Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Molecules ; 28(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36770848

RESUMEN

Celery (Apium graveolens L., var. Dulce), is a biennial herbaceous plant belonging to the Apiaceae family, cultivated in humid soils in the Mediterranean basin, in Central-Southern Europe, and in Asia. Despite its wide diffusion and although it is well-known that cultivar/origin strongly influences plant composition, only a few studies have been carried out on the different types of celery. The present work aims to investigate four different Italian types of celery (two common, Elne and Magnum celery, and two black, Torricella Peligna Black and Trevi Black celery), and to test, whether the combination of FT-IR spectroscopy and chemometrics allows their ecotype discrimination. The peculiarity of this study lies in the fact that all the analyzed celeries were grown in the same experimental field under the same soil and climate conditions. Consequently, the differences captured by the FT-IR-based tool are mainly imputable to the different ecotypes. In order to achieve this goal, FT-IR profiles were handled by two diverse classifiers: sequential preprocessing through ORThogonalization (SPORT) and soft independent modeling by class analogy (SIMCA). Eventually, the highest classification rate (90%, on an external set of 100 samples) has been achieved by SPORT.


Asunto(s)
Apium , Apium/química , Espectroscopía Infrarroja por Transformada de Fourier , Quimiometría , Verduras/química , Asia , Suelo
2.
Molecules ; 28(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37630301

RESUMEN

Celery seeds have been used as an effective dietary supplement to manage hyperuricemia and diminish gout recurrence. Xanthine oxidase (XOD), the critical enzyme responsible for uric acid production, represents the most promising target for anti-hyperuricemia in clinical practice. In this study, we aimed to establish a method based on affinity ultrafiltration-liquid chromatography-mass spectrometry (UF-LC-MS) to directly and rapidly identify the bioactive compounds contributing to the XOD-inhibitory effects of celery seed crude extracts. Chemical profiling of celery seed extracts was performed using UPLC-TOF/MS. The structure was elucidated by matching the multistage fragment ion data to the database and publications of high-resolution natural product mass spectrometry. Thirty-two compounds, including fourteen flavonoids and six phenylpeptides, were identified from celery seed extracts. UF-LC-MS showed that luteolin-7-O-apinosyl glucoside, luteolin-7-O-glucoside, luteolin-7-O-malonyl apinoside, luteolin-7-O-6'-malonyl glucoside, luteolin, apigenin, and chrysoeriol were potential binding compounds of XOD. A further enzyme activity assay demonstrated that celery seed extract (IC50 = 1.98 mg/mL), luteolin-7-O-apinosyl glucoside (IC50 = 3140.51 µmol/L), luteolin-7-O-glucoside (IC50 = 975.83 µmol/L), luteolin-7-O-6'-malonyl glucoside (IC50 = 2018.37 µmol/L), luteolin (IC50 = 69.23 µmol/L), apigenin (IC50 = 92.56 µmol/L), and chrysoeriol (IC50 = 40.52 µmol/L) could dose-dependently inhibit XOD activities. This study highlighted UF-LC-MS as a useful platform for screening novel XOD inhibitors and revealed the chemical basis of celery seed as an anti-gout dietary supplement.


Asunto(s)
Apium , Cromatografía Líquida de Alta Presión , Apium/química , Semillas/química , Xantina Oxidasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Espectrometría de Masas en Tándem , Modelos Moleculares , Estructura Terciaria de Proteína
3.
Prep Biochem Biotechnol ; 52(6): 648-656, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34694209

RESUMEN

In the present study, ultrasound-assisted extraction was employed to extract the general flavone from celery leaves using response surface methodology and BP neural network model with a genetic algorithm (GA). The effects of temperature, time, solid-liquid ratio, and ethanol concentration on the extraction results were assessed by Box-Behnken design. Further optimization of the process was performed by GA-BP. Our results showed that the optimal conditions were an ethanol concentration of 70.31%, a temperature of 67.2 °C and an extraction time of 26.6 min. In addition, significant antioxidant activity and in vitro bacteriostasis were observed. We found that the total flavonoids of the celery leaves exerted a strong inhibitory effect on Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. Additionally, considerable DPPH· and ·OH scavenging effects were exerted by flavonoids. Therefore, flavonoids from celery leaves can be considered natural antioxidants and bacterial inhibitors.


Asunto(s)
Apium , Flavonoides , Extractos Vegetales , Hojas de la Planta , Algoritmos , Apium/química , Bacillus subtilis/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Etanol/química , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Redes Neurales de la Computación , Extractos Vegetales/farmacología , Hojas de la Planta/química , Staphylococcus aureus/efectos de los fármacos , Temperatura , Factores de Tiempo
4.
Curr Issues Mol Biol ; 43(3): 1876-1888, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34889896

RESUMEN

The present work demonstrated and compared the anti-inflammatory effects of celery leaf (CLE) and stem (CSE) extracts. LC-MS-based metabolomics were an effective approach to achieve the biomarker identification and pathway elucidation associated with the reduction in inflammatory responses. The celery extracts suppressed LPS-induced NO production in RAW 264.7 cells, and CLE was five times more effective than CSE. Distinct differences were revealed between the control and celery-treated samples among the 24 characteristic metabolites that were identified. In celery-treated LPS cells, reversals of intracellular (citrulline, proline, creatine) and extracellular (citrulline, lysine) metabolites revealed that the therapeutic outcomes were closely linked to arginine metabolism. Reversals of metabolites when treated with CLE (aspartate, proline) indicated targeted effects on the TCA and urea cycles, while, in the case of CSE (histidine, glucose), the glycolysis and the pentose phosphate pathways were implicated. Subsequently, apigenin and bergapten in CLE were identified as potential biomarkers mediating the anti-inflammatory response.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Apium/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales , Cromatografía Liquida , Lipopolisacáridos/inmunología , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/inmunología , Metaboloma , Metabolómica/métodos , Ratones , Óxido Nítrico/metabolismo , Hojas de la Planta/química , Tallos de la Planta/química , Células RAW 264.7 , Espectrometría de Masas en Tándem
5.
BMC Plant Biol ; 21(1): 28, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413120

RESUMEN

BACKGROUND: Modern agriculture strives to sustainably manage fertilizer for both economic and environmental reasons. The monitoring of any nutritional (phosphorus, nitrogen, potassium) deficiency in growing plants is a challenge for precision farming technology. A study was carried out on three species of popular crops, celery (Apium graveolens L., cv. Neon), sugar beet (Beta vulgaris L., cv. Tapir) and strawberry (Fragaria × ananassa Duchesne, cv. Honeoye), fertilized with four different doses of phosphorus (P) to deliver data for non-invasive detection of P content. RESULTS: Data obtained via biochemical analysis of the chlorophyll and carotenoid contents in plant material showed that the strongest effect of P availability for plants was in the diverse total chlorophyll content in sugar beet and celery compared to that in strawberry, in which P affects a variety of carotenoid contents in leaves. The measurements performed using hyperspectral imaging, obtained in several different stages of plant development, were applied in a supervised classification experiment. A machine learning algorithm (Backpropagation Neural Network, Random Forest, Naive Bayes and Support Vector Machine) was developed to classify plants from four variants of P fertilization. The lowest prediction accuracy was obtained for the earliest measured stage of plant development. Statistical analyses showed correlations between leaf biochemical constituents, phosphorus fertilization and the mass of the leaf/roots of the plants. CONCLUSIONS: Obtained results demonstrate that hyperspectral imaging combined with artificial intelligence methods has potential for non-invasive detection of non-homogenous phosphorus fertilization on crop levels.


Asunto(s)
Apium/química , Beta vulgaris/química , Producción de Cultivos/métodos , Fertilizantes , Fragaria/química , Fósforo/análisis , Hojas de la Planta/química , Apium/crecimiento & desarrollo , Beta vulgaris/crecimiento & desarrollo , Carotenoides/análisis , Clorofila/análisis , Productos Agrícolas/química , Fragaria/crecimiento & desarrollo , Imágenes Hiperespectrales/métodos
6.
Proc Natl Acad Sci U S A ; 115(21): 5383-5388, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29735681

RESUMEN

In supercooled water, ice nucleation is a stochastic process that requires ∼250-300 molecules to transiently achieve structural ordering before an embryonic seed crystal can nucleate. This happens most easily on crystalline surfaces, in a process termed heterogeneous nucleation; without such surfaces, water droplets will supercool to below -30 °C before eventually freezing homogeneously. A variety of fundamental processes depends on heterogeneous ice nucleation, ranging from desert-blown dust inducing precipitation in clouds to frost resistance in plants. Recent experiments have shown that crystals of nanophase magnetite (Fe3O4) are powerful nucleation sites for this heterogeneous crystallization of ice, comparable to other materials like silver iodide and some cryobacterial peptides. In natural materials containing magnetite, its ferromagnetism offers the possibility that magneto-mechanical motion induced by external oscillating magnetic fields could act to disrupt the water-crystal interface, inhibiting the heterogeneous nucleation process in subfreezing water and promoting supercooling. For this to act, the magneto-mechanical rotation of the particles should be higher than the magnitude of Brownian motions. We report here that 10-Hz precessing magnetic fields, at strengths of 1 mT and above, on ∼50-nm magnetite crystals dispersed in ultrapure water, meet these criteria and do indeed produce highly significant supercooling. Using these rotating magnetic fields, we were able to elicit supercooling in two representative plant and animal tissues (celery and bovine muscle), both of which have detectable, natural levels of ferromagnetic material. Tailoring magnetic oscillations for the magnetite particle size distribution in different tissues could maximize this supercooling effect.


Asunto(s)
Apium/química , Biofisica , Óxido Ferrosoférrico , Congelación , Hielo , Músculos/química , Agua/química , Agricultura , Animales , Bovinos , Cristalización , Nanopartículas/química , Fenómenos Físicos
7.
Biomed Chromatogr ; 35(11): e5181, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34043835

RESUMEN

Celery seeds are medicinal herbs used for the prevention and treatment of gout as these have the ability to inhibit the activity of xanthine oxidase and reduce the concentration of serum uric acid. In this study, the relationship between xanthine oxidase inhibitory effects and high-performance thin-layer chromatography data of celery seed extracts was established using multilayer neural network (MNN) in combination with principal component analysis (PCA). The constructed MNN-PCA model was stable and had accurate prediction ability with coefficient of determination = 0.9998, leave-one-out coefficient = 0.7371, root mean square error = 0.0025, and mean absolute deviation = 0.0019 for the training set and coefficient of determination = 0.8124, root mean square error = 0.0784, and mean absolute deviation = 0.0645 for the test set. This model can be used to identify the main compounds related to the xanthine oxidase inhibitory effect of celery seed extract. These results can be applied not only to celery extract but also to other herbal medicines.


Asunto(s)
Apium/química , Cromatografía en Capa Delgada/métodos , Inhibidores Enzimáticos , Extractos Vegetales , Xantina Oxidasa/antagonistas & inhibidores , Cromatografía Líquida de Alta Presión/métodos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Reproducibilidad de los Resultados , Semillas/química
8.
Zygote ; 29(2): 155-160, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33228827

RESUMEN

This research aimed to examine the effects of thyme, celery and salinomycin on ovarian sex hormones, reproductive traits and antioxidant status during the estrous cycle. Seventy-five mature Barki ewes aged 2-3 years with an average weight of 40 ± 1.5 kg were assigned randomly into five groups (15 head/group). Group 1 was kept as the control; groups 2 and 3 received 20 g/head/day thyme (T) and celery (C) as dried herbs, respectively. Group 4 (T×C) received 10 g thyme + 10 g celery/head/day, and group 5 was treated with salinomycin 1 g/head/day. Blood samples were collected during follicular and luteal phases of the estrous cycle. Thyme and celery and the mixture of T×C increased (P < 0.01) estradiol-17ß (E2) during the follicular phase of the estrous cycle, while only the celery group showed a marked (P < 0.001) increase in progesterone (P4) during the luteal phase compared with the control. Salinomycin supplementation decreased (P < 0.05) E2 concentrations during the follicular and luteal phases of the estrous cycle. Supplementation with thyme and celery enhanced (P < 0.001) antioxidant capacity in the luteal phase compared with the follicular stage. The salinomycin group showed increased (P < 0.01) levels of reduced glutathione (GSH) and decreased malondialdehyde (MDA) levels compared with the control group throughout luteal phase. For the interaction between estrous phases and treatments, thyme, celery, and T×C supplementation revealed an increase (P < 0.05) in superoxide dismutase (SOD), GSH, and glutathione disulfide (GSSG) levels compared with the control group during the follicular and luteal phases. Thyme and celery supplementation improved the number of services per conception and fertilization from 1st and 2nd inseminations, respectively. In conclusion, the applied treatment had significant effects on reproductive performance and antioxidant status in ewes throughout the estrous cycle.


Asunto(s)
Alimentación Animal , Apium , Aditivos Alimentarios , Piranos , Thymus (Planta) , Animales , Antioxidantes/metabolismo , Apium/química , Estradiol , Ciclo Estral/fisiología , Femenino , Ovario/fisiología , Progesterona , Piranos/administración & dosificación , Ovinos , Thymus (Planta)/química
9.
Int J Mol Sci ; 22(21)2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34769457

RESUMEN

Numerous varieties of celery are grown in multiple countries to maintain supply, demand and availability for all seasons; thus, there is an expectation for a consistent product in terms of taste, flavour, and overall quality. Differences in climate, agronomy and soil composition will all contribute to inconsistencies. This study investigated the volatile and sensory profile of eight celery genotypes grown in the UK (2018) and Spain (2019). Headspace analysis determined the volatile composition of eight genotypes, followed by assessment of the sensory profile using a trained panel. Significant differences in the volatile composition and sensory profile were observed; genotype and geographical location both exerted influences. Two genotypes exhibited similar aroma composition and sensory profile in both locations, making them good candidates to drive breeding programmes aimed at producing varieties that consistently display these distinctive sensory properties. Celery samples harvested in the UK exhibited a higher proportion of sesquiterpenes and phthalides, whereas samples harvested in Spain expressed a higher aldehyde and ketone content. Studying the relationship between growing environment and genotype will provide information to guide growers in how to consistently produce a high-quality crop.


Asunto(s)
Apium/genética , Apium/metabolismo , Odorantes , Sesquiterpenos/análisis , Gusto , Compuestos Orgánicos Volátiles/análisis , Apium/química , Genotipo , España , Reino Unido
10.
Molecules ; 26(23)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34885954

RESUMEN

The aim of this study was to explore the composition and evaluate the in silico and in vitro antioxidants and antimicrobial and anti-inflammatory effects of Apium graveolens var. dulce leaves essential oil (AGO) collected from Al-Kharj (Saudi Arabia). AGO was isolated using the hydro-distillation method, and its composition was studied using gas-chromatography-mass Spectrometry (GC-MS), antimicrobial activities using well diffusion assay, and antioxidant and anti-inflammatory activities using spectrophotometric methods. The pharmacological activities of their major compounds were predicted using PASS (prediction of activity spectra for substances) and drug-likening properties by ADME (absorption, distribution, metabolism, and excretion) through web-based online tools. Isocnidilide (40.1%) was identified as the major constituent of AGO along with ß-Selinene, Senkyunolide A, Phytyl acetate, and 3-Butylphthalide. AGO exhibited a superior antibacterial activity, and the strongest activity was detected against Gram-positive bacteria and Candida albicans. Additionally, it exhibited a weaker antioxidant potential and stronger anti-inflammatory effects. PASS prediction supported the pharmacological finding, whereas ADMET revealed the safety of AGO. The molecular docking of isocnidilide was carried out for antibacterial (DNA gyrase), antioxidant (tyrosinase), and anti-inflammatory (cyclooxygenase-2) activities. The docking simulation results were involved hydrophilic interactions and demonstrated high binding affinity of isocnidilide for anti-inflammatory protein (cycloxygenase-2). The presence of isocnidilide makes AGO a potential anti-inflammatory and antimicrobial agent. AGO, and its major metabolite isocnidilide, may be a suitable candidate for the future drug development.


Asunto(s)
Antiinfecciosos/química , Antiinflamatorios/química , Antioxidantes/química , Apium/química , Aceites Volátiles/química , Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Humanos , Simulación del Acoplamiento Molecular , Aceites Volátiles/farmacología , Hojas de la Planta/química , Arabia Saudita
11.
J Sci Food Agric ; 101(5): 1998-2005, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32949153

RESUMEN

BACKGROUND: Propiconazole is widely used to control fungal diseases in field crops, including celery and onion. The potential risk to the environment and human health has aroused much public concern. Therefore, it is significant to investigate the degradation behaviour, residue distribution, and dietary risk assessment of propiconazole in celery and onion. RESULTS: A sensitive analytical method for determination of propiconazole residue in celery and onion was established and validated through high-performance liquid chromatography tandem mass spectrometry. The average recovery rate of propiconazole ranged from 85.7% to 101.8%, with a relative standard deviation of 2.1-6.3%. For the dissipation kinetics, the data showed that propiconazole in celery and onion was degraded, with half-lives of 6.1-6.2 days and 8.7-8.8 days respectively. In the terminal residue experiments, the residues of propiconazole were below 4.66 mg kg-1 in celery after application two or three times and were below 0.029 mg kg-1 in onion after application of three or four times with an interval of 14 days under the designed dosages. The chronic and acute dietary exposure assessments for propiconazole were valued by risk quotient, with all values being lower than 100%. CONCLUSION: Propiconazole in celery and onion was rapidly degraded following first-order kinetics models. The dietary risk of propiconazole through celery or onion was negligible to consumers. The study not only offers a valuable reference for reasonable usage of propiconazole on celery and onion, but also facilitates the establishment of maximum residue limits in China. © 2020 Society of Chemical Industry.


Asunto(s)
Apium/química , Fungicidas Industriales/química , Cebollas/química , Triazoles/química , China , Cromatografía Líquida de Alta Presión , Exposición Dietética/efectos adversos , Residuos de Medicamentos , Contaminación de Alimentos/análisis , Cinética , Espectrometría de Masas en Tándem , Verduras/química
12.
J Sci Food Agric ; 101(6): 2256-2263, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33006386

RESUMEN

BACKGROUND: Stroke is a neurological disease caused by a sudden disturbance of cerebral blood flow to the brain, leading to loss of brain function. Recently, accumulating lines of evidence have suggested that dietary enrichment with nutritional antioxidants could reduce brain damage and improve cognitive function. In this study, we investigated the possible protective effects of Apium graveolens, a medicinal plant with putative neuroprotective activity, against oxidative-stress-related brain damage and brain damage due to inflammation induced by focal cerebral ischemia. METHODS: Male adult Wistar rats were administered with an extract of A. graveolens orally 14 days before permanent occlusion of their right middle cerebral artery. The brain infarct volumes of rats in each group were determined by 2,3,5-triphenyltetrazolium chloride staining, and the density of neurons in the cortex and hippocampus of rats was determined by cresyl violet staining. The levels of malondialdehyde, catalase, glutathione peroxidase, and superoxide dismutase in the cerebral cortex and hippocampus of the rats were also quantified at the end of the study period. RESULTS: Our results show that A. graveolens extract significantly decreased infarct volume and improved neuronal density in the cortex and hippocampus of rats receiving A. graveolens extract compared with those rats receiving no treatment. This neuroprotective effect was found to occur partly due to antioxidant, anti-inflammatory, and anti-apoptotic effects. CONCLUSION: Our study demonstrates that A. graveolens helps to reduce the severity of cognitive damage caused by focal cerebral ischemia. © 2020 Society of Chemical Industry.


Asunto(s)
Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Apium/química , Apoptosis/efectos de los fármacos , Isquemia Encefálica/prevención & control , Fármacos Neuroprotectores/administración & dosificación , Animales , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Isquemia Encefálica/inmunología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatología , Glutatión Peroxidasa/metabolismo , Humanos , Masculino , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fitoterapia , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo
13.
Chem Biodivers ; 17(10): e2000435, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32687253

RESUMEN

In order to discover novel potential antifungal agents, a series of 6-substituted 3-butylphthalide derivatives were designed, synthesized and evaluated for their antifungal activities against nine phytopathogenic fungi. Preliminary bioassay tests showed that five 3-butylphthalide derivatives exhibited more potent antifungal activities than hymexazol at the concentration of 50 µg/mL. Especially, 3-butyl-6-nitro-2-benzofuran-1(3H)-one and 3-butyl-6-hydroxy-5-nitro-2-benzofuran-1(3H)-one had significant fungicidal activity against some phytopathogenic fungi. The EC50 of 3-butyl-6-nitro-2-benzofuran-1(3H)-one against FS, FO and FG were 6.6, 9.6 and 16.0 µg/mL, respectively. The EC50 of 3-butyl-6-hydroxy-5-nitro-2-benzofuran-1(3H)-one against BC, PO, VM, SS and AS were 6.3, 5.9, 10.0, 4.5 and 8.4 µg/mL, respectively. The preliminary structure-activity relationships (SARs) of all target compounds were also investigated.


Asunto(s)
Antifúngicos/farmacología , Benzofuranos/farmacología , Diseño de Fármacos , Hongos/efectos de los fármacos , Antifúngicos/síntesis química , Antifúngicos/química , Apium/química , Benzofuranos/síntesis química , Benzofuranos/química , Ligusticum/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Semillas/química , Relación Estructura-Actividad
14.
Molecules ; 25(22)2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33202694

RESUMEN

The aim of the research was to increase the efficiency of the hydrodistillation process and determine the volatile composition, biological activity, and aroma profile of essential oil from celery seeds (Apium graveolens L.). The essential oil was extracted from the plant material by ultrasonic hydrodistillation with higher efficiency when compared with classical hydrodistillation. The antimicrobial activity was evaluated using the impedimetric method for the bacteria Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and yeast Candida vini as well as moulds Aspergillus niger and Penicillium expansum with minimal inhibitory concentration (MIC) (µL/mL) values: 30, 10, 20, 3, 30, 40, and 40, respectively. The oil possessed very weak 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant activity with the half maximal inhibitory concentration (IC50) value of 81.6 g/L. Initial studies of the aroma profile indicated that the perception of the fragrance of the oil could be related to the sex of the panellists. According to women, the fragrance of celery seeds oil was intense herb-like. From the men's point of view, it had a fresh, mossy, and mushroom scent.


Asunto(s)
Apium/química , Destilación , Odorantes/análisis , Aceites Volátiles/análisis , Semillas/química , Ultrasonido , Agua/química , Antiinfecciosos/farmacología , Antioxidantes/farmacología , Bacterias/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/farmacología
15.
Molecules ; 25(18)2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937923

RESUMEN

The use of higher plants for the production of plant growth biostimulants is receiving increased attention among scientists, farmers, investors, consumers and regulators. The aim of the present study was to examine the possibility of converting plants commonly occurring in Europe (St. John's wort, giant goldenrod, common dandelion, red clover, nettle, valerian) into valuable and easy to use bio-products. The biostimulating activity of botanical extracts and their effect on the chemical composition of celeriac were identified. Plant-based extracts, obtained by ultrasound-assisted extraction and mechanical homogenisation, were tested in field trials. It was found that the obtained formulations increased the total yield of leaves rosettes and roots, the dry weight of leaves rosettes and roots, the content of chlorophyll a + b and carotenoids, the greenness index of leaves, the content of vitamin C in leaves and roots. They mostly decreased the content of polyphenols and antioxidant activities in leaves but increased them in roots and conversely affected the nitrates content. Extracts showed a varied impact on the content of micro and macroelements, as well as the composition of volatile compounds and fatty acids in the celeriac biomass. Due to the modulatory properties of the tested products, they may be used successfully in sustainable horticulture.


Asunto(s)
Antioxidantes/farmacología , Apium/química , Química Farmacéutica/métodos , Extractos Vegetales/farmacología , Antioxidantes/química , Ácido Ascórbico/química , Ácido Ascórbico/metabolismo , Benzotiazoles/química , Compuestos de Bifenilo/química , Carotenoides/química , Clorofila/química , Clorofila A/química , Europa (Continente) , Ácidos Grasos/química , Horticultura , Nitratos/química , Fotosíntesis , Picratos/química , Pigmentación , Hojas de la Planta/química , Raíces de Plantas/química , Polifenoles/química , Ácidos Sulfónicos/química , Ultrasonido
16.
Molecules ; 25(14)2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664342

RESUMEN

Supercritical fluid extraction as an environmentally friendly technology was applied to isolate biologically active extracts from celery and parsley fruits for potential applications in the food industry. The extractions were performed under mild temperature conditions of 39.85 °C and at pressures of 10 and 30 MPa. The extracts were analyzed regarding their chemical composition, antibacterial activity, and cytotoxic effect. Sedanolide was the dominant component of the celery fruit extracts, comprising more than 70% of the obtained fraction, while the content of apiole in the parsley fruit SC CO2 extracts exceeded 85%. The celery fruit extracts showed strong and moderately strong antibacterial activity against tested Staphylococcus aureus, Bacillus (B.) cereus, B. subtilis, B. circulans, Listeria (L.) greyi, L. seeligeri and L. welshimeri, with minimal inhibitory concentration (MIC) values between 160 and 640 µg/mL, and weak activity against the selected Salmonella isolates with a MIC of 2560 µg/mL. The parsley extract obtained at 10 MPa showed strong and moderately strong antibacterial effects against Bacillus strains with obtained MICs of 160-640 µg/mL, and weak activity against Staphylococcus, Listeria, and Salmonella with a MIC of 2560 µg/mL. Cytotoxicity investigation showed that the extracts with proven antibacterial activity had no cytotoxic effect on rabbit kidney cells at concentrations of up to 640 µg/mL.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Apium/química , Frutas/química , Petroselinum/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales , Bacterias/efectos de los fármacos , Línea Celular , Cromatografía con Fluido Supercrítico/métodos , Pruebas de Sensibilidad Microbiana/métodos , Conejos , Verduras/química
17.
Analyst ; 144(16): 5010-5021, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31334745

RESUMEN

An ON-OFF-ON dual-function fluorescent nanoprobe is described for the trace detection of ferric ions and inositol hexaphosphate (IP6) in living cells. It is based on the use of yellow-fluorescent nitrogen-doped carbon dots (YN-CDs). Highly fluorescent YN-CDs were synthesized by a hydrothermal process. They have an absolute quantum yield of 2.15% and excitation/emission peaks at 420/575 nm. Fluorescence is quenched by Fe3+via photo-induced electron transfer. The quenchometric assay has a 34 nM detection limit for Fe(iii). On addition of IP6 which has a high affinity for Fe3+ due to the formation of Fe-O-P bonds, fluorescence becomes gradually restored. The resulting ON-OFF-ON assays for Fe(iii) and IP6 are reliable and sensitive. IP6 can be detected at concentrations as low as 2 nM. The nanoprobe was then applied to the determination of Fe3+ and IP6 in living cells in a food matrix. Furthermore, YN-CDs exhibited excellent biocompatibility. Hence, the probe can be applied as a fluorescent ink for bioimaging, both in vitro (cancer cells and bacteria) and in vivo (nematodes and mice).


Asunto(s)
Hierro/análisis , Ácido Fítico/análisis , Puntos Cuánticos/química , Animales , Apium/química , Carbono/química , Grano Comestible/química , Escherichia coli , Fluorescencia , Análisis de los Alimentos , Frutas/química , Células Hep G2 , Humanos , Límite de Detección , Ratones Desnudos , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Nematodos , Espectrometría de Fluorescencia/métodos
18.
Phytother Res ; 33(12): 3040-3053, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31464016

RESUMEN

The metabolic syndrome (MetS) is a cluster of multiple conditions that includes hypertension, dyslipidemia, abdominal obesity, and hyperglycemia disorders. Most studies revealed that the MetS is accompanied with an increased risk for cardiovascular disease, Type 2 diabetes mellitus, and insulin resistance. It can be said that, in treating or preventing the MetS and its components, lifestyle adjustment and weight loss have a vital role. According to various studies, among natural compounds, celery (Apium graveolens) is one of the most important sources of phytochemicals such as phenolic acids, flavones, flavonols, and antioxidants such as vitamin C, beta-carotene (Provitamin A), and manganese. These antioxidants have a role in decreasing the oxidative damage. The phytochemicals in celery decrease the activity of proinflammatory cytokines and prevent inflammation. Also, flavonoids in celery suppress cardiovascular inflammation. Oxidative stress and inflammation in the blood stream are the main risk factors in increasing cardiovascular disease, especially atherosclerosis. Celery phthalides leads to expanding of smooth muscle in the blood vessels and lower blood pressure. As a result, the most active ingredients in celery (A. graveolens (have shown hypolipidemic, antidiabetic, and hypotensive properties. In this review, we summarized the mechanisms underlying the protective effects of celery components on insulin action, glucose, lipid metabolism, and blood pressure.


Asunto(s)
Apium/química , Síndrome Metabólico/dietoterapia , Humanos
19.
Pestic Biochem Physiol ; 160: 102-111, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31519243

RESUMEN

The present study reports the formulation of Apium graveolens essential oil (AGEO) with its major components linalyl acetate (LA) and geranyl acetate (GA) (1:1:1) as a novel green preservative for protection of postharvest food commodities from fungal infestations, aflatoxin B1 (AFB1) secretion, free radical generation and lipid peroxidation. The essential oil based novel formulation displayed considerable inhibitory action against fourteen food borne molds responsible for deterioration of stored food commodities, in addition to the most toxigenic strain of Aspergillus flavus (AFLHPR14) isolated from fungal and aflatoxin contaminated rice seeds. The observed higher efficacy of designed formulation was due to the synergistic action of essential oil and its major components. Fungal plasma membrane was recorded as the possible target site of antifungal action of the formulation as revealed through reduction in membrane ergosterol content, increased intracellular propidium iodide (PI) fluorescence and enhanced leakage of cellular ions (sodium, potassium, calcium) and 260, 280 nm absorbing materials. Further, inhibition of methylglyoxal (an aflatoxin inducer) confirmed the aflatoxin inhibitory potential of novel formulation based on essential oil and its major components. High antioxidant potential as observed through DPPH and ABTS·+ radical scavenging assay, improved phenolic content, considerable inhibition of lipid peroxidation in stored rice seeds, in situ efficacy on AFB1 inhibition in food system under storage container system, acceptable sensorial characteristics and favorable safety profile during animal trials suggest the recommendation of the designed formulation for large scale application as green preservative by food and agriculture based industries against fungal and aflatoxin contamination of stored commodities.


Asunto(s)
Aflatoxinas/antagonistas & inhibidores , Antiinfecciosos/farmacología , Apium/química , Aceites Volátiles/farmacología , Animales , Antiinfecciosos/toxicidad , Cromatografía Líquida de Alta Presión , Masculino , Ratones , Aceites Volátiles/toxicidad
20.
Crit Rev Biotechnol ; 38(2): 172-183, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28423952

RESUMEN

Celery (Apium graveolens L.), one of the most important vegetables in Apiaceae family, is cultivated worldwide and utilized in food and cosmetic industries because it is an excellent source of vitamins, phenolic compounds, volatile oils and other nutrients. Celery extracts possess various medicinal properties, such as antibacterial, anti-inflammatory and lowering blood glucose and serum lipid levels. With the rapid advancements in molecular biology and sequencing technology, studies on celery have been performed. Numerous molecular markers and regulatory genes have been discovered and applied to improve celery. Research advances, including genetic breeding, genomics research, function genes and chemical composition, regarding celery are reviewed in this paper. Further exploration and application trends are briefly described. This review provides a reference for basic and applied research on celery, an important Apiaceae vegetable crop.


Asunto(s)
Apium , Verduras , Apium/química , Apium/genética , Genes de Plantas , Genómica , Fitoquímicos , Fitomejoramiento , Investigación , Verduras/química , Verduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA