Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 476
Filtrar
1.
PLoS Genet ; 18(12): e1010537, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36508456

RESUMEN

The evolutionary diversification of orb-web weaving spiders is closely tied to the mechanical performance of dragline silk. This proteinaceous fiber provides the primary structural framework of orb web architecture, and its extraordinary toughness allows these structures to absorb the high energy of aerial prey impact. The dominant model of dragline silk molecular structure involves the combined function of two highly repetitive, spider-specific, silk genes (spidroins)-MaSp1 and MaSp2. Recent genomic studies, however, have suggested this framework is overly simplistic, and our understanding of how MaSp genes evolve is limited. Here we present a comprehensive analysis of MaSp structural and evolutionary diversity across species of Argiope (garden spiders). This genomic analysis reveals the largest catalog of MaSp genes found in any spider, driven largely by an expansion of MaSp2 genes. The rapid diversification of Argiope MaSp genes, located primarily in a single genomic cluster, is associated with profound changes in silk gene structure. MaSp2 genes, in particular, have evolved complex hierarchically organized repeat units (ensemble repeats) delineated by novel introns that exhibit remarkable evolutionary dynamics. These repetitive introns have arisen independently within the genus, are highly homogenized within a gene, but diverge rapidly between genes. In some cases, these iterated introns are organized in an alternating structure in which every other intron is nearly identical in sequence. We hypothesize that this intron structure has evolved to facilitate homogenization of the coding sequence. We also find evidence of intergenic gene conversion and identify a more diverse array of stereotypical amino acid repeats than previously recognized. Overall, the extreme diversification found among MaSp genes requires changes in the structure-function model of dragline silk performance that focuses on the differential use and interaction among various MaSp paralogs as well as the impact of ensemble repeat structure and different amino acid motifs on mechanical behavior.


Asunto(s)
Fibroínas , Arañas , Animales , Seda/genética , Arañas/genética , Arañas/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Jardines , Fibroínas/genética , Fibroínas/química , Fibroínas/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35074873

RESUMEN

The King Baboon spider, Pelinobius muticus, is a burrowing African tarantula. Its impressive size and appealing coloration are tempered by reports describing severe localized pain, swelling, itchiness, and muscle cramping after accidental envenomation. Hyperalgesia is the most prominent symptom after bites from P. muticus, but the molecular basis by which the venom induces pain is unknown. Proteotranscriptomic analysis of P. muticus venom uncovered a cysteine-rich peptide, δ/κ-theraphotoxin-Pm1a (δ/κ-TRTX-Pm1a), that elicited nocifensive behavior when injected into mice. In small dorsal root ganglion neurons, synthetic δ/κ-TRTX-Pm1a (sPm1a) induced hyperexcitability by enhancing tetrodotoxin-resistant sodium currents, impairing repolarization and lowering the threshold of action potential firing, consistent with the severe pain associated with envenomation. The molecular mechanism of nociceptor sensitization by sPm1a involves multimodal actions over several ion channel targets, including NaV1.8, KV2.1, and tetrodotoxin-sensitive NaV channels. The promiscuous targeting of peptides like δ/κ-TRTX-Pm1a may be an evolutionary adaptation in pain-inducing defensive venoms.


Asunto(s)
Nociceptores/efectos de los fármacos , Papio/metabolismo , Péptidos/farmacología , Venenos de Araña/farmacología , Arañas/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Ganglios Espinales/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Canales Iónicos/metabolismo , Ratones , Dolor/tratamiento farmacológico , Tetrodotoxina/farmacología
3.
Mol Pharmacol ; 105(3): 144-154, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37739813

RESUMEN

A special category of phospholipase D (PLD) in the venom of the brown recluse spider (Loxosceles reclusa) and several other sicariid spiders accounts for the dermonecrosis and many of the other clinical symptoms of envenomation. Related proteins are produced by other organisms, including fungi and bacteria. These PLDs are often referred to as sphingomyelinase Ds (SMase Ds) because they cleave sphingomyelin (SM) to choline and "ceramide phosphate." The lipid product has actually been found to be a novel sphingolipid: ceramide 1,3-cyclic phosphate (Cer1,3P). Since there are no effective treatments for the injury induced by the bites of these spiders, SMase D/PLDs are attractive targets for therapeutic intervention, and some of their features will be described in this minireview. In addition, two simple methods are described for detecting the characteristic SMase D activity using a fluorescent SM analog, (N-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-SM (C12-NBD-SM), that is cleaved to C12-NBD-Cer1,3P, which is easily separated from other potential metabolites by thin-layer chromatography and visualized under UV light. Besides confirming that C12-NBD-Cer1,3P is the only product detected upon incubation of C12-NBD-SM with brown recluse spider venom, the method was also able to detect for the first time very low levels of activity in venom from another spider, Kukulcania hibernalis The simplicity of the methods makes it relatively easy to determine this signature activity of SMase D/PLD. SIGNIFICANCE STATEMENT: The sphingomyelinase D/phospholipase D that are present in the venom of the brown recluse spider and other sources cause considerable human injury, but detection of the novel sphingolipid product, ceramide 1,3-cyclic phosphate, is not easy by previously published methods. This minireview describes simple methods for detection of this activity that will be useful for studies of its occurrence in spider venoms and other biological samples, perhaps including lesions from suspected spider bites and infections.


Asunto(s)
Fosfolipasa D , Venenos de Araña , Arañas , Humanos , Animales , Esfingomielina Fosfodiesterasa , Fosfolipasa D/química , Fosfolipasa D/metabolismo , Ceramidas , Fosfatos , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Venenos de Araña/química , Venenos de Araña/farmacología , Arañas/metabolismo
4.
Dev Biol ; 494: 35-45, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36470448

RESUMEN

Cell migration is a fundamental component during the development of most multicellular organisms. In the early spider embryo, the collective migration of signalling cells, known as the cumulus, is required to set the dorsoventral body axis. Here, we show that FGF signalling plays an important role during cumulus migration in the spider Parasteatoda tepidariorum. Spider embryos with reduced FGF signalling show reduced or absent cumulus migration and display dorsoventral patterning defects. Our study reveals that the transcription factor Ets4 regulates the expression of several FGF signalling components in the cumulus. In conjunction with a previous study, we show that the expression of fgf8 in the germ-disc is regulated via the Hedgehog signalling pathway. We also demonstrate that FGF signalling influences the BMP signalling pathway activity in the region around cumulus cells. Finally, we show that FGFR signalling might also influence cumulus migration in basally branching spiders and we propose that fgf8 might act as a chemo-attractant to guide cumulus cells towards the future dorsal pole of the spider embryo.


Asunto(s)
Arañas , Animales , Tipificación del Cuerpo/fisiología , Embrión no Mamífero/metabolismo , Regulación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Arañas/metabolismo , Factores de Transcripción/metabolismo , Factores de Crecimiento de Fibroblastos
5.
BMC Genomics ; 25(1): 150, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326752

RESUMEN

BACKGROUND: The common house spider Parasteatoda tepidariorum represents an emerging new model organism of arthropod evolutionary and developmental (EvoDevo) studies. Recent technical advances have resulted in the first single-cell sequencing (SCS) data on this species allowing deeper insights to be gained into its early development, but mid-to-late stage embryos were not included in these pioneering studies. RESULTS: Therefore, we performed SCS on mid-to-late stage embryos of Parasteatoda and characterized resulting cell clusters by means of in-silico analysis (comparison of key markers of each cluster with previously published information on these genes). In-silico prediction of the nature of each cluster was then tested/verified by means of additional in-situ hybridization experiments with additional markers of each cluster. CONCLUSIONS: Our data show that SCS data reliably group cells with similar genetic fingerprints into more or less distinct clusters, and thus allows identification of developing cell types on a broader level, such as the distinction of ectodermal, mesodermal and endodermal cell lineages, as well as the identification of distinct developing tissues such as subtypes of nervous tissue cells, the developing heart, or the ventral sulcus (VS). In comparison with recent other SCS studies on the same species, our data represent later developmental stages, and thus provide insights into different stages of developing cell types and tissues such as differentiating neurons and the VS that are only present at these later stages.


Asunto(s)
Arañas , Animales , Arañas/genética , Arañas/metabolismo , Evolución Biológica , Mesodermo , Células Germinativas , Análisis de Secuencia de ARN
6.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34531321

RESUMEN

Natural spider silk with extraordinary mechanical properties is typically spun from more than one type of spidroin. Although the main components of various spider silks have been widely studied, little is known about the molecular role of the minor silk components in spidroin self-assembly and fiber formation. Here, we show that the minor component of spider eggcase silk, TuSp2, not only accelerates self-assembly but remarkably promotes molecular chain alignment of spidroins upon physical shearing. NMR structure of the repetitive domain of TuSp2 reveals that its dimeric structure with unique charged surface serves as a platform to recruit different domains of the main eggcase component TuSp1. Artificial fiber spun from the complex between TuSp1 and TuSp2 minispidroins exhibits considerably higher strength and Young's modulus than its native counterpart. These results create a framework for rationally designing silk biomaterials based on distinct roles of silk components.


Asunto(s)
Fibroínas/química , Animales , Materiales Biocompatibles , Fibroínas/metabolismo , Seda/química , Seda/metabolismo , Arañas/metabolismo
7.
Pestic Biochem Physiol ; 199: 105798, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38458668

RESUMEN

Spiders, the major predatory enemies of insect pests in fields, are vulnerable to insecticides. In this study, we observed that the recommended dose of buprofezin delayed the molting of the pond wolf spider Pardosa pseudoannulata, although it had no lethal effect on the spiders. Since buprofezin is an insect chitin biosynthesis inhibitor, we identified two chitin synthase genes (PpCHS1 and PpCHS2) in P. pseudoannulata. Tissue-specific expression profiling showed that PpCHS1 was most highly expressed in cuticle. In contrast, PpCHS2 showed highest mRNA levels in the midgut and fat body. RNAi knockdown of PpCHS1 significantly delayed the molting of 12-days old spiderlings, whereas no significant effect on the molting was observed in the PpCHS2-silencing spiderlings. The expression of PpCHS1 was significantly suppressed in the spiderlings treated with buprofezin, but rescued by exogenous ecdysteroid ponasterone A (PA). Consistent with this result, the molting delay caused by buprofezin was also rescued by PA. The results revealed that buprofezin delayed the molting of spiders by suppressing PpCHS1 expression, which will benefit the protection of P. pseudoannulate and related spider species.


Asunto(s)
Animales Ponzoñosos , Quitina Sintasa , Arañas , Tiadiazinas , Animales , Quitina Sintasa/genética , Quitina Sintasa/metabolismo , Muda/genética , Insectos , Arañas/genética , Arañas/metabolismo , Quitina/metabolismo
8.
J Biol Chem ; 298(5): 101913, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398358

RESUMEN

The N-terminal (NT) domain of spider silk proteins (spidroins) is crucial for their storage at high concentrations and also regulates silk assembly. NTs from the major ampullate spidroin (MaSp) and the minor ampullate spidroin are monomeric at neutral pH and confer solubility to spidroins, whereas at lower pH, they dimerize to interconnect spidroins in a fiber. This dimerization is known to result from modulation of electrostatic interactions by protonation of well-conserved glutamates, although it is undetermined if this mechanism applies to other spidroin types as well. Here, we determine the solution and crystal structures of the flagelliform spidroin NT, which shares only 35% identity with MaSp NT, and investigate the mechanisms of its dimerization. We show that flagelliform spidroin NT is structurally similar to MaSp NT and that the electrostatic intermolecular interaction between Asp 40 and Lys 65 residues is conserved. However, the protonation events involve a different set of residues than in MaSp, indicating that an overall mechanism of pH-dependent dimerization is conserved but can be mediated by different pathways in different silk types.


Asunto(s)
Fibroínas , Seda , Arañas , Animales , Secuencia Conservada , Dimerización , Fibroínas/química , Fibroínas/genética , Fibroínas/metabolismo , Concentración de Iones de Hidrógeno , Dominios Proteicos/genética , Seda/química , Seda/genética , Seda/metabolismo , Arañas/química , Arañas/genética , Arañas/metabolismo
9.
Small ; 19(46): e2304031, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37455347

RESUMEN

Amyloid fibrils-nanoscale fibrillar aggregates with high levels of order-are pathogenic in some today incurable human diseases; however, there are also many physiologically functioning amyloids in nature. The process of amyloid formation is typically nucleation-elongation-dependent, as exemplified by the pathogenic amyloid-ß peptide (Aß) that is associated with Alzheimer's disease. Spider silk, one of the toughest biomaterials, shares characteristics with amyloid. In this study, it is shown that forming amyloid-like nanofibrils is an inherent property preserved by various spider silk proteins (spidroins). Both spidroins and Aß capped by spidroin N- and C-terminal domains, can assemble into macroscopic spider silk-like fibers that consist of straight nanofibrils parallel to the fiber axis as observed in native spider silk. While Aß forms amyloid nanofibrils through a nucleation-dependent pathway and exhibits strong cytotoxicity and seeding effects, spidroins spontaneously and rapidly form amyloid-like nanofibrils via a non-nucleation-dependent polymerization pathway that involves lateral packing of fibrils. Spidroin nanofibrils share amyloid-like properties but lack strong cytotoxicity and the ability to self-seed or cross-seed human amyloidogenic peptides. These results suggest that spidroins´ unique primary structures have evolved to allow functional properties of amyloid, and at the same time direct their fibrillization pathways to avoid formation of cytotoxic intermediates.


Asunto(s)
Fibroínas , Arañas , Humanos , Animales , Seda/química , Fibroínas/química , Polimerizacion , Amiloide , Péptidos beta-Amiloides/metabolismo , Arañas/metabolismo
10.
Biomacromolecules ; 24(4): 1604-1616, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36990448

RESUMEN

Spider dragline silk is a remarkably tough biomaterial and composed primarily of spidroins MaSp1 and MaSp2. During fiber self-assembly, the spidroin N-terminal domains (NTDs) undergo rapid dimerization in response to a pH gradient. However, obtaining a detailed understanding of this mechanism has been hampered by a lack of direct evidence regarding the protonation states of key ionic residues. Here, we elucidated the solution structures of MaSp1 and MaSp2 NTDs from Trichonephila clavipes and determined the experimental pKa values of conserved residues involved in dimerization using NMR. Surprisingly, we found that the Asp40 located on an acidic cluster protonates at an unusually high pH (∼6.5-7.1), suggesting the first step in the pH response. Then, protonation of Glu119 and Glu79 follows, with pKas above their intrinsic values, contributing toward stable dimer formation. We propose that exploiting the atypical pKa values is a strategy to achieve tight spatiotemporal control of spider silk self-assembly.


Asunto(s)
Fibroínas , Arañas , Animales , Fibroínas/química , Seda/química , Dimerización , Espectroscopía de Resonancia Magnética , Arañas/metabolismo
11.
Arch Toxicol ; 97(12): 3285-3301, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37707622

RESUMEN

Sphingomyelinase D (SMase D), the main toxic component of Loxosceles venom, has a well-documented role on dermonecrotic lesion triggered by envenomation with these species; however, the intracellular mechanisms involved in this event are still poorly known. Through differential transcriptomics of human keratinocytes treated with L. laeta or L. intermedia SMases D, we identified 323 DEGs, common to both treatments, as well as upregulation of molecules involved in the IL-1 and ErbB signaling. Since these pathways are related to inflammation and wound healing, respectively, we investigated the relative expression of some molecules related to these pathways by RT-qPCR and observed different expression profiles over time. Although, after 24 h of treatment, both SMases D induced similar modulation of these pathways in keratinocytes, L. intermedia SMase D induced earlier modulation compared to L. laeta SMase D treatment. Positive expression correlations of the molecules involved in the IL-1 signaling were also observed after SMases D treatment, confirming their inflammatory action. In addition, we detected higher relative expression of the inhibitor of the ErbB signaling pathway, ERRFI1, and positive correlations between this molecule and pro-inflammatory mediators after SMases D treatment. Thus, herein, we describe the cell pathways related to the exacerbation of inflammation and to the failure of the wound healing, highlighting the contribution of the IL-1 signaling pathway and the ERRFI1 for the development of cutaneous loxoscelism.


Asunto(s)
Esfingomielina Fosfodiesterasa , Venenos de Araña , Animales , Humanos , Inflamación , Interleucina-1/metabolismo , Hidrolasas Diéster Fosfóricas/toxicidad , Transducción de Señal , Esfingomielina Fosfodiesterasa/metabolismo , Arañas/química , Arañas/metabolismo , Venenos de Araña/toxicidad , Picaduras de Arañas/patología , Receptores ErbB/metabolismo
12.
Ecotoxicol Environ Saf ; 256: 114855, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37027941

RESUMEN

While genetically modified (GM) crops bring economic benefits to human beings, their impact on non-target organisms has become an important part of environmental safety assessments. Symbiotic bacteria play an important role in eukaryotic biological functions and can adjust host communities to adapt to new environments. Therefore, this study examined the effects of Cry1B protein on the growth and development of non-target natural enemies of Pardosa astrigera (L. Koch) from the perspective of symbiotic bacteria. Cry1B protein had no significant effect on the health indicators of P. astrigera (adults and 2nd instar spiderlings). 16S rRNA sequencing results revealed that Cry1B protein did not change the symbiotic bacteria species composition of P. astrigera, but did reduce the number of OTU and species diversity. In 2nd instar spiderlings, neither the dominant phylum (Proteobacteria) nor the dominant genus (Acinetobacter) changed, but the relative abundance of Corynebacterium-1 decreased significantly; in adult spiders, the dominant bacteria genera of females and males were different. The dominant bacterial genera were Brevibacterium in females and Corynebacterium-1 in males, but Corynebacterium-1 was the dominant bacteria in both females and males feeding on Cry1B. The relative abundance of Wolbachia also increased significantly. In addition, bacteria in other genera varied significantly by sex. KEGG results showed that Cry1B protein only altered the significant enrichment of metabolic pathways in female spiders. In conclusion, the effects of Cry1B protein on symbiotic bacteria vary by growth and development stage and sex.


Asunto(s)
Bacterias , Arañas , Femenino , Masculino , Humanos , Animales , ARN Ribosómico 16S/metabolismo , Arañas/metabolismo , Simbiosis , Proteobacteria
13.
Prep Biochem Biotechnol ; 53(8): 914-922, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36573266

RESUMEN

Due to their advantages in structural stability and versatility, cysteine-rich peptides, which are secreted from the venom glands of venomous animals, constitute a naturally occurring pharmaceutical arsenal. However, the correct folding of disulfide bonds is a challenging task in the prokaryotic expression system like Escherichia coli due to the reducing environment. Here, a secretory expression plasmid pSE-G1M5-SUMO-HWTX-I for the spider neurotoxin huwentoxin-I (HWTX-I) with three disulfides as a model of cysteine-rich peptides was constructed. By utilizing the signal peptide G1M5, the fusion protein 6 × His-SUMO-HWTX-I was successfully secreted into extracellular medium of BL21(DE3). After enrichment using cation-exchange chromatography and purification utilizing the Ni-NTA column, 6 × His-SUMO-HWTX-I was digested via Ulp1 kinase to release recombinant HWTX-I (rHWTX-I), which was further purified utilizing RP-HPLC. Finally, both impurities with low and high molecular weights were completely removed. The molecular mass of rHWTX-I was identified as being 3750.8 Da, which was identical to natural HWTX-I with three disulfide bridges. Furthermore, by utilizing whole-cell patch clamp, the sodium currents of hNav1.7 could be inhibited by rHWTX-I and the IC50 value was 419 nmol/L.


Asunto(s)
Venenos de Araña , Arañas , Animales , Neurotoxinas/química , Neurotoxinas/farmacología , Cisteína/metabolismo , Arañas/química , Arañas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Venenos de Araña/genética , Venenos de Araña/química , Venenos de Araña/metabolismo , Péptidos/metabolismo , Disulfuros/metabolismo
14.
J Proteome Res ; 21(11): 2783-2797, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36260604

RESUMEN

Acanthoscurria juruenicola is an Amazonian spider described for the first time almost a century ago. However, little is known about their venom composition. Here, we present a multiomics characterization of A. juruenicola venom by a combination of transcriptomics, proteomics, and peptidomics approaches. Transcriptomics of female venom glands resulted in 93,979 unique assembled mRNA transcript encoding proteins. A total of 92 proteins were identified in the venom by mass spectrometry, including 14 mature cysteine-rich peptides (CRPs). Quantitative analysis showed that CRPs, cysteine-rich secretory proteins, metalloproteases, carbonic anhydrases, and hyaluronidase comprise >90% of the venom proteome. Relative quantification of venom toxins was performed by DIA and DDA, revealing converging profiles of female and male specimens by both methods. Biochemical assays confirmed the presence of active hyaluronidases, phospholipases, and proteases in the venom. Moreover, the venom promoted in vivo paralytic activities in crickets, consistent with the high concentration of CRPs. Overall, we report a comprehensive analysis of the arsenal of toxins of A. juruenicola and highlight their potential biotechnological and pharmacological applications. Mass spectrometry data were deposited to the ProteomeXchange Consortium via the PRIDE repository with the dataset identifier PXD013149 and via the MassIVE repository with the dataset identifier MSV000087777.


Asunto(s)
Venenos de Araña , Arañas , Animales , Masculino , Femenino , Arañas/genética , Arañas/metabolismo , Venenos de Araña/genética , Venenos de Araña/química , Venenos de Araña/metabolismo , Cisteína/metabolismo , Proteómica/métodos , Espectrometría de Masas/métodos , Proteoma/genética , Proteoma/metabolismo , Péptidos/análisis
15.
Dev Genes Evol ; 232(1): 27-37, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35038005

RESUMEN

In the arthropod model species Drosophila melanogaster, a dipteran fly, segmentation of the anterior-posterior body axis is under control of a hierarchic gene cascade. Segmental boundaries that form morphological grooves are established posteriorly within the segmental expression domain of the segment-polarity gene (SPG) engrailed (en). More important for the development of the fly, however, are the parasegmental boundaries that are established at the interface of en expressing cells and anteriorly adjacent wingless (wg) expressing cells. In Drosophila, both segmental and transient parasegmental grooves form. The latter are positioned anterior to the expression of en. Although the function of the SPGs in establishing and maintaining segmental and parasegmental boundaries is highly conserved among arthropods, parasegmental grooves have only been reported for Drosophila, and a spider (Cupiennius salei). Here, we present new data on en expression, and re-evaluate published data, from four distantly related spiders, including Cupiennius, and a distantly related chelicerate, the harvestman Phalangium opilio. Gene expression analysis of en genes in these animals does not corroborate the presence of parasegmental grooves. Consequently, our data question the general presence of parasegmental grooves in arthropods.


Asunto(s)
Artrópodos , Proteínas de Drosophila , Arañas , Animales , Artrópodos/genética , Artrópodos/metabolismo , Tipificación del Cuerpo/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Arañas/genética , Arañas/metabolismo
16.
J Exp Zool B Mol Dev Evol ; 338(4): 241-253, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34981640

RESUMEN

The expression of spidroins in the major ampullate, minor ampullate, flagelliform, and tubuliform silk glands of Trichonephila clavipes spiders was analyzed using proteomics analysis techniques. Spidroin peptides were identified and assigned to different gene products based on sequence concurrence when compared with the whole genome of the spider. It was found that only a relatively low proportion of the spidroin genes are expressed as proteins in any of the studied glands. In addition, the expression of spidroin genes in different glands presents a wide range of patterns, with some spidroins being found in a single gland exclusively, while others appear in the content of several glands. The combination of precise genomics, proteomics, microstructural, and mechanical data provides new insights both on the design principles of these materials and how these principles might be translated for the production of high-performance bioinspired artificial fibers.


Asunto(s)
Fibroínas , Arañas , Animales , Fibroínas/genética , Fibroínas/metabolismo , Genoma , Seda/química , Seda/genética , Seda/metabolismo , Arañas/genética , Arañas/metabolismo
17.
FASEB J ; 35(11): e21896, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34634154

RESUMEN

Surgical intervention with the use of autografts is considered the gold standard to treat peripheral nerve injuries. However, a biomaterial that supports and guides nerve growth would be an attractive alternative to overcome problems with limited availability, morbidity at the site of harvest, and nerve mismatches related to autografts. Native spider silk is a promising material for construction of nerve guidance conduit (NGC), as it enables regeneration of cm-long nerve injuries in sheep, but regulatory requirements for medical devices demand synthetic materials. Here, we use a recombinant spider silk protein (NT2RepCT) and a functionalized variant carrying a peptide derived from vitronectin (VN-NT2RepCT) as substrates for nerve growth support and neurite extension, using a dorsal root ganglion cell line, ND7/23. Two-dimensional coatings were benchmarked against poly-d-lysine and recombinant laminins. Both spider silk coatings performed as the control substrates with regards to proliferation, survival, and neurite growth. Furthermore, NT2RepCT and VN-NT2RepCT spun into continuous fibers in a biomimetic spinning set-up support cell survival, neurite growth, and guidance to an even larger extent than native spider silk. Thus, artificial spider silk is a promising biomaterial for development of NGCs.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Regeneración Nerviosa/efectos de los fármacos , Neuritas/metabolismo , Seda/farmacología , Arañas/metabolismo , Vitronectina/farmacología , Animales , Autoinjertos , Materiales Biocompatibles/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ganglios Espinales/citología , Humanos , Laminina/farmacología , Ratones , Neuritas/efectos de los fármacos , Traumatismos de los Nervios Periféricos/cirugía , Ingeniería de Proteínas/métodos , Ratas , Proteínas Recombinantes/farmacología , Seda/genética , Vitronectina/genética
18.
Biotechnol Bioeng ; 119(3): 784-806, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34958139

RESUMEN

Silk is a fibrous protein, has been a part of human lives for centuries,  and was used as suture and textile material. Silk is mainly produced by the members of certain arthropods such as spiders, butterflies, mites, and moths. However, recent technological advances have revolutionized silk as a biomaterial for various applications ranging from heat sensors to robust fibers. The biocompatibility, mechanical resilience, and biodegradability of the material make it a suitable candidate for biomaterials. Silk can also be easily converted into several morphological forms, including fibers, films, sponges, and hydrogels. Provided these abilities, silk have received excellent traction from scientists worldwide for various developments, one of them being its use as a bio-sensor. The diversity of silk materials offers various options, giving scientists the freedom to choose from and personalize them as per their needs. In this review, we foremost look upon the composition, production, properties, and various morphologies of silk. The numerous applications of silk and its derivatives for fabricating biosensors to detect small molecules, macromolecules, and cells have been explored comprehensively. Also, the data from various globally developed sensors using silk have been described into organized tables for each category of molecules, along with their important analytical details.


Asunto(s)
Mariposas Diurnas , Arañas , Animales , Materiales Biocompatibles , Mariposas Diurnas/metabolismo , Hidrogeles , Seda/metabolismo , Arañas/metabolismo
19.
Biomacromolecules ; 23(4): 1643-1651, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35312302

RESUMEN

Spider silk is self-assembled from silk proteins or spidroins. C-terminal domains (CTDs) of various types of spidroins are relatively conserved in amino acid sequences and are suggested to adopt similar structures and perform similar functional roles in spidroin storage and silk formation. Here, we solved the structure of the CTD from a capture-spiral silk protein (CTDFl) and characterized its stability and fibril formation in the presence and absence of a reducing agent at different pH values. CTDFl adopts a dimeric structure with 8 helices, but the CTDs of other types of spidroins exist in a domain-swapped dimeric structure with 10 helices. Despite the structural differences, CTDFl is pH-responsive in stability and fibril formation, similar to the CTDs from minor and major ampullate spidroins. Thus, the functional role of CTDs in silk fiber formation seems conserved. Comparing wild-type CTDFl and its mutants, we found that the pH-responsive behavior results from the protonation of H76, which is conserved from different spider species. In addition, the fibril formation rate of CTDFl correlates with its instability, suggesting that structural changes are involved in fibril formation.


Asunto(s)
Fibroínas , Arañas , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos , Fibroínas/química , Fibroínas/genética , Estructura Secundaria de Proteína , Seda/química , Arañas/metabolismo
20.
Biomacromolecules ; 23(5): 1827-1840, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35378031

RESUMEN

The tiny spider makes dragline silk fibers with unbeatable toughness, all under the most innocuous conditions. Scientists have persistently tried to emulate its natural silk spinning process using recombinant proteins with a view toward creating a new wave of smart materials, yet most efforts have fallen short of attaining the native fiber's excellent mechanical properties. One reason for these shortcomings may be that artificial spider silk systems tend to be overly simplified and may not sufficiently take into account the true complexity of the underlying protein sequences and of the multidimensional aspects of the natural self-assembly process that give rise to the hierarchically structured fibers. Here, we discuss recent findings regarding the material constituents of spider dragline silk, including novel spidroin subtypes, nonspidroin proteins, and possible involvement of post-translational modifications, which together suggest a complexity that transcends the two-component MaSp1/MaSp2 system. We subsequently consider insights into the spidroin domain functions, structures, and overall mechanisms for the rapid transition from disordered soluble protein into a highly organized fiber, including the possibility of viewing spider silk self-assembly through a framework relevant to biomolecular condensates. Finally, we consider the concept of "biomimetics" as it applies to artificial spider silk production with a focus on key practical aspects of design and evaluation that may hopefully inform efforts to more closely reproduce the remarkable structure and function of the native silk fiber using artificial methods.


Asunto(s)
Fibroínas , Arañas , Secuencia de Aminoácidos , Animales , Fibroínas/química , Fibroínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Seda/química , Arañas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA