/ultraestructura , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Aminoacil-ARN de Transferencia/ultraestructura , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/ultraestructura , Ribosomas/química
12.
Proc Natl Acad Sci U S A ; 117(28): 16333-16338, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32601241

RESUMEN

Bacterial transfer RNAs (tRNAs) contain evolutionarily conserved sequences and modifications that ensure uniform binding to the ribosome and optimal translational accuracy despite differences in their aminoacyl attachments and anticodon nucleotide sequences. In the tRNA anticodon stem-loop, the anticodon sequence is correlated with a base pair in the anticodon loop (nucleotides 32 and 38) to tune the binding of each tRNA to the decoding center in the ribosome. Disruption of this correlation renders the ribosome unable to distinguish correct from incorrect tRNAs. The molecular basis for how these two tRNA features combine to ensure accurate decoding is unclear. Here, we solved structures of the bacterial ribosome containing either wild-type [Formula: see text] or [Formula: see text] containing a reversed 32-38 pair on cognate and near-cognate codons. Structures of wild-type [Formula: see text] bound to the ribosome reveal 23S ribosomal RNA (rRNA) nucleotide A1913 positional changes that are dependent on whether the codon-anticodon interaction is cognate or near cognate. Further, the 32-38 pair is destabilized in the context of a near-cognate codon-anticodon pair. Reversal of the pairing in [Formula: see text] ablates A1913 movement regardless of whether the interaction is cognate or near cognate. These results demonstrate that disrupting 32-38 and anticodon sequences alters interactions with the ribosome that directly contribute to misreading.


Asunto(s)
Biosíntesis de Proteínas/genética , ARN de Transferencia/química , ARN de Transferencia/genética , Anticodón/química , Anticodón/genética , Anticodón/metabolismo , Emparejamiento Base , Codón/genética , Codón/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 23S/química , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
13.
RNA ; 26(9): 1291-1298, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32439717

RESUMEN

Queuosine (Q) is a conserved tRNA modification in bacteria and eukaryotes. Eukaryotic Q-tRNA modification occurs through replacing the guanine base with the scavenged metabolite queuine at the wobble position of tRNAs with G34U35N36 anticodon (Tyr, His, Asn, Asp) by the QTRT1/QTRT2 heterodimeric enzyme encoded in the genome. In humans, Q-modification in tRNATyr and tRNAAsp are further glycosylated with galactose and mannose, respectively. Although galactosyl-Q (galQ) and mannosyl-Q (manQ) can be measured by LC/MS approaches, the difficulty of detecting and quantifying these modifications with low sample inputs has hindered their biological investigations. Here we describe a simple acid denaturing gel and nonradioactive northern blot method to detect and quantify the fraction of galQ/manQ-modified tRNA using just microgram amounts of total RNA. Our method relies on the secondary amine group of galQ/manQ becoming positively charged to slow their migration in acid denaturing gels commonly used for tRNA charging studies. We apply this method to determine the Q and galQ/manQ modification kinetics in three human cells lines. For Q-modification, tRNAAsp is modified the fastest, followed by tRNAHis, tRNATyr, and tRNAAsn Compared to Q-modification, glycosylation occurs at a much slower rate for tRNAAsp, but at a similar rate for tRNATyr Our method enables easy access to study the function of these enigmatic tRNA modifications.


Asunto(s)
Geles/química , Nucleósido Q/química , ARN de Transferencia/química , ARN de Transferencia/genética , Anticodón/química , Anticodón/genética , Línea Celular Tumoral , Glicosilación , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Nucleósido Q/genética , Aminoacilación de ARN de Transferencia/genética
14.
RNA ; 26(3): 278-289, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31848215

RESUMEN

Ubiquitous across all domains of life, tRNAs constitute an essential component of cellular physiology, carry out an indispensable role in protein synthesis, and have been historically the subject of a wide range of biochemical and biophysical studies as prototypical folded RNA molecules. Although conformational flexibility is a well-established characteristic of tRNA structure, it is typically regarded as an adaptive property exhibited in response to an inducing event, such as the binding of a tRNA synthetase or the accommodation of an aminoacyl-tRNA into the ribosome. In this study, we present crystallographic data of a tRNA molecule to expand on this paradigm by showing that structural flexibility and plasticity are intrinsic properties of tRNAs, apparent even in the absence of other factors. Based on two closely related conformations observed within the same crystal, we posit that unbound tRNAs by themselves are flexible and dynamic molecules. Furthermore, we demonstrate that the formation of the T-loop conformation by the tRNA TΨC stem-loop, a well-characterized and classic RNA structural motif, is possible even in the absence of important interactions observed in fully folded tRNAs.


Asunto(s)
Conformación de Ácido Nucleico , Aminoacil-ARN de Transferencia/ultraestructura , ARN de Transferencia/ultraestructura , Anticodón/química , Anticodón/genética , Cristalografía , Escherichia coli/química , Escherichia coli/ultraestructura , Motivos de Nucleótidos/genética , ARN de Transferencia/química , Aminoacil-ARN de Transferencia/química , Ribosomas/genética , Ribosomas/ultraestructura
15.
PLoS Comput Biol ; 17(6): e1009068, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34125830

RESUMEN

Specific interaction between the start codon, 5'-AUG-3', and the anticodon, 5'-CAU-3', ensures accurate initiation of translation. Recent studies show that several near-cognate start codons (e.g. GUG and CUG) can play a role in initiating translation in eukaryotes. However, the mechanism allowing initiation through mismatched base-pairs at the ribosomal decoding site is still unclear at an atomic level. In this work, we propose an extended simulation-based method to evaluate free energy profiles, through computing the distance between each base-pair of the triplet interactions involved in recognition of start codons in eukaryotic translation pre-initiation complex. Our method provides not only the free energy penalty for mismatched start codons relative to the AUG start codon, but also the preferred pathways of transitions between bound and unbound states, which has not been described by previous studies. To verify the method, the binding dynamics of cognate (AUG) and near-cognate start codons (CUG and GUG) were simulated. Evaluated free energy profiles agree with experimentally observed changes in initiation frequencies from respective codons. This work proposes for the first time how a G:U mismatch at the first position of codon (GUG)-anticodon base-pairs destabilizes the accommodation in the initiating eukaryotic ribosome and how initiation at a CUG codon is nearly as strong as, or sometimes stronger than, that at a GUG codon. Our method is expected to be applied to study the affinity changes for various mismatched base-pairs.


Asunto(s)
Codón Iniciador/genética , Codón Iniciador/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Anticodón/química , Anticodón/genética , Anticodón/metabolismo , Emparejamiento Base , Secuencia de Bases , Codón Iniciador/química , Biología Computacional , Células Eucariotas/metabolismo , Modelos Biológicos , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Termodinámica
16.
Nucleic Acids Res ; 48(21): 12004-12015, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33196821

RESUMEN

Because ambient temperature affects biochemical reactions, organisms living in extreme temperature conditions adapt protein composition and structure to maintain biochemical functions. While it is not feasible to experimentally determine optimal growth temperature (OGT) for every known microbial species, organisms adapted to different temperatures have measurable differences in DNA, RNA and protein composition that allow OGT prediction from genome sequence alone. In this study, we built a 'tRNA thermometer' model using tRNA sequence to predict OGT. We used sequences from 100 archaea and 683 bacteria species as input to train two Convolutional Neural Network models. The first pairs individual tRNA sequences from different species to predict which comes from a more thermophilic organism, with accuracy ranging from 0.538 to 0.992. The second uses the complete set of tRNAs in a species to predict optimal growth temperature, achieving a maximum ${r^2}$ of 0.86; comparable with other prediction accuracies in the literature despite a significant reduction in the quantity of input data. This model improves on previous OGT prediction models by providing a model with minimum input data requirements, removing laborious feature extraction and data preprocessing steps and widening the scope of valid downstream analyses.


Asunto(s)
Adaptación Fisiológica/genética , Archaea/genética , Bacterias/genética , Genoma Arqueal , Genoma Bacteriano , ARN de Transferencia/química , Anticodón/química , Anticodón/metabolismo , Archaea/clasificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Emparejamiento Base , Secuencia de Bases , Simulación por Computador , Modelos Genéticos , Redes Neurales de la Computación , Conformación de Ácido Nucleico , Filogenia , Estabilidad del ARN , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Temperatura , Termómetros
17.
Nucleic Acids Res ; 48(11): 6170-6183, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32266934

RESUMEN

Translation fidelity relies essentially on the ability of ribosomes to accurately recognize triplet interactions between codons on mRNAs and anticodons of tRNAs. To determine the codon-anticodon pairs that are efficiently accepted by the eukaryotic ribosome, we took advantage of the IRES from the intergenic region (IGR) of the Cricket Paralysis Virus. It contains an essential pseudoknot PKI that structurally and functionally mimics a codon-anticodon helix. We screened the entire set of 4096 possible combinations using ultrahigh-throughput screenings combining coupled transcription/translation and droplet-based microfluidics. Only 97 combinations are efficiently accepted and accommodated for translocation and further elongation: 38 combinations involve cognate recognition with Watson-Crick pairs and 59 involve near-cognate recognition pairs with at least one mismatch. More than half of the near-cognate combinations (36/59) contain a G at the first position of the anticodon (numbered 34 of tRNA). G34-containing tRNAs decoding 4-codon boxes are almost absent from eukaryotic genomes in contrast to bacterial genomes. We reconstructed these missing tRNAs and could demonstrate that these tRNAs are toxic to cells due to their miscoding capacity in eukaryotic translation systems. We also show that the nature of the purine at position 34 is correlated with the nucleotides present at 32 and 38.


Asunto(s)
Codón/genética , Purinas/química , Purinas/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , Anticodón/química , Anticodón/genética , Anticodón/metabolismo , Disparidad de Par Base , Emparejamiento Base , Secuencia de Bases , Codón/química , Codón/metabolismo , Células Eucariotas/metabolismo , Biblioteca de Genes , Guanina/química , Guanina/metabolismo , Sitios Internos de Entrada al Ribosoma/genética , Nucleótidos/química , Nucleótidos/metabolismo , Extensión de la Cadena Peptídica de Translación , ARN de Transferencia/metabolismo , Ribosomas/metabolismo
18.
Nucleic Acids Res ; 48(14): 7899-7913, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32609816

RESUMEN

In the Elongator-dependent modification pathway, chemical modifications are introduced at the wobble uridines at position 34 in transfer RNAs (tRNAs), which serve to optimize codon translation rates. Here, we show that this three-step modification pathway exists in Dictyostelium discoideum, model of the evolutionary superfamily Amoebozoa. Not only are previously established modifications observable by mass spectrometry in strains with the most conserved genes of each step deleted, but also additional modifications are detected, indicating a certain plasticity of the pathway in the amoeba. Unlike described for yeast, D. discoideum allows for an unconditional deletion of the single tQCUG gene, as long as the Elongator-dependent modification pathway is intact. In gene deletion strains of the modification pathway, protein amounts are significantly reduced as shown by flow cytometry and Western blotting, using strains expressing different glutamine leader constructs fused to GFP. Most dramatic are these effects, when the tQCUG gene is deleted, or Elp3, the catalytic component of the Elongator complex is missing. In addition, Elp3 is the most strongly conserved protein of the modification pathway, as our phylogenetic analysis reveals. The implications of this observation are discussed with respect to the evolutionary age of the components acting in the Elongator-dependent modification pathway.


Asunto(s)
Dictyostelium/genética , ARN de Transferencia/metabolismo , Anticodón/química , Anticodón/metabolismo , Codón , Dictyostelium/metabolismo , Eliminación de Gen , Glutamina , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Mutación , Nucleósidos/química , Filogenia , Biosíntesis de Proteínas , Proteínas Protozoarias/clasificación , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Uridina/metabolismo
19.
RNA ; 25(5): 607-619, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30737359

RESUMEN

Adenosine deaminase acting on transfer RNA (ADAT) is an essential eukaryotic enzyme that catalyzes the deamination of adenosine to inosine at the first position of tRNA anticodons. Mammalian ADATs modify eight different tRNAs, having increased their substrate range from a bacterial ancestor that likely deaminated exclusively tRNAArg Here we investigate the recognition mechanisms of tRNAArg and tRNAAla by human ADAT to shed light on the process of substrate expansion that took place during the evolution of the enzyme. We show that tRNA recognition by human ADAT does not depend on conserved identity elements, but on the overall structural features of tRNA. We find that ancestral-like interactions are conserved for tRNAArg, while eukaryote-specific substrates use alternative mechanisms. These recognition studies show that human ADAT can be inhibited by tRNA fragments in vitro, including naturally occurring fragments involved in important regulatory pathways.


Asunto(s)
Adenosina Desaminasa/metabolismo , Anticodón/química , ARN de Transferencia de Alanina/química , ARN de Transferencia de Arginina/química , Adenosina/metabolismo , Adenosina Desaminasa/genética , Anticodón/genética , Anticodón/metabolismo , Secuencia de Bases , Desaminación , Evolución Molecular , Expresión Génica , Humanos , Inosina/metabolismo , Conformación de Ácido Nucleico , ARN de Transferencia de Alanina/genética , ARN de Transferencia de Alanina/metabolismo , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
20.
RNA Biol ; 18(8): 1193-1205, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33211605

RESUMEN

Colicin D is a plasmid-encoded bacteriocin that specifically cleaves tRNAArg of sensitive Escherichia coli cells. E. coli has four isoaccepting tRNAArgs; the cleavage occurs at the 3' end of anticodon-loop, leading to translation impairment in the sensitive cells. tRNAs form a common L-shaped structure and have many conserved nucleotides that limit tRNA identity elements. How colicin D selects tRNAArgs from the tRNA pool of sensitive E. coli cells is therefore intriguing. Here, we reveal the recognition mechanism of colicin D via biochemical analyses as well as structural modelling. Colicin D recognizes tRNAArgICG, the most abundant species of E. coli tRNAArgs, at its anticodon-loop and D-arm, and selects it as the most preferred substrate by distinguishing its anticodon-loop sequence from that of others. It has been assumed that translation impairment is caused by a decrease in intact tRNA molecules due to cleavage. However, we found that intracellular levels of intact tRNAArgICG do not determine the viability of sensitive cells after such cleavage; rather, an accumulation of cleaved ones does. Cleaved tRNAArgICG dominant-negatively impairs translation in vitro. Moreover, we revealed that EF-Tu, which is required for the delivery of tRNAs, does not compete with colicin D for binding tRNAArgICG, which is consistent with our structural model. Finally, elevation of cleaved tRNAArgICG level decreases the viability of sensitive cells. These results suggest that cleaved tRNAArgICG transiently occupies ribosomal A-site in an EF-Tu-dependent manner, leading to translation impairment. The strategy should also be applicable to other tRNA-targeting RNases, as they, too, recognize anticodon-loops.Abbreviations: mnm5U: 5-methylaminomethyluridine; mcm5s2U: 5-methoxycarbonylmethyl-2-thiouridine.


Asunto(s)
Bacteriocinas/química , Colicinas/química , Escherichia coli/metabolismo , Biosíntesis de Proteínas , ARN Bacteriano/química , ARN de Transferencia de Arginina/química , Ribosomas/metabolismo , Anticodón/química , Anticodón/genética , Anticodón/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Emparejamiento Base , Sitios de Unión , Colicinas/genética , Colicinas/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/metabolismo , Ribosomas/genética , Especificidad por Sustrato , Tiouridina/análogos & derivados , Tiouridina/metabolismo , Uridina/análogos & derivados , Uridina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA