Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Mol Cell ; 73(1): 84-96.e7, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30472187

RESUMEN

The post-translational modification of key residues at the C-terminal domain of RNA polymerase II (RNAP2-CTD) coordinates transcription, splicing, and RNA processing by modulating its capacity to act as a landing platform for a variety of protein complexes. Here, we identify a new modification at the CTD, the deimination of arginine and its conversion to citrulline by peptidyl arginine deiminase 2 (PADI2), an enzyme that has been associated with several diseases, including cancer. We show that, among PADI family members, only PADI2 citrullinates R1810 (Cit1810) at repeat 31 of the CTD. Depletion of PADI2 or loss of R1810 results in accumulation of RNAP2 at transcription start sites, reduced gene expression, and inhibition of cell proliferation. Cit1810 is needed for interaction with the P-TEFb (positive transcription elongation factor b) kinase complex and for its recruitment to chromatin. In this way, CTD-Cit1810 favors RNAP2 pause release and efficient transcription in breast cancer cells.


Asunto(s)
Neoplasias de la Mama/enzimología , Procesamiento Proteico-Postraduccional , ARN Polimerasa II/metabolismo , Transcripción Genética , Arginina , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular , Citrulinación , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Dominios Proteicos , Arginina Deiminasa Proteína-Tipo 2 , Desiminasas de la Arginina Proteica/genética , Desiminasas de la Arginina Proteica/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/genética , Transducción de Señal
2.
J Immunol ; 213(1): 75-85, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38758115

RESUMEN

In chronic obstructive pulmonary disease (COPD), inflammation gives rise to protease-mediated degradation of the key extracellular matrix protein, elastin, which causes irreversible loss of pulmonary function. Intervention against proteolysis has met with limited success in COPD, due in part to our incomplete understanding of the mechanisms that underlie disease pathogenesis. Peptidyl arginine deiminase (PAD) enzymes are a known modifier of proteolytic susceptibility, but their involvement in COPD in the lungs of affected individuals is underexplored. In this study, we showed that enzyme isotypes PAD2 and PAD4 are present in primary granules of neutrophils and that cells from people with COPD release increased levels of PADs when compared with neutrophils of healthy control subjects. By examining bronchoalveolar lavage and lung tissue samples of patients with COPD or matched smoking and nonsmoking counterparts with normal lung function, we reveal that COPD presents with markedly increased airway concentrations of PADs. Ex vivo, we established citrullinated elastin in the peripheral airways of people with COPD, and in vitro, elastin citrullination significantly enhanced its proteolytic degradation by serine and matrix metalloproteinases, including neutrophil elastase and matrix metalloprotease-12, respectively. These results provide a mechanism by which neutrophil-released PADs affect lung function decline, indicating promise for the future development of PAD-based therapeutics for preserving lung function in patients with COPD.


Asunto(s)
Elastina , Neutrófilos , Arginina Deiminasa Proteína-Tipo 2 , Arginina Deiminasa Proteína-Tipo 4 , Proteolisis , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Neutrófilos/inmunología , Elastina/metabolismo , Femenino , Masculino , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Persona de Mediana Edad , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patología , Enfisema Pulmonar/inmunología , Anciano , Arginina Deiminasa Proteína-Tipo 2/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Citrulinación , Desiminasas de la Arginina Proteica/metabolismo , Elastasa de Leucocito/metabolismo , Pulmón/inmunología , Pulmón/patología
3.
Neurobiol Dis ; 192: 106414, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253209

RESUMEN

Alteration in protein citrullination (PC), a common posttranslational modification (PTM), contributes to pathogenesis in various inflammatory disorders. We previously reported that PC and protein arginine deiminase 2 (PAD2), the predominant enzyme isoform that catalyzes this PTM in the central nervous system (CNS), are altered in mouse models of amyotrophic lateral sclerosis (ALS). We now demonstrate that PAD2 expression and PC are altered in human postmortem ALS spinal cord and motor cortex compared to controls, increasing in astrocytes while trending lower in neurons. Furthermore, PC is enriched in protein aggregates that contain the myelin proteins PLP and MBP in ALS. These results confirm our findings in ALS mouse models and suggest that altered PAD2 and PC contribute to neurodegeneration in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Citrulinación , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/metabolismo , Gliosis/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo , Proteínas de la Mielina/metabolismo , Vaina de Mielina/patología , Agregado de Proteínas , Arginina Deiminasa Proteína-Tipo 2/metabolismo , Desiminasas de la Arginina Proteica/metabolismo , Proteínas/metabolismo , Médula Espinal/patología
4.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39201398

RESUMEN

Protein expression is regulated through multiple mechanisms, including post-translational modifications (PTMs), which can alter protein structure, stability, localization, and function. Among these, citrullination stands out due to its ability to convert arginine residues into citrulline, altering protein charge and mass. This modification is catalyzed by calcium-dependent protein arginine deiminases (PADs), enzymes implicated in various inflammatory diseases. We have recently shown that human cytomegalovirus (HCMV) and herpes simplex virus type 1 (HSV-1) exploit these enzymes to enhance their replication capabilities. Although the role of PADs in HCMV and HSV-1 infections is well documented, their involvement in HSV-2 infection has not yet been thoroughly investigated. Here, we demonstrate that HSV-2 manipulates the overall protein citrullination profile by activating three PAD isoforms: PAD2, PAD3, and PAD4. However, as previously observed during HSV-1 infection, PAD3 is the most significantly upregulated isoform, both at the mRNA and protein levels. Consistently, we demonstrate that inhibiting PAD3, either through the specific inhibitor CAY10727 or via CRISPR/Cas9-mediated gene silencing, markedly reduces HSV-2 replication and viral protein expression. Lastly, we show that CAY10727 displays an IC50 value of 0.3 µM, which is extremely close to what was previously observed for HSV-1. Overall, our findings highlight the crucial role of PAD3 in the life cycle of HSV-2 and suggest that the targeted inhibition of PAD3 may represent a promising approach for treating HSV-2 infections, especially in cases resistant to existing antiviral therapies.


Asunto(s)
Herpesvirus Humano 2 , Arginina Deiminasa Proteína-Tipo 3 , Humanos , Herpesvirus Humano 2/fisiología , Herpesvirus Humano 2/genética , Arginina Deiminasa Proteína-Tipo 3/metabolismo , Citrulinación , Herpes Simple/virología , Herpes Simple/metabolismo , Replicación Viral/efectos de los fármacos , Animales , Herpes Genital/metabolismo , Herpes Genital/virología , Herpes Genital/tratamiento farmacológico , Arginina Deiminasa Proteína-Tipo 2/metabolismo , Antivirales/farmacología
5.
Int J Mol Sci ; 25(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38791230

RESUMEN

The human microbiome exists throughout the body, and it is essential for maintaining various physiological processes, including immunity, and dysbiotic events, which are associated with autoimmunity. Peptidylarginine deiminase (PAD) enzymes can citrullinate self-proteins related to rheumatoid arthritis (RA) that induce the production of anti-citrullinated protein antibodies (ACPAs) and lead to inflammation and joint damage. The present investigation was carried out to demonstrate the expression of homologs of PADs or arginine deiminases (ADs) and citrullinated proteins in members of the human microbiota. To achieve the objective, we used 17 microbial strains and specific polyclonal antibodies (pAbs) of the synthetic peptide derived from residues 100-200 of human PAD2 (anti-PAD2 pAb), and the recombinant fragment of amino acids 326 and 611 of human PAD4 (anti-PAD4 pAb), a human anti-citrulline pAb, and affinity ACPAs of an RA patient. Western blot (WB), enzyme-linked immunosorbent assay (ELISA), elution, and a test with Griess reagent were used. This is a cross-sectional case-control study on patients diagnosed with RA and control subjects. Inferential statistics were applied using the non-parametric Kruskal-Wallis test and Mann-Whitney U test generated in the SPSS program. Some members of phyla Firmicutes and Proteobacteria harbor homologs of PADs/ADs and citrullinated antigens that are reactive to the ACPAs of RA patients. Microbial citrullinome and homolog enzymes of PADs/ADs are extensive in the human microbiome and are involved in the production of ACPAs. Our findings suggest a molecular link between microorganisms of a dysbiotic microbiota and RA pathogenesis.


Asunto(s)
Anticuerpos Antiproteína Citrulinada , Artritis Reumatoide , Citrulinación , Microbiota , Desiminasas de la Arginina Proteica , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Anticuerpos Antiproteína Citrulinada/inmunología , Anticuerpos Antiproteína Citrulinada/metabolismo , Artritis Reumatoide/inmunología , Artritis Reumatoide/microbiología , Estudios de Casos y Controles , Citrulina/metabolismo , Estudios Transversales , Hidrolasas/metabolismo , Arginina Deiminasa Proteína-Tipo 2/metabolismo , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Desiminasas de la Arginina Proteica/metabolismo , Desiminasas de la Arginina Proteica/genética
6.
Blood ; 137(19): 2681-2693, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33529319

RESUMEN

Patients with isolated pulmonary embolism (PE) have a distinct clinical profile from those with deep vein thrombosis (DVT)-associated PE, with more pulmonary conditions and atherosclerosis. These findings suggest a distinct molecular pathophysiology and the potential involvement of alternative pathways in isolated PE. To test this hypothesis, data from 532 individuals from the Genotyping and Molecular Phenotyping of Venous ThromboEmbolism Project, a multicenter prospective cohort study with extensive biobanking, were analyzed. Targeted, high-throughput proteomics, machine learning, and bioinformatic methods were applied to contrast the acute-phase plasma proteomes of isolated PE patients (n = 96) against those of patients with DVT-associated PE (n = 276) or isolated DVT (n = 160). This resulted in the identification of shared molecular processes between PE phenotypes, as well as an isolated PE-specific protein signature. Shared processes included upregulation of inflammation, response to oxidative stress, and the loss of pulmonary surfactant. The isolated PE-specific signature consisted of 5 proteins: interferon-γ, glial cell line-derived neurotrophic growth factor, polypeptide N-acetylgalactosaminyltransferase 3, peptidyl arginine deiminase type-2, and interleukin-15 receptor subunit α. These proteins were orthogonally validated using cis protein quantitative trait loci. External replication in an independent population-based cohort (n = 5778) further validated the proteomic results and showed that they were prognostic for incident primary isolated PE in individuals without history of VTE (median time to event: 2.9 years; interquartile range: 1.6-4.2 years), supporting their possible involvement in the early pathogenesis. This study has identified molecular overlaps and differences between VTE phenotypes. In particular, the results implicate noncanonical pathways more commonly associated with respiratory and atherosclerotic disease in the acute pathophysiology of isolated PE.


Asunto(s)
Proteoma , Embolia Pulmonar/metabolismo , Transcriptoma , Proteínas de Fase Aguda/biosíntesis , Adulto , Anciano , Aterosclerosis/complicaciones , Comorbilidad , Conjuntos de Datos como Asunto , Femenino , Estudios de Seguimiento , Regulación de la Expresión Génica , Factor Neurotrófico Derivado de la Línea Celular Glial/biosíntesis , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Humanos , Interferón gamma/biosíntesis , Interferón gamma/genética , Subunidad alfa del Receptor de Interleucina-15/biosíntesis , Subunidad alfa del Receptor de Interleucina-15/genética , Aprendizaje Automático , Masculino , Persona de Mediana Edad , N-Acetilgalactosaminiltransferasas/biosíntesis , N-Acetilgalactosaminiltransferasas/genética , Estrés Oxidativo , Estudios Prospectivos , Mapas de Interacción de Proteínas , Arginina Deiminasa Proteína-Tipo 2/biosíntesis , Arginina Deiminasa Proteína-Tipo 2/genética , Embolia Pulmonar/genética , Embolia Pulmonar/fisiopatología , Surfactantes Pulmonares , Sitios de Carácter Cuantitativo , Tromboembolia Venosa/metabolismo , Polipéptido N-Acetilgalactosaminiltransferasa
7.
Cell Mol Life Sci ; 79(3): 155, 2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35218410

RESUMEN

Cellular senescence is closely related to tissue aging including bone. Bone homeostasis is maintained by the tight balance between bone-forming osteoblasts and bone-resorbing osteoclasts, but it undergoes deregulation with age, causing age-associated osteoporosis, a main cause of which is osteoblast dysfunction. Oxidative stress caused by the accumulation of reactive oxygen species (ROS) in bone tissues with aging can accelerate osteoblast senescence and dysfunction. However, the regulatory mechanism that controls the ROS-induced senescence of osteoblasts is poorly understood. Here, we identified Peptidyl arginine deiminase 2 (PADI2), a post-translational modifying enzyme, as a regulator of ROS-accelerated senescence of osteoblasts via RNA-sequencing and further functional validations. PADI2 downregulation by treatment with H2O2 or its siRNA promoted cellular senescence and suppressed osteoblast differentiation. CCL2, 5, and 7 known as the elements of the senescence-associated secretory phenotype (SASP) which is a secretome including proinflammatory cytokines and chemokines emitted by senescent cells and a representative feature of senescence, were upregulated by H2O2 treatment or Padi2 knockdown. Furthermore, blocking these SASP factors with neutralizing antibodies or siRNAs alleviated the senescence and dysfunction of osteoblasts induced by H2O2 treatment or Padi2 knockdown. The elevated production of these SASP factors was mediated by the activation of NFκB signaling pathway. The inhibition of NFκB using the pharmacological inhibitor or siRNA effectively relieved H2O2 treatment- or Padi2 knockdown-induced senescence and osteoblast dysfunction. Together, our study for the first time uncover the role of PADI2 in ROS-accelerated cellular senescence of osteoblasts and provide new mechanistic and therapeutic insights into excessive ROS-promoted cellular senescence and aging-related bone diseases.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Quimiocinas CC/metabolismo , Peróxido de Hidrógeno/farmacología , FN-kappa B/metabolismo , Arginina Deiminasa Proteína-Tipo 2/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Quimiocina CCL2/antagonistas & inhibidores , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL5/antagonistas & inhibidores , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Quimiocina CCL7/antagonistas & inhibidores , Quimiocina CCL7/genética , Quimiocina CCL7/metabolismo , Quimiocinas CC/antagonistas & inhibidores , Quimiocinas CC/genética , Daño del ADN/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Ratones , Osteoblastos/citología , Osteoblastos/metabolismo , Arginina Deiminasa Proteína-Tipo 2/antagonistas & inhibidores , Arginina Deiminasa Proteína-Tipo 2/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
8.
Biochemistry ; 61(13): 1286-1297, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35737372

RESUMEN

Peptidylarginine deiminase 2 (PAD2) is a Ca2+-dependent enzyme that catalyzes the conversion of protein arginine residues to citrulline. This kind of structural modification in histone molecules may affect gene regulation, leading to effects that may trigger several diseases, including breast cancer, which makes PAD2 an attractive target for anticancer drug development. To design new effective inhibitors to control activation of PAD2, improving our understanding of the molecular mechanisms of PAD2 using up-to-date computational techniques is essential. We have designed five different PAD2-substrate complex systems based on varying protonation states of the active site residues. To search the conformational space broadly, multiple independent molecular dynamics simulations of the complexes have been performed. In total, 50 replica simulations have been performed, each of 1 µs, yielding a total simulation time of 50 µs. Our findings identify that the protonation states of Cys647, Asp473, and His471 are critical for the binding and localization of the N-α-benzoyl-l-arginine ethyl ester substrate within the active site. A novel mechanism for enzyme activation is proposed according to near attack conformers. This represents an important step in understanding the mechanism of citrullination and developing PAD2-inhibiting drugs for the treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Simulación de Dinámica Molecular , Arginina Deiminasa Proteína-Tipo 2 , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/metabolismo , Citrulinación , Femenino , Humanos , Arginina Deiminasa Proteína-Tipo 2/química , Arginina Deiminasa Proteína-Tipo 2/metabolismo
9.
Reprod Biol Endocrinol ; 20(1): 150, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224627

RESUMEN

BACKGROUND: Peptidylarginine deiminase enzymes (PADs) convert arginine residues to citrulline in a process called citrullination or deimination. Recently, two PADs, PAD2 and PAD4, have been linked to hormone signaling in vitro and the goal of this study was to test for links between PAD2/PAD4 and hormone signaling in vivo. METHODS: Preliminary analysis of Padi2 and Padi4 single knockout (SKO) mice did not find any overt reproductive defects and we predicted that this was likely due to genetic compensation. To test this hypothesis, we created a Padi2/Padi4 double knockout (DKO) mouse model and tested these mice along with wild-type FVB/NJ (WT) and both strains of SKO mice for a range of reproductive defects. RESULTS: Controlled breeding trials found that male DKO mice appeared to take longer to have their first litter than WT controls. This tendency was maintained when these mice were mated to either DKO or WT females. Additionally, unsexed 2-day old DKO pups and male DKO weanlings both weighed significantly less than their WT counterparts, took significantly longer than WT males to reach puberty, and had consistently lower serum testosterone levels. Furthermore, 90-day old adult DKO males had smaller testes than WT males with increased rates of germ cell apoptosis. CONCLUSIONS: The Padi2/Padi4 DKO mouse model provides a new tool for investigating PAD function and outcomes from our studies provide the first in vivo evidence linking PADs with hormone signaling.


Asunto(s)
Citrulina , Infertilidad , Arginina Deiminasa Proteína-Tipo 2/metabolismo , Desiminasas de la Arginina Proteica/metabolismo , Animales , Arginina , Modelos Animales de Enfermedad , Femenino , Gonadotropinas , Hidrolasas/genética , Infertilidad/genética , Masculino , Ratones , Ratones Noqueados , Arginina Deiminasa Proteína-Tipo 2/genética , Desiminasas de la Arginina Proteica/genética , Testosterona
10.
Pathobiology ; 89(1): 38-48, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34569542

RESUMEN

INTRODUCTION: Protein arginine deiminases (PADIs) are a family of enzymes that catalyse the post-translational modification of proteins. Association between PADI expression and clinicopathology, protein expression, and outcome was determined. METHODS: PADI2 and PADI4 expression was assessed immunohistochemically in a cohort of colorectal cancer (CRC) patients. RESULTS: CRC tissues expressed variable levels of PADI2 which was mainly localised in the cytoplasm and correlated with patient survival (p = 0.005); high expression increased survival time from 43.5 to 67.6 months. Expression of cytoplasmic PADI2 correlated with the expression of nuclear ß catenin, PADI4, and alpha-enolase. In contrast, expression of nuclear PADI2 correlated with a decrease in survival (p = 0.010), with high expression decreasing survival from 76.4 to 42.9 months. CRC tissues expressed variable levels of PADI4 in both the nucleus and cytoplasm. Expression of cytoplasmic PADI4 correlated with survival (p = 0.001) with high expression increasing survival time from 48.1 to 71.8 months. Expression of cytoplasmic PADI4 correlated with expression of nuclear ß catenin, alpha-enolase (p ≤ 0.0001, p = 0.002), and the apoptotic related protein, Bcl-2. Expression of nuclear PADI4 also correlated with survival (p = 0.011), with high expression of nuclear PADI4 increasing survival time from 55.4 to 74 months. Expression of nuclear PADI4 correlated with p53, alpha-enolase, and Bcl-2. Multivariate analysis showed that TNM stage, cytoplasmic PADI2, and PADI4 remained independent prognostic factors in CRC. Both PADI2 and PADI4 are good prognostic factors in CRC. CONCLUSION: High expression of cytoplasmic PADI2, PADI4, and nuclear PADI4 were associated with an increase in overall survival.


Asunto(s)
Neoplasias Colorrectales , Arginina Deiminasa Proteína-Tipo 2/genética , Arginina Deiminasa Proteína-Tipo 4/genética , Neoplasias Colorrectales/diagnóstico , Humanos , Pronóstico
11.
Cell Mol Biol Lett ; 27(1): 19, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236296

RESUMEN

Peptididylarginine deiminase type 2 (PADI2) catalyzes the conversion of arginine residues to citrulline residues on proteins. We demonstrate that PADI2 induces T cell activation and investigate how PADI2 promotes activated T cell autonomous death (ACAD). In activated Jurkat T cells, overexpression of PADI2 significantly increases citrullinated proteins and induces endoplasmic reticulum (ER) stress and unfolded protein response (UPR) signaling, ultimately resulting in the expression of autophagy-related proteins and autophagy. PADI2 promoted autophagy and resulted in the early degradation of p62 and the light chain 3B (LC3B)-II accumulation. In Jurkat T cells, silencing the autophagy-related gene (Atg) 12 protein inhibits PADI2-mediated autophagy and promotes ER stress and apoptosis, whereas overexpression of Atg12 decreased ER stress and prolonged autophagy to promote cell survival. Additionally, PADI2 regulates T cell activation and the production of Th17 cytokines in Jurkat T cells (interleukins 6, IL-17A, IL-17F, IL-21, and IL-22). In Jurkat T cells, silencing IL-6 promotes autophagy mediated by PADI2 and inhibits PADI2-induced apoptosis, whereas silencing Beclin-1 increases the activation and survival of Th17-like T cells while decreasing autophagy and apoptosis. PADI2 silencing alleviates ER stress caused by PADI2 and decreases cytokine expression associated with Th17-like T cell activation and ACAD. We propose that PADI2 was involved in Th17 lymphocyte ACAD via a mechanism involving ER stress and autophagy that was tightly regulated by PADI2-mediated citrullination. These findings suggest that inhibiting Th17 T cell activation and the development of severe autoimmune diseases may be possible through the use of novel antagonists that specifically target PADI2.


Asunto(s)
Estrés del Retículo Endoplásmico , Arginina Deiminasa Proteína-Tipo 2 , Células Th17 , Apoptosis , Autofagia , Beclina-1 , Estrés del Retículo Endoplásmico/inmunología , Arginina Deiminasa Proteína-Tipo 2/inmunología , Células Th17/inmunología
12.
J Infect Dis ; 223(6): 1093-1102, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-32729925

RESUMEN

BACKGROUND: Pseudomonas aeruginosa (PA) is a pathogenic bacterium that causes severe pneumonia in critically ill and immunocompromised patients. Peptidylarginine deiminase (PAD) 2, PAD4, and caspase-1 are important enzymes in mediating host response to infection. The goal of this study was to determine the interplay between PAD2, PAD4, and caspase-1 in PA pneumonia-induced sepsis. METHODS: Pneumonia was produced in wild-type, Pad2-/-, and Pad4-/- mice by intranasal inoculation of PA (2.5 × 106 colony-forming units per mouse), and survival (n = 15/group) was monitored for 10 days. Bone marrow-derived macrophages (BMDMs) were isolated for in vitro studies. Samples were collected at specific timepoints for Western blot, bacterial load determination, and flow cytometry analysis. RESULTS: Caspase-1-dependent inflammation was diminished in PA-inoculated Pad2-/- mice, contributing to reduced macrophage death and enhanced bacterial clearance. In addition, Pad2-/- mice exhibited improved survival and attenuated acute lung injury after PA infection. In contrast, Pad4-/- mice did not display diminished caspase-1 activation, altered bacterial loads, or improved survival. CONCLUSIONS: Peptidylarginine deiminase 2 plays an essential role in the pathogenesis of pulmonary sepsis by mediating caspase-1 activation. This goes against previous findings of PAD4 in sepsis. Our study suggests that PAD2 is a potential therapeutic target of PA pneumonia-induced sepsis.


Asunto(s)
Caspasa 1 , Neumonía Bacteriana , Arginina Deiminasa Proteína-Tipo 2/metabolismo , Sepsis , Animales , Ratones , Ratones Noqueados , Neumonía Bacteriana/enzimología , Arginina Deiminasa Proteína-Tipo 4 , Pseudomonas aeruginosa , Sepsis/complicaciones , Sepsis/microbiología
13.
J Am Chem Soc ; 143(46): 19257-19261, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34762412

RESUMEN

Mapping protein-protein interactions is crucial for understanding various signaling pathways in living cells, and developing new techniques for this purpose has attracted significant interest. Classic methods (e.g., the yeast two-hybrid) have been supplanted by more sophisticated chemical approaches that label proximal proteins (e.g., BioID, APEX). Herein we describe a proximity-based approach that uniquely labels cysteines. Our approach exploits the nicotinamide N-methyltransferase (NNMT)-catalyzed methylation of an alkyne-substituted 4-chloropyridine (SS6). Upon methylation of the pyridinium nitrogen, this latent electrophile diffuses out of the active site and labels proximal proteins on short time scales (≤5 min). We validated this approach by identifying known (and novel) interacting partners of protein arginine deiminase 2 (PAD2) and pyruvate dehydrogenase kinase 1 (PDK1). To our knowledge, this technology uniquely exploits a suicide substrate to label proximal cysteines in live cells.


Asunto(s)
Cisteína/metabolismo , Mapeo de Interacción de Proteínas , Arginina Deiminasa Proteína-Tipo 2/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Biocatálisis , Línea Celular , Cisteína/química , Humanos , Modelos Moleculares , Estructura Molecular , Arginina Deiminasa Proteína-Tipo 2/química , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/química
14.
Int J Cancer ; 148(2): 267-276, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33459350

RESUMEN

Peptidylarginine deiminases (PADs) catalyze the conversion of arginine residues to citrulline residues on target proteins in the presence of calcium ions. This elaborate type of posttranslational modification is termed citrullination. PADs may regulate gene transcriptional activity via histone citrullination. There has been an increasing appreciation for the roles of PADs in a wide variety of biological processes. In this review article, we summarize recent evidence indicating that PADs and citrullinated proteins are involved in several physiological and pathological processes related to cancer. Of particular interest is that PAD2 and PAD4 exhibit characteristic expression levels, activities and specific biological effects in diverse types of cancer. We also list several PAD inhibitors, propose the possible mechanisms underlying the biological actions of PAD-mediated protein citrullination in experimental models and discuss the potential therapeutic value of PADs and their inhibitors for disease diagnosis and treatment.


Asunto(s)
Neoplasias/metabolismo , Arginina Deiminasa Proteína-Tipo 2/metabolismo , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Animales , Arginina/metabolismo , Citrulina/metabolismo , Humanos , Neoplasias/enzimología , Procesamiento Proteico-Postraduccional
15.
Angiogenesis ; 24(1): 111-127, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32955682

RESUMEN

Angiogenesis plays a key role in the pathology of diseases such as cancer, diabetic retinopathy, and age-related macular degeneration. Understanding the driving forces of endothelial cell migration and organization, as well as the time frame of these processes, can elucidate mechanisms of action of important pathological pathways. Herein, we have developed an organ-specific microfluidic platform recapitulating the in vivo angiogenic microenvironment by co-culturing mouse primary brain endothelial cells with brain pericytes in a three-dimensional (3D) collagen scaffold. As a proof of concept, we show that this model can be used for studying the angiogenic process and further comparing the angiogenic properties between two different common inbred mouse strains, C57BL/6J and 129S1/SvlmJ. We further show that the newly discovered angiogenesis-regulating gene Padi2 promotes angiogenesis through Dll4/Notch1 signaling by an on-chip mechanistic study. Analysis of the interplay between primary endothelial cells and pericytes in a 3D microfluidic environment assists in the elucidation of the angiogenic response.


Asunto(s)
Ingeniería Celular , Microambiente Celular , Células Endoteliales/patología , Imagenología Tridimensional , Microfluídica , Pericitos/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Separación Celular , Células Cultivadas , Regulación hacia Abajo , Células Endoteliales/metabolismo , Ratones Endogámicos C57BL , Neovascularización Patológica/patología , Pericitos/metabolismo , Arginina Deiminasa Proteína-Tipo 2/antagonistas & inhibidores , Arginina Deiminasa Proteína-Tipo 2/metabolismo , Receptores Notch/metabolismo , Transducción de Señal
16.
Infection ; 49(1): 83-93, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33000445

RESUMEN

PURPOSE: Microbial infection stimulates neutrophil/macrophage/monocyte extracellular trap formation, which leads to the release of citrullinated histone H3 (CitH3) catalyzed by peptidylarginine deiminase (PAD) 2 and 4. Understanding these molecular mechanisms in the pathogenesis of septic shock will be an important next step for developing novel diagnostic and treatment modalities. We sought to determine the expression of CitH3 in patients with septic shock, and to correlate CitH3 levels with PAD2/PAD4 and clinically relevant outcomes. METHODS: Levels of CitH3 were measured in serum samples of 160 critically ill patients with septic and non-septic shock, and healthy volunteers. Analyses of clinical and laboratory characteristics of patients were conducted. RESULTS: Levels of circulating CitH3 at enrollment were significantly increased in septic shock patients (n = 102) compared to patients hospitalized with non-infectious shock (NIC) (n = 32, p < 0.0001). The area under the curve (95% CI) for distinguishing septic shock from NIC using CitH3 was 0.76 (0.65-0.86). CitH3 was positively correlated with PAD2 and PAD4 concentrations and Sequential Organ Failure Assessment Scores [total score (r = 0.36, p < 0.0001)]. The serum levels of CitH3 at 24 h (p < 0.01) and 48 h (p < 0.05) were significantly higher in the septic patients that did not survive. CONCLUSION: CitH3 is increased in patients with septic shock. Its serum concentrations correlate with disease severity and prognosis, which may yield vital insights into the pathophysiology of sepsis.


Asunto(s)
Citrulina/metabolismo , Histonas , Choque Séptico/diagnóstico , Choque/diagnóstico , Anciano , Diagnóstico Diferencial , Femenino , Histonas/sangre , Histonas/química , Humanos , Masculino , Persona de Mediana Edad , Polipéptido alfa Relacionado con Calcitonina/sangre , Arginina Deiminasa Proteína-Tipo 2/sangre , Arginina Deiminasa Proteína-Tipo 4/sangre , Estudios Retrospectivos , Choque/sangre , Choque/epidemiología , Choque Séptico/sangre , Choque Séptico/epidemiología , Resultado del Tratamiento
17.
Int J Mol Sci ; 22(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073629

RESUMEN

Rheumatoid arthritis (RA) is a typical autoimmune-mediated rheumatic disease presenting as a chronic synovitis in the joint. The chronic synovial inflammation is characterized by hyper-vascularity and extravasation of various immune-related cells to form lymphoid aggregates where an intimate cross-talk among innate and adaptive immune cells takes place. These interactions facilitate production of abundant proinflammatory cytokines, chemokines and growth factors for the proliferation/maturation/differentiation of B lymphocytes to become plasma cells. Finally, the autoantibodies against denatured immunoglobulin G (rheumatoid factors), EB virus nuclear antigens (EBNAs) and citrullinated protein (ACPAs) are produced to trigger the development of RA. Furthermore, it is documented that gene mutations, abnormal epigenetic regulation of peptidylarginine deiminase genes 2 and 4 (PADI2 and PADI4), and thereby the induced autoantibodies against PAD2 and PAD4 are implicated in ACPA production in RA patients. The aberrant expressions of non-coding RNAs (ncRNAs) including microRNAs (miRs) and long non-coding RNAs (lncRNAs) in the immune system undoubtedly derange the mRNA expressions of cytokines/chemokines/growth factors. In the present review, we will discuss in detail the expression of these ncRNAs and their target molecules participating in developing RA, and the potential biomarkers for the disease, its diagnosis, cardiovascular complications and therapeutic response. Finally, we propose some prospective investigations for unraveling the conundrums of rheumatoid pathogenesis.


Asunto(s)
Artritis Reumatoide/metabolismo , Epigénesis Genética , Regulación Enzimológica de la Expresión Génica , Arginina Deiminasa Proteína-Tipo 2/biosíntesis , Arginina Deiminasa Proteína-Tipo 4/biosíntesis , ARN Largo no Codificante/biosíntesis , Artritis Reumatoide/genética , Artritis Reumatoide/patología , Artritis Reumatoide/terapia , Humanos , Arginina Deiminasa Proteína-Tipo 2/genética , Arginina Deiminasa Proteína-Tipo 4/genética , ARN Largo no Codificante/genética
18.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573274

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with limited survival rate. Roles for peptidylarginine deiminases (PADs) have been studied in relation to a range of cancers with roles in epigenetic regulation (including histone modification and microRNA regulation), cancer invasion, and extracellular vesicle (EV) release. Hitherto though, knowledge on PADs in PDAC is limited. In the current study, two PDAC cell lines (Panc-1 and MiaPaCa-2) were treated with pan-PAD inhibitor Cl-amidine as well as PAD2, PAD3, and PAD4 isozyme-specific inhibitors. Effects were assessed on changes in EV signatures, including EV microRNA cargo (miR-21, miR-126, and miR-221), on changes in cellular protein expression relevant for pancreatic cancer progression and invasion (moesin), for mitochondrial housekeeping (prohibitin, PHB), and gene regulation (deiminated histone H3, citH3). The two pancreatic cancer cell lines were found to predominantly express PAD2 and PAD3, which were furthermore expressed at higher levels in Panc-1, compared with MiaPaCa-2 cells. PAD2 isozyme-specific inhibitor had the strongest effects on reducing Panc-1 cell invasion capability, which was accompanied by an increase in moesin expression, which in pancreatic cancer is found to be reduced and associated with pancreatic cancer aggressiveness. Some reduction, but not significant, was also found on PHB levels while effects on histone H3 deimination were variable. EV signatures were modulated in response to PAD inhibitor treatment, with the strongest effects observed for PAD2 inhibitor, followed by PAD3 inhibitor, showing significant reduction in pro-oncogenic EV microRNA cargo (miR-21, miR-221) and increase in anti-oncogenic microRNA cargo (miR-126). While PAD2 inhibitor, followed by PAD3 inhibitor, had most effects on reducing cancer cell invasion, elevating moesin expression, and modulating EV signatures, PAD4 inhibitor had negligible effects and pan-PAD inhibitor Cl-amidine was also less effective. Compared with MiaPaCa-2 cells, stronger modulatory effects for the PAD inhibitors were observed in Panc-1 cells, which importantly also showed strong response to PAD3 inhibitor, correlating with previous observations that Panc-1 cells display neuronal/stem-like properties. Our findings report novel PAD isozyme regulatory roles in PDAC, highlighting roles for PAD isozyme-specific treatment, depending on cancer type and cancer subtypes, including in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Vesículas Extracelulares/metabolismo , Neoplasias Pancreáticas/patología , Arginina Deiminasa Proteína-Tipo 2/metabolismo , Arginina Deiminasa Proteína-Tipo 3/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Línea Celular Tumoral , Vesículas Extracelulares/efectos de los fármacos , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Invasividad Neoplásica/patología , Ornitina/análogos & derivados , Ornitina/farmacología , Ornitina/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Prohibitinas , Arginina Deiminasa Proteína-Tipo 2/antagonistas & inhibidores , Arginina Deiminasa Proteína-Tipo 3/antagonistas & inhibidores , Arginina Deiminasa Proteína-Tipo 4/antagonistas & inhibidores , Arginina Deiminasa Proteína-Tipo 4/metabolismo
19.
Neurobiol Dis ; 144: 105032, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32739252

RESUMEN

Neuroinflammation plays a pathogenic role in neurodegenerative diseases and recent findings suggest that it may also be involved in X-linked Dystonia-Parkinsonism (XDP) pathogenesis. Previously, fibroblasts and neuronal stem cells derived from XDP patients demonstrated hypersensitivity to TNF-α, dysregulation in NFκB signaling, and an increase in several pro-inflammatory markers. However, the role of inflammatory processes in XDP patient brain remains unknown. Here we demonstrate that there is a significant increase in astrogliosis and microgliosis in human post-mortem XDP prefrontal cortex (PFC) compared to control. Furthermore, there is a significant increase in histone H3 citrullination (H3R2R8R17cit3) with a concomitant increase in peptidylarginine deaminase 2 (PAD2) and 4 (PAD4), the enzymes catalyzing citrullination, in XDP post-mortem PFC. While there is a significant increase in myeloperoxidase (MPO) levels in XDP PFC, neutrophil elastase (NE) levels are not altered, suggesting that MPO may be released by activated microglia or reactive astrocytes in the brain. Similarly, there was an increase in H3R2R8R17cit3, PAD2 and PAD4 levels in XDP-derived fibroblasts. Importantly, treatment of fibroblasts with Cl-amidine, a pan inhibitor of PAD enzymes, reduced histone H3 citrullination and pro-inflammatory chemokine expression, without affecting cell survival. Taken together, our results demonstrate that inflammation is increased in XDP post-mortem brain and fibroblasts and unveil a new epigenetic potential therapeutic target.


Asunto(s)
Citrulinación , Trastornos Distónicos/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Histonas/metabolismo , Inflamación/metabolismo , Corteza Prefrontal/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Astrocitos/metabolismo , Astrocitos/patología , Autopsia , Supervivencia Celular , Quimiocinas/efectos de los fármacos , Quimiocinas/metabolismo , Citrulinación/efectos de los fármacos , Trastornos Distónicos/patología , Femenino , Fibroblastos/efectos de los fármacos , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Gliosis/metabolismo , Gliosis/patología , Histonas/efectos de los fármacos , Humanos , Inflamación/patología , Elastasa de Leucocito/metabolismo , Masculino , Microglía/metabolismo , Microglía/patología , Persona de Mediana Edad , Ornitina/análogos & derivados , Ornitina/farmacología , Peroxidasa/metabolismo , Corteza Prefrontal/patología , Arginina Deiminasa Proteína-Tipo 2/metabolismo , Arginina Deiminasa Proteína-Tipo 4/metabolismo
20.
J Transl Med ; 18(1): 357, 2020 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-32951601

RESUMEN

BACKGROUND: Epithelial ovarian cancer (EOC) is the most lethal disease among female genital malignant tumors. Peptidylarginine deiminase type II(PADI II) has been shown to enhance a variety of cancers carcinogenesis, including ovarian cancer. The purpose of this study was to investigate the biological role of PADI2 in ovarian cancer (OC) and the relative mechanism. METHODS: Gene Expression Profiling Interactive Analysis (GEPIA) ( https://gepia.pku.cn/ ) and ONCOMINE ( https://www.oncomine.org/ ) were used to analyze PADI2 Gene Expression data. The survival curve for the PADI2 gene was generated by using the online Kaplan-Meier mapping site ( https://www.kmplot.com/ ). We conducted MTT assay, cloning formation assay and EdU cell proliferation assay to detect the cell activity of PADI2 knockdown A2780 and SKOV3 ovarian cancer cells treated with Olaparib. Cell migration and invasion were observed by would healing and transwell assay. The pathway changes after the treatment of PADI2 were detected by transcriptome sequencing and western blot. The role of PADI2 combined with Olaparib treatment in vivo was studied in nude mouse model bearing ovarian cancer tumor. RESULTS: We investigated the role of PADI2 on EOC in vitro and in vivo. PADI2 was upregulated in ovarian cancer samples and high PADI2 expression was correlated with poor outcome. Downregulating PADI2 suppressed colony formation, proliferation, migration and invasion of A2780 and SKOV3 cells. Furthermore, downregulating PADI2 and Olaparib combination treatment attenuated the viability, migration and invasion of A2780 and SKOV3 cells. We identified differentially expressed genes in A2780-shPADI2 and SKOV3-shPADI2 cell by transcriptome sequencing analysis and verified that downregulating PADI2 and Olaparib combination treatment suppresses EMT and JAK2/STAT3 signaling pathway in A2780 and SKOV3 cells in vitro and in vivo. CONCLUSIONS: Downregulation of PADI2 and Olaparib combination treatment attenuated the proliferation, migration and invasion of A2780 and SKOV3 cells by inhibiting the EMT through JAK2/STAT3 signaling pathway.


Asunto(s)
Neoplasias Ováricas , Animales , Carcinoma Epitelial de Ovario/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación hacia Abajo , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Janus Quinasa 2 , Ratones , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Ftalazinas , Piperazinas , Arginina Deiminasa Proteína-Tipo 2 , Factor de Transcripción STAT3
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA