Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.252
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 169(4): 587-596, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475891

RESUMEN

The phytobiome is composed of plants, their environment, and diverse interacting microscopic and macroscopic organisms, which together influence plant health and productivity. These organisms form complex networks that are established and regulated through nutrient cycling, competition, antagonism, and chemical communication mediated by a diverse array of signaling molecules. Integration of knowledge of signaling mechanisms with that of phytobiome members and their networks will lead to a new understanding of the fate and significance of these signals at the ecosystem level. Such an understanding could lead to new biological, chemical, and breeding strategies to improve crop health and productivity.


Asunto(s)
Ecosistema , Plantas/microbiología , Animales , Artrópodos/fisiología , Eucariontes/fisiología , Nematodos/fisiología , Fenómenos Fisiológicos de las Plantas , Transducción de Señal
2.
Nature ; 622(7983): 545-551, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37758946

RESUMEN

Trilobites are among the most iconic of fossils and formed a prominent component of marine ecosystems during most of their 270-million-year-long history from the early Cambrian period to the end Permian period1. More than 20,000 species have been described to date, with presumed lifestyles ranging from infaunal burrowing to a planktonic life in the water column2. Inferred trophic roles range from detritivores to predators, but all are based on indirect evidence such as body and gut morphology, modes of preservation and attributed feeding traces; no trilobite specimen with internal gut contents has been described3,4. Here we present the complete and fully itemized gut contents of an Ordovician trilobite, Bohemolichas incola, preserved three-dimensionally in a siliceous nodule and visualized by synchrotron microtomography. The tightly packed, almost continuous gut fill comprises partly fragmented calcareous shells indicating high feeding intensity. The lack of dissolution of the shells implies a neutral or alkaline environment along the entire length of the intestine supporting digestive enzymes comparable to those in modern crustaceans or chelicerates. Scavengers burrowing into the trilobite carcase targeted soft tissues below the glabella but avoided the gut, suggesting noxious conditions and possibly ongoing enzymatic activity.


Asunto(s)
Artrópodos , Fósiles , Intestinos , Animales , Artrópodos/anatomía & histología , Artrópodos/enzimología , Artrópodos/fisiología , Evolución Biológica , Crustáceos/enzimología , Sincrotrones , Concentración de Iones de Hidrógeno , Intestinos/química , Intestinos/enzimología , Intestinos/metabolismo , Organismos Acuáticos/enzimología , Organismos Acuáticos/fisiología
3.
Bioessays ; 45(3): e2200167, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36693795

RESUMEN

Paleoneuranatomy is an emerging subfield of paleontological research with great potential for the study of evolution. However, the interpretation of fossilized nervous tissues is a difficult task and presently lacks a rigorous methodology. We critically review here cases of neural tissue preservation reported in Cambrian arthropods, following a set of fundamental paleontological criteria for their recognition. These criteria are based on a variety of taphonomic parameters and account for morphoanatomical complexity. Application of these criteria shows that firm evidence for fossilized nervous tissues is less abundant and detailed than previously reported, and we synthesize here evidence that has stronger support. We argue that the vascular system, and in particular its lacunae, may be central to the understanding of many of the fossilized peri-intestinal features known across Cambrian arthropods. In conclusion, our results suggest the need for caution in the interpretation of evidence for fossilized neural tissue, which will increase the accuracy of evolutionary scenarios. Also see the video abstract here: https://youtu.be/2_JlQepRTb0.


Asunto(s)
Artrópodos , Tejido Nervioso , Animales , Evolución Biológica , Fósiles , Artrópodos/anatomía & histología , Artrópodos/fisiología , Paleontología
4.
Proc Natl Acad Sci U S A ; 119(46): e2211283119, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343251

RESUMEN

Springtails (Collembola) have been traditionally portrayed as explosive jumpers with incipient directional takeoff and uncontrolled landing. However, for these collembolans that live near the water, such skills are crucial for evading a host of voracious aquatic and terrestrial predators. We discover that semiaquatic springtails, Isotomurus retardatus, can perform directional jumps, rapid aerial righting, and near-perfect landing on the water surface. They achieve these locomotive controls by adjusting their body attitude and impulse during takeoff, deforming their body in midair, and exploiting the hydrophilicity of their ventral tube, known as the collophore. Experiments and mathematical modeling indicate that directional-impulse control during takeoff is driven by the collophore's adhesion force, the body angle, and the stroke duration produced by their jumping organ, the furcula. In midair, springtails curve their bodies to form a U-shape pose, which leverages aerodynamic forces to right themselves in less than ~20 ms, the fastest ever measured in animals. A stable equilibrium is facilitated by the water adhered to the collophore. Aerial righting was confirmed by placing springtails in a vertical wind tunnel and through physical models. Due to these aerial responses, springtails land on their ventral side ~85% of the time while anchoring via the collophore on the water surface to avoid bouncing. We validated the springtail biophysical principles in a bioinspired jumping robot that reduces in-flight rotation and lands upright ~75% of the time. Thus, contrary to common belief, these wingless hexapods can jump, skydive, and land with outstanding control that can be fundamental for survival.


Asunto(s)
Artrópodos , Animales , Artrópodos/fisiología , Rotación , Agua , Fenómenos Biomecánicos
5.
BMC Biol ; 22(1): 135, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38867210

RESUMEN

BACKGROUND: Evolution of novelty is a central theme in evolutionary biology, yet studying the origins of traits with an apparently discontinuous origin remains a major challenge. Venom systems are a well-suited model for the study of this phenomenon because they capture several aspects of novelty across multiple levels of biological complexity. However, while there is some knowledge on the evolution of individual toxins, not much is known about the evolution of venom systems as a whole. One way of shedding light on the evolution of new traits is to investigate less specialised serial homologues, i.e. repeated traits in an organism that share a developmental origin. This approach can be particularly informative in animals with repetitive body segments, such as centipedes. RESULTS: Here, we investigate morphological and biochemical aspects of the defensive telopodal glandular organs borne on the posterior legs of venomous stone centipedes (Lithobiomorpha), using a multimethod approach, including behavioural observations, comparative morphology, proteomics, comparative transcriptomics and molecular phylogenetics. We show that the anterior venom system and posterior telopodal defence system are functionally convergent serial homologues, where one (telopodal defence) represents a model for the putative early evolutionary state of the other (venom). Venom glands and telopodal glandular organs appear to have evolved from the same type of epidermal gland (four-cell recto-canal type) and while the telopodal defensive secretion shares a great degree of compositional overlap with centipede venoms in general, these similarities arose predominantly through convergent recruitment of distantly related toxin-like components. Both systems are composed of elements predisposed to functional innovation across levels of biological complexity that range from proteins to glands, demonstrating clear parallels between molecular and morphological traits in the properties that facilitate the evolution of novelty. CONCLUSIONS: The evolution of the lithobiomorph telopodal defence system provides indirect empirical support for the plausibility of the hypothesised evolutionary origin of the centipede venom system, which occurred through functional innovation and gradual specialisation of existing epidermal glands. Our results thus exemplify how continuous transformation and functional innovation can drive the apparent discontinuous emergence of novelties on higher levels of biological complexity.


Asunto(s)
Artrópodos , Animales , Artrópodos/fisiología , Venenos de Artrópodos/química , Evolución Biológica , Transcriptoma , Filogenia
6.
Ecol Lett ; 27(5): e14428, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685715

RESUMEN

Species interact in different ways, including competition, facilitation and predation. These interactions can be non-linear or higher order and may depend on time or species densities. Although these higher-order interactions are virtually ubiquitous, they remain poorly understood, as they are challenging both theoretically and empirically. We propose to adapt niche and fitness differences from modern coexistence theory and apply them to species interactions over time. As such, they may not merely inform about coexistence, but provide a deeper understanding of how species interactions change. Here, we investigated how the exploitation of a biotic resource (plant) by phytophagous arthropods affects their interactions. We performed monoculture and competition experiments to fit a generalized additive mixed model to the empirical data, which allowed us to calculate niche and fitness differences. We found that species switch between different types of interactions over time, including intra- and interspecific facilitation, and strong and weak competition.


Asunto(s)
Ecosistema , Animales , Artrópodos/fisiología , Modelos Biológicos , Plantas , Factores de Tiempo , Herbivoria , Conducta Competitiva , Aptitud Genética
7.
Ecol Lett ; 27(5): e14427, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38698677

RESUMEN

Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top-down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests.


Asunto(s)
Artrópodos , Biodiversidad , Aves , Clima , Conducta Predatoria , Árboles , Animales , Artrópodos/fisiología , Aves/fisiología , Cadena Alimentaria , Larva/fisiología
8.
Glob Chang Biol ; 30(6): e17356, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38853470

RESUMEN

Seasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey. Using data from 19 sites spanning a wide temperature gradient from the Subarctic to the High Arctic, we investigated the effects of temperature on the phenology and biomass of arthropods available to shorebirds during their short breeding season at high latitudes. We hypothesized that prolonged exposure to warmer summer temperatures would generate earlier peaks in arthropod biomass, as well as higher peak and seasonal biomass. Across the temperature gradient encompassed by our study sites (>10°C in average summer temperatures), we found a 3-day shift in average peak date for every increment of 80 cumulative thawing degree-days. Interestingly, we found a linear relationship between temperature and arthropod biomass only below temperature thresholds. Higher temperatures were associated with higher peak and seasonal biomass below 106 and 177 cumulative thawing degree-days, respectively, between June 5 and July 15. Beyond these thresholds, no relationship was observed between temperature and arthropod biomass. Our results suggest that prolonged exposure to elevated temperatures can positively influence prey availability for some arctic birds. This positive effect could, in part, stem from changes in arthropod assemblages and may reduce the risk of trophic mismatch.


Asunto(s)
Artrópodos , Biomasa , Estaciones del Año , Temperatura , Animales , Regiones Árticas , Artrópodos/fisiología , Cambio Climático , Cadena Alimentaria , Charadriiformes/fisiología , Migración Animal
9.
J Exp Biol ; 227(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38841875

RESUMEN

The Arctic is a highly variable environment in which extreme daily and seasonal temperature fluctuations can occur. With climate change, an increase in the occurrence of extreme high temperatures and drought events is expected. While the effects of cold and dehydration stress on polar arthropods are well studied in combination, little is known about how these species respond to the combined effects of heat and dehydration stress. In this paper, we investigated how the heat tolerance of the Arctic collembola Megaphorura arctica is affected by combinations of different temperature and humidity acclimation regimes under controlled laboratory conditions. The effect of acclimation temperature was complex and highly dependent on both acclimation time and temperature, and was found to have a positive, negative or no effect depending on experimental conditions. Further, we found marked effects of the interaction between temperature and humidity on heat tolerance, with lower humidity severely decreasing heat tolerance when the acclimation temperature was increased. This effect was more pronounced with increasing acclimation time. Lastly, the effect of acclimation on heat tolerance under a fluctuating temperature regime was dependent on acclimation temperature and time, as well as humidity levels. Together, these results show that thermal acclimation alone has moderate or no effect on heat tolerance, but that drought events, likely to be more frequent in the future, in combination with high temperature stress can have large negative impacts on heat tolerance of some Arctic arthropods.


Asunto(s)
Aclimatación , Artrópodos , Humedad , Termotolerancia , Animales , Regiones Árticas , Aclimatación/fisiología , Artrópodos/fisiología , Termotolerancia/fisiología , Temperatura , Calor , Cambio Climático
10.
J Anim Ecol ; 93(5): 540-553, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38509643

RESUMEN

Understanding how anthropogenic activities induce changes in the functional traits of arthropod communities is critical to assessing their ecological consequences. However, we largely lack comprehensive assessments of the long-term impact of global-change drivers on the trait composition of arthropod communities across a large number of species and sites. This knowledge gap critically hampers our ability to predict human-driven impacts on communities and ecosystems. Here, we use a dataset of 1.73 million individuals from 877 species to study how four functionally important traits of carabid beetles and spiders (i.e. body size, duration of activity period, tolerance to drought, and dispersal capacity) have changed at the community level across ~40 years in different types of land use and as a consequence of land use changes (that is, urbanisation and loss of woody vegetation) at the landscape scale in Switzerland. The results show that the mean body size in carabid communities declined in all types of land use, with particularly stronger declines in croplands compared to forests. Furthermore, the length of the activity period and the tolerance to drought of spider communities decreased in most land use types. The average body size of carabid communities in landscapes with increased urbanisation in the last ~40 years tended to decrease. However, the length of the activity period, the tolerance to drought, and the dispersal capacity did not change significantly. Furthermore, urbanisation promoted increases in the average dispersal capacities of spider communities. Additionally, urbanisation favoured spider communities with larger body sizes and longer activity periods. The loss of woody areas at the landscape level was associated with trait shifts to carabid communities with larger body sizes, shorter activity periods, higher drought tolerances and strongly decreased dispersal capacities. Decreases in activity periods and dispersal capacities were also found in spider communities. Our study demonstrates that human-induced changes in land use alter key functional traits of carabid and spider communities in the long term. The detected trait shifts in arthropod communities likely have important consequences for their functional roles in ecosystems.


Asunto(s)
Arañas , Animales , Arañas/fisiología , Suiza , Escarabajos/fisiología , Tamaño Corporal , Urbanización , Ecosistema , Sequías , Artrópodos/fisiología , Bosques
11.
J Anim Ecol ; 93(7): 943-957, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38801060

RESUMEN

The temporal dynamics of insect populations in agroecosystems are influenced by numerous biotic and abiotic interactions, including trophic interactions in complex food webs. Predicting the regulation of herbivorous insect pests by arthropod predators and parasitoids would allow for rendering crop production less dependent on chemical pesticides. Curtsdotter et al. (2019) developed a food-web model simulating the influences of naturally occurring arthropod predators on aphid population dynamics in cereal crop fields. The use of an allometric hypothesis based on the relative body masses of the prey and various predator guilds reduced the number of estimated parameters to just five, albeit field-specific. Here, we extend this model and test its applicability and predictive capacity. We first parameterized the original model with a dataset with the dynamic arthropod community compositions in 54 fields in six regions in France. We then integrated three additional biological functions to the model: parasitism, aphid carrying capacity and suboptimal high temperatures that reduce aphid growth rates. We developed a multi-field calibration approach to estimate a single set of generic allometric parameters for a given group of fields, which would increase model generality needed for predictions. The original and revised models, when using field-specific parameterization, achieved quantitatively good fits to observed aphid population dynamics for 59% and 53% of the fields, respectively, with pseudo-R2 up to 0.99. But the multi-field calibration showed that increased model generality came at the cost of reduced model reliability (goodness-of-fit). Our study highlights the need to further improve our understanding of how body size and other traits affect trophic interactions in food webs. It also points up the need to acquire high-resolution data to use this type of modelling approach. We propose that a hypothesis-driven strategy of model improvement based on the integration of additional biological functions and additional functional traits beyond body size (e.g., predator space search or prey defences) into the food-web matrix can improve model reliability.


Asunto(s)
Áfidos , Cadena Alimentaria , Modelos Biológicos , Dinámica Poblacional , Conducta Predatoria , Animales , Áfidos/fisiología , Francia , Grano Comestible , Artrópodos/fisiología
12.
Plant Cell ; 32(7)2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32748801

RESUMEN

plantcell;32/7/tpc.120.tt0720/FIG1F1fig1Three-way Interactions between Plants, Microbes, and Arthropods (PMA): Impacts, Mechanisms, and Prospects for Sustainable Plant Protection (By Maria J. Pozo, Benedicte R. Albrectsen, Eduardo R. Bejarano, Eduardo de la Peña, Salva Herrero, Ainhoa Martinez-Medina, Victoria Pastor, Sabine Ravnskov, Mary Williams and Arjen Biere)Plants constantly interact with numerous of organisms and the outcome of these interactions determines plant health and growth. In other words, the phenotype of a plant is not only the result of the plant's interaction with abiotic conditions, but also of multiple interactions in the living environment surrounding the plant, the phytobiome. In this Teaching Tool, we have focused on interactions between plants, microbes and arthropods (PMA). The organism groups that contribute to PMA interactions are presented as well as types of interactions between them, along with multiple examples of simple and more complex PMA interactions. The underlying mechanisms of plant responses are described in detail as well as the evolutionary aspects of PMA interactions. Finally, the use of PMA interactions for crop protection in sustainable plant production that supports the UN Sustainable Development Goals for 2030 is proposed.(Posted July 6, 2020)Click HERE to access Teaching Tool ComponentsRECOMMENDED CITATION STYLE:Pozo, M.J., Albrectsen, B.R., Bejarano, E.R., de la Peña, E., Herrero, S., Martinez-Medina, A., Pastor, V., Ravnskov, S., Williams, M., and Biere, A. (July NN, 2020). Three-way interactions between plants, microbes, and arthropods (PMA): Impacts, mechanisms, and prospects for sustainable plant protection. Teaching Tools in Plant Biology: Lecture Notes. The Plant Cell (online), doi/10.1105/tpc.120.tt0720.


Asunto(s)
Artrópodos/fisiología , Fenómenos Fisiológicos de las Plantas , Plantas/microbiología , Animales , Artrópodos/microbiología , Agentes de Control Biológico , Evolución Biológica , Productos Agrícolas , Herbivoria , Polinización
13.
Glob Chang Biol ; 29(14): 4161-4173, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37114471

RESUMEN

Anthropogenic increases in nitrogen (N) concentrations in the environment are affecting plant diversity and ecosystems worldwide, but relatively little is known about N impacts on terrestrial invertebrate communities. Here, we performed an exploratory meta-analysis of 4365 observations from 126 publications reporting on the richness (number of taxa) or abundance (number of individuals per taxon) of terrestrial arthropods or nematodes in relation to N addition. We found that the response of invertebrates to N enrichment is highly dependent on both species' traits and local climate. The abundance of arthropods with incomplete metamorphosis, including agricultural pest species, increased in response to N enrichment. In contrast, arthropods exhibiting complete or no metamorphosis, including pollinators and detritivores, showed a declining abundance trend with increasing N enrichment, particularly in warmer climates. These contrasting and context-dependent responses may explain why we detected no overall response of arthropod richness. For nematodes, the abundance response to N enrichment was dependent on mean annual precipitation and varied between feeding guilds. We found a declining trend in abundance with N enrichment in dry areas and an increasing trend in wet areas, with slopes differing between feeding guilds. For example, at mean levels of precipitation, bacterivore abundance showed a positive trend in response to N addition while fungivore abundance declined. We further observed an overall decline in nematode richness with N addition. These N-induced changes in invertebrate communities could have negative consequences for various ecosystem functions and services, including those contributing to human food production.


El aumento de las concentraciones de nitrógeno en el medio ambiente de forma antropogénica está afectando a la diversidad vegetal y a los ecosistemas de todo el mundo, pero aún se sabe relativamente poco sobre su impacto en comunidades de invertebrados terrestres. En este trabajo realizamos modelos meta-analíticos para explorar el efecto del enriquecimiento de nitrógeno en comunidades de invertebrados terrestres a escala global. Para ello, utilizamos una base de datos proveniente de 4.365 observaciones pareadas correspondientes a 126 publicaciones que estudiaron el efecto del enriquecimiento de nitrógeno en la riqueza (número de taxones) y/o abundancia (número de individuos por taxón) de artrópodos y/o nematodos. Encontramos que la respuesta de los invertebrados al enriquecimiento de nitrógeno depende en gran medida tanto de los rasgos de las especies como del clima local. La abundancia de artrópodos con metamorfosis incompleta, incluyendo especies que pueden crear plagas agrícolas, aumentó en respuesta al enriquecimiento de nitrógeno. Por el contrario, los artrópodos con metamorfosis completa o nula, incluidos polinizadores y detritívoros, mostraron una tendencia negativa de su abundancia con respecto al aumento de nitrógeno, especialmente en climas más cálidos. Además, no detectamos una respuesta general de la riqueza de artrópodos posiblemente por la variabilidad en respuestas observadas, tanto negativas como positivas. En el caso de los nematodos, la respuesta de sus abundancias al enriquecimiento de nitrógeno fue dependiente de la precipitación media anual y de su grupo trófico. En general, observamos una respuesta negativa de la abundancia de nematodos al enriquecimiento de nitrógeno en zonas secas y una tendencia positiva en zonas más húmedas, pero además los diferentes grupos tróficos estudiados presentaron diferentes respuestas. Por ejemplo, la abundancia de bacterívoros mostró una tendencia positiva en respuesta al enriquecimiento de nitrógeno bajo niveles medios de precipitación, mientras que la abundancia de fungívoros disminuyó. Además, observamos un descenso general de la riqueza de nematodos con más enriquecimiento de nitrógeno. Estos cambios inducidos por el nitrógeno en las comunidades de invertebrados podrían tener consecuencias negativas para diversas funciones y servicios de los ecosistemas, incluyendo aquellos que contribuyen a la producción de alimentos.


Asunto(s)
Artrópodos , Ecosistema , Humanos , Animales , Nitrógeno/farmacología , Invertebrados/fisiología , Artrópodos/fisiología , Plantas
14.
Artículo en Inglés | MEDLINE | ID: mdl-36813948

RESUMEN

Representatives of arthropods, the largest animal phylum, occupy terrestrial, aquatic, arboreal, and subterranean niches. Their evolutionary success depends on specific morphological and biomechanical adaptations related to their materials and structures. Biologists and engineers have become increasingly interested in exploring these natural solutions to understand relationships between structures, materials, and their functions in living organisms. The aim of this special issue is to present the state-of-the-art research in this interdisciplinary field using modern methodology, such as imaging techniques, mechanical testing, movement capture, and numerical modeling. It contains nine original research reports covering diverse topics, including flight, locomotion, and attachment of the arthropods. The research achievements are essential not only to understand ecological adaptations, and evolutionary and behavioral traits, but also to drive prominent advances for engineering from exploitation of numerous biomimetic ideas.


Asunto(s)
Artrópodos , Animales , Artrópodos/fisiología , Fenómenos Biomecánicos/fisiología , Locomoción/fisiología , Evolución Biológica , Aclimatación
15.
Artículo en Inglés | MEDLINE | ID: mdl-37198448

RESUMEN

The neural basis underlying spatial orientation in arthropods, in particular insects, has received considerable interest in recent years. This special issue of the Journal of Comparative Physiology A seeks to take account of these developments by presenting a collection of eight review articles and eight original research articles highlighting hotspots of research on spatial orientation in arthropods ranging from flies to spiders and the underlying neural circuits. The contributions impressively illustrate the wide range of tools available to arthropods extending from specific sensory channels to highly sophisticated neural computations for mastering complex navigational challenges.


Asunto(s)
Artrópodos , Arañas , Animales , Artrópodos/fisiología , Orientación Espacial , Percepción Espacial , Insectos/fisiología
16.
J Theor Biol ; 558: 111357, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36410450

RESUMEN

The recent discovery that some terrestrial arthropods can detect, use, and learn from weak electrical fields adds a new dimension to our understanding of how organisms explore and interact with their environments. For bees and spiders, the filiform mechanosensory systems enable this novel sensory modality by carrying electric charge and deflecting in response to electrical fields. This mode of information acquisition opens avenues for previously unrealised sensory dynamics and capabilities. In this paper, we study one such potential: the possibility for an arthropod to locate electrically charged objects. We begin by illustrating how electrostatic interactions between hairs and surrounding electrical fields enable the process of location detection. After which we examine three scenarios: (1) the determination of the location and magnitude of multiple point charges through a single observation, (2) the learning of electrical and mechanical sensor properties and the characteristics of an electrical field through several observations, (3) the possibility that an observer can infer their location and orientation in a fixed and known electrical field (akin to "stellar navigation"). To conclude, we discuss the potential of electroreception to endow an animal with thus far unappreciated sensory capabilities, such as the mapping of electrical environments. Electroreception by terrestrial arthropods offers a renewed understanding of the sensory processes carried out by filiform hairs, adding to aero-acoustic sensing and opening up the possibility of new emergent collective dynamics and information acquisition by distributed hair sensors.


Asunto(s)
Artrópodos , Arañas , Abejas , Animales , Artrópodos/fisiología , Arañas/fisiología , Electricidad , Cabello/fisiología
17.
Oecologia ; 201(3): 813-825, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36869183

RESUMEN

Arthropods respond to vegetation in multiple ways since plants provide habitat and food resources and indicate local abiotic conditions. However, the relative importance of these factors for arthropod assemblages is less well understood. We aimed to disentangle the effects of plant species composition and environmental drivers on arthropod taxonomic composition and to assess which aspects of vegetation contribute to the relationships between plant and arthropod assemblages. In a multi-scale field study in Southern Germany, we sampled vascular plants and terrestrial arthropods in typical habitats of temperate landscapes. We compared independent and shared effects of vegetation and abiotic predictors on arthropod composition distinguishing between four large orders (Lepidoptera, Coleoptera, Hymenoptera, Diptera), and five functional groups (herbivores, pollinators, predators, parasitoids, detritivores). Across all investigated groups, plant species composition explained the major fraction of variation in arthropod composition, while land-cover composition was another important predictor. Moreover, the local habitat conditions depicted by the indicator values of the plant communities were more important for arthropod composition than trophic relationships between certain plant and arthropod species. Among trophic groups, predators showed the strongest response to plant species composition, while responses of herbivores and pollinators were stronger than those of parasitoids and detritivores. Our results highlight the relevance of plant community composition for terrestrial arthropod assemblages across multiple taxa and trophic levels and emphasize the value of plants as a proxy for characterizing habitat conditions that are hardly accessible to direct environmental measurements.


Asunto(s)
Artrópodos , Escarabajos , Animales , Artrópodos/fisiología , Biodiversidad , Ecosistema , Herbivoria , Plantas
18.
Vet Pathol ; 60(5): 678-688, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37401611

RESUMEN

Histopathologic data of millipedes are scarce. Little is known about health and disease of these invertebrates despite their exhibition at zoological institutions and use in ecotoxicological studies. In a retrospective study of 69 zoo-housed giant African millipedes (Archispirostreptus gigas) submitted between 2018 and 2021, most deaths occurred during midwinter and in 2021. The most common lesion was inflammation (n = 55; 80%). Necrosis was seen concurrently in 31 (45%) millipedes and of these, bacteria (20; 29%) and fungi (7; 10%) were detected in lesions. Inflammation was seen in the head/collum (20; 29%), hemocoel (16; 23%), and appendages (9; 13%), specifically in perivisceral fat body (42; 61%), gut (16; 23%), tracheae (26; 38%), skeletal muscle (24; 35%), and ventral nerve (17; 25%). Inflammatory cell types and patterns included agranular hemocytes (61; 88%), granular hemocytes (39; 57%), and nodulation/encapsulation (47; 68%) often accompanied by melanization. The oral cavity or gut (ingestion), spiracles (inhalation), or cuticular defects were considered plausible routes of bacterial entry. Metazoan parasites (adult nematodes: 2, 3%; trematode ova: 2, 3%; and arthropods: 1, 1%) were associated with gut necrosis and inflammation in 5 millipedes. In addition, adult nematodes were noted in the gut of 4 millipedes without lesions. Neoplasia was not detected in any millipedes. Speculatively, environmental factors may have predisposed to disease, as most deaths occurred during winter months. Disease surveillance of millipedes is critical to optimize husbandry practices in zoo populations and investigate potential impacts of environmental degradation and climate change on wild millipedes.


Asunto(s)
Artrópodos , Animales , Estudios Retrospectivos , Artrópodos/fisiología , Necrosis/veterinaria
19.
Proc Natl Acad Sci U S A ; 117(16): 8966-8972, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32253305

RESUMEN

Identifying marine or freshwater fossils that belong to the stem groups of the major terrestrial arthropod radiations is a longstanding challenge. Molecular dating and fossils of their pancrustacean sister group predict that myriapods originated in the Cambrian, much earlier than their oldest known fossils, but uncertainty about stem group Myriapoda confounds efforts to resolve the timing of the group's terrestrialization. Among a small set of candidates for membership in the stem group of Myriapoda, the Cambrian to Triassic euthycarcinoids have repeatedly been singled out. The only known Devonian euthycarcinoid, Heterocrania rhyniensis from the Rhynie and Windyfield cherts hot spring complex in Scotland, reveals details of head structures that constrain the evolutionary position of euthycarcinoids. The head capsule houses an anterior cuticular tentorium, a feature uniquely shared by myriapods and hexapods. Confocal microscopy recovers myriapod-like characters of the preoral chamber, such as a prominent hypopharynx supported by tentorial bars and superlinguae between the mandibles and hypopharynx, reinforcing an alliance between euthycarcinoids and myriapods recovered in recent phylogenetic analysis. The Cambrian occurrence of the earliest euthycarcinoids supplies the oldest compelling evidence for an aquatic stem group for either Myriapoda or Hexapoda, previously a lacuna in the body fossil record of these otherwise terrestrial lineages until the Silurian and Devonian, respectively. The trace fossil record of euthycarcinoids in the Cambrian and Ordovician reveals amphibious locomotion in tidal environments and fills a gap between molecular estimates for myriapod origins in the Cambrian and a post-Ordovician crown group fossil record.


Asunto(s)
Artrópodos/fisiología , Evolución Molecular , Fósiles , Especiación Genética , Distribución Animal , Animales , Agua Dulce , Filogenia , Agua de Mar , Factores de Tiempo
20.
Proc Natl Acad Sci U S A ; 117(22): 11865-11874, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32444484

RESUMEN

Striated muscle contraction involves sliding of actin thin filaments along myosin thick filaments, controlled by calcium through thin filament activation. In relaxed muscle, the two heads of myosin interact with each other on the filament surface to form the interacting-heads motif (IHM). A key question is how both heads are released from the surface to approach actin and produce force. We used time-resolved synchrotron X-ray diffraction to study tarantula muscle before and after tetani. The patterns showed that the IHM is present in live relaxed muscle. Tetanic contraction produced only a very small backbone elongation, implying that mechanosensing-proposed in vertebrate muscle-is not of primary importance in tarantula. Rather, thick filament activation results from increases in myosin phosphorylation that release a fraction of heads to produce force, with the remainder staying in the ordered IHM configuration. After the tetanus, the released heads slowly recover toward the resting, helically ordered state. During this time the released heads remain close to actin and can quickly rebind, enhancing the force produced by posttetanic twitches, structurally explaining posttetanic potentiation. Taken together, these results suggest that, in addition to stretch activation in insects, two other mechanisms for thick filament activation have evolved to disrupt the interactions that establish the relaxed helices of IHMs: one in invertebrates, by either regulatory light-chain phosphorylation (as in arthropods) or Ca2+-binding (in mollusks, lacking phosphorylation), and another in vertebrates, by mechanosensing.


Asunto(s)
Músculo Estriado/fisiología , Miosinas/metabolismo , Fosforilación/fisiología , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Animales , Artrópodos/fisiología , Evolución Molecular , Invertebrados/fisiología , Modelos Moleculares , Contracción Muscular , Relajación Muscular , Miosinas/química , Estructura Secundaria de Proteína , Arañas/fisiología , Vertebrados/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA