Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2322765121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38865263

RESUMEN

Antiviral RNA interference (RNAi) is conserved from yeasts to mammals. Dicer recognizes and cleaves virus-derived double-stranded RNA (dsRNA) and/or structured single-stranded RNA (ssRNA) into small-interfering RNAs, which guide effector Argonaute to homologous viral RNAs for digestion and inhibit virus replication. Thus, Argonaute is believed to be essential for antiviral RNAi. Here, we show Argonaute-independent, Dicer-dependent antiviral defense against dsRNA viruses using Cryphonectria parasitica (chestnut blight fungus), which is a model filamentous ascomycetous fungus and hosts a variety of viruses. The fungus has two dicer-like genes (dcl1 and dcl2) and four argonaute-like genes (agl1 to agl4). We prepared a suite of single to quadruple agl knockout mutants with or without dcl disruption. We tested these mutants for antiviral activities against diverse dsRNA viruses and ssRNA viruses. Although both DCL2 and AGL2 worked as antiviral players against some RNA viruses, DCL2 without argonaute was sufficient to block the replication of other RNA viruses. Overall, these results indicate the existence of a Dicer-alone defense and different degrees of susceptibility to it among RNA viruses. We discuss what determines the great difference in susceptibility to the Dicer-only defense.


Asunto(s)
Virus ARN , Ribonucleasa III , Ribonucleasa III/metabolismo , Ribonucleasa III/genética , Virus ARN/inmunología , Virus ARN/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Ascomicetos/virología , Interferencia de ARN , Replicación Viral/genética , ARN Viral/metabolismo , ARN Viral/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , ARN Bicatenario/metabolismo
2.
Arch Virol ; 169(6): 128, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38802709

RESUMEN

A novel negative-sense single-stranded RNA mycovirus, designated as "Magnaporthe oryzae mymonavirus 1" (MoMNV1), was identified in the rice blast fungus Magnaporthe oryzae isolate NJ39. MoMNV1 has a single genomic RNA segment consisting of 10,515 nucleotides, which contains six open reading frames. The largest open reading frame contains 5837 bases and encodes an RNA replicase. The six open reading frames have no overlap and are arranged linearly on the genome, but the spacing of the genes is small, with a maximum of 315 bases and a minimum of 80 bases. Genome comparison and phylogenetic analysis indicated that MoMNV1 is a new member of the genus Penicillimonavirus of the family Mymonaviridae.


Asunto(s)
Virus Fúngicos , Genoma Viral , Sistemas de Lectura Abierta , Oryza , Filogenia , Enfermedades de las Plantas , Virus ARN , ARN Viral , Virus ARN/genética , Virus ARN/aislamiento & purificación , Virus ARN/clasificación , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Virus Fúngicos/clasificación , Oryza/microbiología , Oryza/virología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , ARN Viral/genética , Ascomicetos/virología , Ascomicetos/genética , Proteínas Virales/genética , Magnaporthe/virología , Magnaporthe/genética
3.
Arch Virol ; 169(8): 165, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990253

RESUMEN

Monilinia fructicola is one of the most devastating fungal diseases of rosaceous fruit crops, both in the field and postharvest, causing significant yield losses. Here, we report the discovery of a novel positive single-stranded RNA virus, Monilinia fructicola hypovirus 3 (MfHV3), in a strain (hf-1) of the phytopathogenic fungus Monilinia fructicola. The complete genome of MfHV3 is 9259 nucleotides (nt) in length and contains a single large open reading frame (ORF) from nt position 462 to 8411. This ORF encodes a polyprotein with three conserved domains, namely UDP-glycosyltransferase, RNA-dependent RNA polymerase (RdRp), and DEAD-like helicase. The MfHV3 polyprotein shares the highest similarity with Colletotrichum camelliae hypovirus 1. Phylogenetic analysis indicated that MfHV3 clustered with members of the genus Betahypovirus within the family Hypoviridae. Taken together, the results of genomic organization comparisons, amino acid sequence alignments, and phylogenetic analysis convincingly show that MfHV3 is a new member of the genus Betahypovirus, family Hypoviridae.


Asunto(s)
Ascomicetos , Virus Fúngicos , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas , Ascomicetos/virología , Ascomicetos/genética , Virus Fúngicos/genética , Virus Fúngicos/clasificación , Virus Fúngicos/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , ARN Viral/genética , Proteínas Virales/genética , Secuenciación Completa del Genoma , Virus ARN/genética , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , ARN Polimerasa Dependiente del ARN/genética , Secuencia de Aminoácidos
4.
Phytopathology ; 114(5): 1020-1027, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38114080

RESUMEN

Invasive fungal diseases represent a major threat to forest ecosystems worldwide. As the application of fungicides is often unfeasible and not a sustainable solution, only a few other control options are available, including biological control. In this context, the use of parasitic mycoviruses as biocontrol agents of fungal pathogens has recently gained particular attention. Since the 1990s, the Asian fungus Hymenoscyphus fraxineus has been causing lethal ash dieback across Europe. In the present study, we investigated the biocontrol potential of the mitovirus Hymenoscyphus fraxineus mitovirus 2 (HfMV2) previously identified in Japanese populations of the pathogen. HfMV2 could be successfully introduced via co-culturing into 16 of 105 HfMV2-free isolates. Infection with HfMV2 had contrasting effects on fungal growth in vitro, from cryptic to detrimental or beneficial. Virus-infected H. fraxineus isolates whose growth was reduced by HfMV2 showed overall a lower virulence on ash (Fraxinus excelsior) saplings as compared with their isogenic HfMV2-free lines. The results suggest that mycoviruses exist in the native populations of H. fraxineus in Asia that have the potential for biological control of ash dieback in Europe. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Ascomicetos , Fraxinus , Virus Fúngicos , Enfermedades de las Plantas , Fraxinus/microbiología , Fraxinus/virología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/prevención & control , Virus Fúngicos/fisiología , Virus Fúngicos/aislamiento & purificación , Ascomicetos/virología , Ascomicetos/fisiología , Virulencia , Control Biológico de Vectores , Agentes de Control Biológico
5.
PLoS Genet ; 17(2): e1009341, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33539346

RESUMEN

Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi, including Saccharomyces yeasts. Although many Saccharomyces killer toxins have been previously identified, their evolutionary origins remain uncertain given that many of these genes have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the Saccharomyces genus has identified a novel killer toxin with a unique spectrum of activity produced by Saccharomyces paradoxus. The expression of this killer toxin is associated with the presence of a dsRNA totivirus and a satellite dsRNA. Genetic sequencing of the satellite dsRNA confirmed that it encodes a killer toxin with homology to the canonical ionophoric K1 toxin from Saccharomyces cerevisiae and has been named K1-like (K1L). Genomic homologs of K1L were identified in six non-Saccharomyces yeast species of the Saccharomycotina subphylum, predominantly in subtelomeric regions of the genome. When ectopically expressed in S. cerevisiae from cloned cDNAs, both K1L and its homologs can inhibit the growth of competing yeast species, confirming the discovery of a family of biologically active K1-like killer toxins. The sporadic distribution of these genes supports their acquisition by horizontal gene transfer followed by diversification. The phylogenetic relationship between K1L and its genomic homologs suggests a common ancestry and gene flow via dsRNAs and DNAs across taxonomic divisions. This appears to enable the acquisition of a diverse arsenal of killer toxins by different yeast species for potential use in niche competition.


Asunto(s)
Ascomicetos/genética , Variación Genética , Factores Asesinos de Levadura/genética , Saccharomycetales/genética , Ascomicetos/clasificación , Ascomicetos/virología , Evolución Molecular , Flujo Génico , Transferencia de Gen Horizontal , Filogenia , ARN Bicatenario/genética , ARN Viral/genética , Saccharomyces/clasificación , Saccharomyces/genética , Saccharomyces/virología , Saccharomyces cerevisiae/genética , Saccharomycetales/clasificación , Saccharomycetales/virología , Especificidad de la Especie , Totivirus/genética
6.
J Virol ; 96(9): e0029622, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35446143

RESUMEN

RNA viruses usually have linear genomes and are encapsidated by their own capsids. Here, we newly identified four mycoviruses and two previously reported mycoviruses (a fungal reovirus and a botybirnavirus) in the hypovirulent strain SCH941 of Sclerotinia sclerotiorum. One of the newly discovered mycoviruses, Sclerotinia sclerotiorum yadokarivirus 1 (SsYkV1), with a nonsegmented positive-sense single-stranded RNA (+ssRNA) genome, was molecularly characterized. SsYkV1 is 5,256 nucleotides (nt) in length, excluding the poly(A) structure, and has a large open reading frame that putatively encodes a polyprotein with the RNA-dependent RNA polymerase (RdRp) domain and a 2A-like motif. SsYkV1 was phylogenetically positioned into the family Yadokariviridae and was most closely related to Rosellinia necatrix yadokarivirus 2 (RnYkV2), with 40.55% identity (78% coverage). Although SsYkV1 does not encode its own capsid protein, the RNA and RdRp of SsYkV1 are trans-encapsidated in virions of Sclerotinia sclerotiorum botybirnavirus 3 (SsBV3), a bisegmented double-stranded RNA (dsRNA) mycovirus within the genus Botybirnavirus. In this way, SsYkV1 likely replicates inside the heterocapsid comprised of the SsBV3 capsid protein, like a dsRNA virus. SsYkV1 has a limited impact on the biological features of S. sclerotiorum. This study represents an example of a yadokarivirus trans-encapsidated by an unrelated dsRNA virus, which greatly deepens our knowledge and understanding of the unique life cycles of RNA viruses. IMPORTANCE RNA viruses typically encase their linear genomes in their own capsids. However, a capsidless +ssRNA virus (RnYkV1) highjacks the capsid of a nonsegmented dsRNA virus for the trans-encapsidation of its own RNA and RdRp. RnYkV1 belongs to the family Yadokariviridae, which already contains more than a dozen mycoviruses. However, it is unknown whether other yadokariviruses except RnYkV1 are also hosted by a heterocapsid, although dsRNA viruses with capsid proteins were detected in fungi harboring yadokarivirus. It is noteworthy that almost all presumed partner dsRNA viruses of yadokariviruses belong to the order Ghabrivirales (most probably a totivirus or toti-like virus). Here, we found a capsidless +ssRNA mycovirus, SsYkV1, from hypovirulent strain SCH941 of S. sclerotiorum, and the RNA and RdRp of this mycovirus are trans-encapsidated in virions of a bisegmented dsRNA virus within the free-floating genus Botybirnavirus. Our results greatly expand our knowledge of the unique life cycles of RNA viruses.


Asunto(s)
Ascomicetos , Virus Fúngicos , Virus ARN , Ascomicetos/virología , Proteínas de la Cápside/genética , Virus Fúngicos/clasificación , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Virus Fúngicos/metabolismo , Genoma Viral/genética , Sistemas de Lectura Abierta , Filogenia , Virus ARN/química , Virus ARN/clasificación , Virus ARN/genética , Virus ARN/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Replicación Viral/fisiología
7.
PLoS Pathog ; 17(8): e1009823, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34428260

RESUMEN

Mycoviruses are an important component of the virosphere, but our current knowledge of their genome organization diversity and evolution remains rudimentary. In this study, the mycovirus composition in a hypovirulent strain of Sclerotinia sclerotiorum was molecularly characterized. Nine mycoviruses were identified and assigned into eight potential families. Of them, six were close relatives of known mycoviruses, while the other three had unique genome organizations and evolutionary positions. A deltaflexivirus with a tripartite genome has evolved via arrangement and horizontal gene transfer events, which could be an evolutionary connection from unsegmented to segmented RNA viruses. Two mycoviruses had acquired a second helicase gene by two different evolutionary mechanisms. A rhabdovirus representing an independent viral evolutionary branch was the first to be confirmed to occur naturally in fungi. The major hypovirulence-associated factor, an endornavirus, was finally corroborated. Our study expands the diversity of mycoviruses and potential virocontrol agents, and also provides new insights into virus evolutionary modes including virus genome segmentation.


Asunto(s)
Ascomicetos/virología , Evolución Biológica , Brassica napus/virología , Linaje de la Célula , Virus Fúngicos/clasificación , Enfermedades de las Plantas/virología , Hojas de la Planta/virología , Virus Fúngicos/genética , Virus Fúngicos/crecimiento & desarrollo , Genoma Viral , Filogenia , ARN Viral
8.
PLoS Pathog ; 17(3): e1009236, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33730096

RESUMEN

Understanding the dynamics of white-nose syndrome spread in time and space is an important component for the disease epidemiology and control. We reported earlier that a novel partitivirus, Pseudogymnoascus destructans partitivirus-pa, had infected the North American isolates of Pseudogymnoascus destructans, the fungal pathogen that causes white-nose syndrome in bats. We showed that the diversity of the viral coat protein sequences is correlated to their geographical origin. Here we hypothesize that the geographical adaptation of the virus could be used as a proxy to characterize the spread of white-nose syndrome. We used over 100 virus isolates from diverse locations in North America and applied the phylogeographic analysis tool BEAST to characterize the spread of the disease. The strict clock phylogeographic analysis under the coalescent model in BEAST showed a patchy spread pattern of white-nose syndrome driven from a few source locations including Connecticut, New York, West Virginia, and Kentucky. The source states had significant support in the maximum clade credibility tree and Bayesian stochastic search variable selection analysis. Although the geographic origin of the virus is not definite, it is likely the virus infected the fungus prior to the spread of white-nose syndrome in North America. We also inferred from the BEAST analysis that the recent long-distance spread of the fungus to Washington had its root in Kentucky, likely from the Mammoth cave area and most probably mediated by a human. The time to the most recent common ancestor of the virus is estimated somewhere between the late 1990s to early 2000s. We found the mean substitution rate of 2 X 10-3 substitutions per site per year for the virus which is higher than expected given the persistent lifestyle of the virus, and the stamping-machine mode of replication. Our approach of using the virus as a proxy to understand the spread of white-nose syndrome could be an important tool for the study and management of other infectious diseases.


Asunto(s)
Ascomicetos/virología , Quirópteros/virología , Nariz/virología , Filogeografía , Animales , Teorema de Bayes , Quirópteros/microbiología , Nariz/microbiología , Filogenia , Filogeografía/métodos
9.
J Virol ; 95(17): e0046721, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34106772

RESUMEN

We previously proposed a new virus lifestyle or yadokari/yadonushi nature exhibited by a positive-sense single-stranded RNA (ssRNA) virus, yadokari virus 1 (YkV1), and an unrelated double-stranded RNA (dsRNA) virus, yadonushi virus 1 (YnV1) in a phytopathogenic ascomycete, Rosellinia necatrix. We have proposed that YkV1 diverts the YnV1 capsid to trans-encapsidate YkV1 RNA and RNA-dependent RNA polymerase (RdRp) and replicate in the heterocapsid. However, it remains uncertain whether YkV1 replicates using its own RdRp and whether YnV1 capsid copackages both YkV1 and YnV1 components. To address these questions, we first took advantage of the reverse genetics tools available for YkV1. Mutations in the GDD RdRp motif, one of the two identifiable functional motifs in the YkV1 polyprotein, abolished its replication competency. Mutations were also introduced in the conserved 2A-like peptide motif, hypothesized to cleave the YkV1 polyprotein cotranslationally. Interestingly, the replication proficiency of YkV1 mutants in the host fungus agreed with the cleavage activity of the 2A-like peptide tested using a baculovirus expression system. Cesium chloride equilibrium density gradient centrifugation allowed for the separation of particles, with a subset of YnV1 capsids solely packaging YkV1 dsRNA and RdRp. These results provide proof of concept that a capsidless positive-sense ssRNA [(+)ssRNA] virus is hosted by an unrelated dsRNA virus. IMPORTANCE Viruses typically encode their own capsids that encase their genomes. However, a capsidless positive-sense single-stranded RNA [(+)ssRNA] virus, YkV1, depends on an unrelated double-stranded RNA (dsRNA) virus, YnV1, for encapsidation and replication. We previously showed that YkV1 highjacks the capsid of YnV1 for trans-encapsidation of its own RNA and RdRp. YkV1 was hypothesized to divert the heterocapsid as the replication site, as is commonly observed for dsRNA viruses. Herein, mutational analyses showed that the RdRp and 2A-like domains of the YkV1 polyprotein are important for its replication. The active RdRp must be cleaved by a 2A-like peptide from the C-proximal protein. Cesium chloride equilibrium density gradient centrifugation allowed for the separation of particles, with YnV1 capsids solely packaging YkV1 dsRNA and RdRp. This study provides proof of concept of a virus neo-lifestyle where a (+)ssRNA virus snatches capsids from an unrelated dsRNA virus to replicate with its own RdRp, thereby mimicking the typical dsRNA virus lifestyle.


Asunto(s)
Ascomicetos/virología , Cápside/metabolismo , ADN de Cadena Simple/metabolismo , Virus Fúngicos/enzimología , Virus ARN/enzimología , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , ADN de Cadena Simple/genética , Virus Fúngicos/genética , Genoma Viral , Mutación , Virus ARN/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/aislamiento & purificación , Ensamble de Virus , Replicación Viral
10.
J Virol ; 95(6)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33361433

RESUMEN

The ascomycete Cryphonectria parasitica causes destructive chestnut blight. Biological control of the fungus by virus infection (hypovirulence) has been shown to be an effective control strategy against chestnut blight in Europe. To provide biocontrol effects, viruses must be able to induce hypovirulence and spread efficiently in chestnut trees. Field studies using living trees to date have focused on a selected family of viruses called hypoviruses, especially prototypic hypovirus CHV1, but there are now known to be many other viruses that infect C. parasitica Here, we tested seven different viruses for their hypovirulence induction, biocontrol potential, and transmission properties between two vegetatively compatible but molecularly distinguishable fungal strains in trees. The test included cytosolically and mitochondrially replicating viruses with positive-sense single-stranded RNA or double-stranded RNA genomes. The seven viruses showed different in planta behaviors and were classified into four groups. Group I, including CHV1, had great biocontrol potential and could protect trees by efficiently spreading and converting virulent to hypovirulent cankers in the trees. Group II could induce high levels of hypovirulence but showed much smaller biocontrol potential, likely because of inefficient virus transmission. Group III showed poor performance in hypovirulence induction and biocontrol, while efficiently being transmitted in the infected trees. Group IV could induce hypovirulence and spread efficiently but showed poor biocontrol potential. Nuclear and mitochondrial genotyping of fungal isolates obtained from the treated cankers confirmed virus transmission between the two fungal strains in most isolates. These results are discussed in view of dynamic interactions in the tripartite pathosystem.IMPORTANCE The ascomycete Cryphonectria parasitica causes destructive chestnut blight, which is controllable by hypovirulence-conferring viruses infecting the fungus. The tripartite chestnut/C. parasitica/virus pathosystem involves the dynamic interactions of their genetic elements, i.e., virus transmission and lateral transfer of nuclear and mitochondrial genomes between fungal strains via anastomosis occurring in trees. Here, we tested diverse RNA viruses for their hypovirulence induction, biocontrol potential, and transmission properties between two vegetatively compatible but molecularly distinguishable fungal strains in live chestnut trees. The tested viruses, which are different in genome type (single-stranded or double-stranded RNA) and organization, replication site (cytosol or mitochondria), virus form (encapsidated or capsidless) and/or symptomatology, have been unexplored in the aforementioned aspects under controlled conditions. This study showed intriguing different in-tree behaviors of the seven viruses and suggested that to exert significant biocontrol effects, viruses must be able to induce hypovirulence and spread efficiently in the fungus infecting the chestnut trees.


Asunto(s)
Ascomicetos/virología , Virus Fúngicos/fisiología , Enfermedades de las Plantas/microbiología , Virus ARN/fisiología , Ascomicetos/genética , Ascomicetos/patogenicidad , Núcleo Celular/genética , Fagaceae/microbiología , Fagaceae/virología , Virus Fúngicos/clasificación , Genoma Fúngico , Mitocondrias/genética , Control Biológico de Vectores , Fenotipo , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/virología , Virus ARN/clasificación , Especificidad de la Especie , Virulencia
11.
J Virol ; 95(17): e0026421, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34132570

RESUMEN

Uncharacterized viral genomes that encode circular replication-associated proteins of single-stranded DNA viruses have been discovered by metagenomics/metatranscriptomics approaches. Some of these novel viruses are classified in the newly formed family Genomoviridae. Here, we determined the host range of a novel genomovirus, SlaGemV-1, through the transfection of Sclerotinia sclerotiorum with infectious clones. Inoculating with the rescued virions, we further transfected Botrytis cinerea and Monilinia fructicola, two economically important members of the family Sclerotiniaceae, and Fusarium oxysporum. SlaGemV-1 causes hypovirulence in S. sclerotiorum, B. cinerea, and M. fructicola. SlaGemV-1 also replicates in Spodoptera frugiperda insect cells but not in Caenorhabditis elegans or plants. By expressing viral genes separately through site-specific integration, the replication protein alone was sufficient to cause debilitation. Our study is the first to demonstrate the reconstruction of a metagenomically discovered genomovirus without known hosts with the potential of inducing hypovirulence, and the infectious clone allows for studying mechanisms of genomovirus-host interactions that are conserved across genera. IMPORTANCE Little is known about the exact host range of widespread genomoviruses. The genome of soybean leaf-associated gemygorvirus-1 (SlaGemV-1) was originally assembled from a metagenomic/metatranscriptomic study without known hosts. Here, we rescued SlaGemV-1 and found that it could infect three important plant-pathogenic fungi and fall armyworm (S. frugiperda Sf9) insect cells but not a model nematode, C. elegans, or model plant species. Most importantly, SlaGemV-1 shows promise for inducing hypovirulence of the tested fungal species in the family Sclerotiniaceae, including Sclerotinia sclerotiorum, Botrytis cinerea, and Monilinia fructicola. The viral determinant of hypovirulence was further identified as replication initiation protein. As a proof of concept, we demonstrate that viromes discovered in plant metagenomes can be a valuable genetic resource when novel viruses are rescued and characterized for their host range.


Asunto(s)
Ascomicetos/virología , Geminiviridae/aislamiento & purificación , Especificidad del Huésped , Metagenoma , Nicotiana/crecimiento & desarrollo , Enfermedades de las Plantas/prevención & control , Virulencia , Animales , Ascomicetos/genética , Ascomicetos/patogenicidad , Botrytis/genética , Botrytis/patogenicidad , Botrytis/virología , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/microbiología , Caenorhabditis elegans/virología , Fusarium/genética , Fusarium/patogenicidad , Fusarium/virología , Geminiviridae/clasificación , Geminiviridae/genética , Genoma Viral , Control Biológico de Vectores , Enfermedades de las Plantas/microbiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Hojas de la Planta/virología , Glycine max/crecimiento & desarrollo , Glycine max/microbiología , Nicotiana/microbiología , Nicotiana/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión
12.
Mol Ecol ; 31(7): 2073-2088, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35122694

RESUMEN

Hyperparasites can affect the evolution of pathosystems by influencing the stability of both pathogen and host populations. However, how pathogens of perennial hosts evolve in the presence of a hyperparasite has rarely been studied. Here, we investigated temporal changes in genetic diversity of the invasive chestnut blight pathogen Cryphonectria parasitica in the presence of its parasitic mycovirus Cryphonectria hypovirus 1 (CHV1). The virus reduces fungal virulence and represents an effective natural biocontrol agent against chestnut blight in Europe. We analysed genome-wide diversity and CHV1 prevalence in C. parasitica populations in southern Switzerland that were sampled twice at an interval of about 30 years. Overall, we found that both pathogen population structure and CHV1 prevalence were retained over time. The results suggest that recent bottlenecks have influenced the structure of C. parasitica populations in southern Switzerland. Strong balancing selection signals were found at a single vegetative incompatibility (vic) locus, consistent with negative frequency-dependent selection imposed by the vegetative incompatibility system. High levels of mating among related individuals (i.e., inbreeding) and genetic drift are probably at the origin of imbalanced allele ratios at vic loci and subsequently low vc type diversity. Virus infection rates were stable at ~30% over the study period and we found no significant impact of the virus on fungal population diversity. Consequently, the efficacy of CHV1-mediated biocontrol was probably retained.


Asunto(s)
Ascomicetos , Fagaceae , Virus Fúngicos , Enfermedades de las Plantas , Virus ARN , Ascomicetos/virología , Fagaceae/microbiología , Virus Fúngicos/genética , Enfermedades de las Plantas/microbiología , Virus ARN/genética , Virulencia
13.
Proc Natl Acad Sci U S A ; 116(6): 2274-2281, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30674672

RESUMEN

In antiviral RNA interference (RNAi), Dicer plays a primary role in processing double-stranded RNA (dsRNA) molecules into small-interfering RNAs (siRNAs) that guide Argonaute effectors to posttranscriptional suppression of target viral genes. Here, we show a distinct role for Dicer in the siRNA-independent transcriptional induction of certain host genes upon viral infection in a filamentous fungus. Previous studies have shown that the two key players, dicer-like 2 (dcl2) and argonaute-like 2 (agl2), of antiviral RNAi in a phytopathogenic ascomycete, Cryphonectria parasitica, are highly transcriptionally induced upon infection with certain RNA mycoviruses, including the positive-stranded RNA hypovirus mutant lacking the RNAi suppressor (Cryphonectria hypovirus 1-Δp69, CHV1-Δp69). This induction is regulated by the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, a well-known transcriptional coactivator. The present study shows that diverse host genes, in addition to dcl2 and agl2, were up-regulated more than 10-fold by SAGA upon infection with CHV1-Δp69. Interestingly, DCL2, but not AGL2, was essential for SAGA-mediated global gene up-regulation. Moreover, deletion of certain virus-induced genes enhanced a CHV1-Δp69 symptom (growth rate) but not its accumulation. Constitutive, modest levels of dcl2 expression drastically reduced viral siRNA accumulation but were sufficient for full-scale up-regulation of host genes, suggesting that high induction of dcl2 and siRNA production are not essential for the transcriptional up-regulation function of DCL2. These data clearly demonstrate the dual functionality of DCL2: as a dsRNA-specific nuclease in posttranscriptional antiviral RNA silencing and as a key player in SAGA-mediated host gene induction, which independently represses viral replication and alleviates virus-induced symptom expression.


Asunto(s)
Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno/genética , Procesamiento Postranscripcional del ARN , Ribonucleasa III/genética , Transcripción Genética , Virosis/genética , Ascomicetos/genética , Ascomicetos/metabolismo , Ascomicetos/virología , Resistencia a la Enfermedad/inmunología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Mutación , Fenotipo , Ribonucleasa III/metabolismo , Virosis/virología , Virus
14.
Arch Virol ; 166(8): 2325-2331, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34057607

RESUMEN

In this report, we describe the molecular characterization of two novel mycoviruses coinfecting the plant pathogenic fungus Nigrospora sphaerica, which were designated "Nigrospora sphaerica fusarivirus 1" (NsFV1) and "Nigrospora sphaerica partitivirus 1" (NsPV1). NsFV1 has an undivided genome measuring 6,147 nt, excluding the polyA tail, and was predicted to contain two nonoverlapping open reading frames (ORF1 and 2). The larger ORF1 encodes a polyprotein containing a conserved RNA-dependent RNA polymerase (RdRp) and a helicase domain that has functions related to RNA replication, and the smaller ORF2 encodes a putative protein with an unknown function. NsPV1 consists of two genome segments, which measure 1,796 bp and 1,455 bp in length. Each of the two dsRNAs has a single ORF, and they are predicted to encode proteins with homology to viral RdRps and coat proteins of members of the family Partitiviridae. Phylogenetic analysis indicated that NsFV1 is a member of the recently proposed family "Fusariviridae", while NsPV1 was determined to belong to the genus Gammapartitivirus in the family Partitiviridae. To the best of our knowledge, this report is the first to describe mycoviruses infecting N. sphaerica.


Asunto(s)
Ascomicetos/virología , Virus Fúngicos/clasificación , Secuenciación Completa del Genoma/métodos , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Tamaño del Genoma , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas/microbiología , Homología de Secuencia de Ácido Nucleico
15.
Arch Virol ; 166(6): 1783-1787, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33779811

RESUMEN

A novel mycovirus with the proposed name "Magnaporthe oryzae botourmiavirus 9" (MoBV9) was found in the rice blast fungus Magnaporthe oryzae isolate SH05. The virus has a positive single-stranded RNA genome of 2,812 nucleotides and contains a single open reading frame predicted to encode an RNA-dependent RNA polymerase that is closely related to those of some unclassified viruses of the family Botourmiaviridae, including Plasmopara viticola lesion associated ourmia-like virus 44, Plasmopara viticola lesion associated ourmia-like virus 47, and Cladosporium uredinicola ourmiavirus 1. Genome sequence comparisons and phylogenetic analysis supported the notion that MoBV9 is a new member of the family Botourmiaviridae.


Asunto(s)
Ascomicetos/virología , Virus Fúngicos/genética , Genoma Viral , Virus ARN/genética , ARN Viral/genética , Secuencia de Aminoácidos , Virus Fúngicos/aislamiento & purificación , Regulación Viral de la Expresión Génica , Filogenia , ARN Viral/aislamiento & purificación , Proteínas Virales/genética , Proteínas Virales/metabolismo
16.
Arch Virol ; 166(2): 665-669, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33409550

RESUMEN

A putative mycovirus belonging to the proposed family "Fusariviridae" was discovered in Setosphaeria turcica by sequencing a double-stranded RNA extracted from this phytopathogenic fungus. The virus was tentatively named "Setosphaeria turcica fusarivirus 1" (StFV1). StFV1 has a genome comprising 6685 nucleotides. The genome contains three open reading frames (ORF). The largest ORF, ORF1, is preceded by an untranslated region (UTR) of 16 nucleotides and separated from ORF2 by an intergenic region of 63 nucleotides. The smallest ORF, ORF3, overlaps ORF2 by 16 nucleotides and is followed by a 3'-UTR of 82 nucleotides. The protein encoded by ORF1 is 71.8%, 67.4% and 68.1% identical to the RNA-dependent RNA polymerases (RdRps) of Pleospora typhicola fusarivirus 1 (PtFV1), Plasmopara viticola lesion-associated fusarivirus 1 (PvlaFV1), and Plasmopara viticola lesion-associated fusarivirus 3 (PvlaFV3), respectively, but has less than 47% amino acid sequence identity to the RdRps of other fusariviruses. To our knowledge, this is the first fusarivirus discovered in S. turcica and the first virus to be identified in this fungus using conventional cloning methods.


Asunto(s)
Ascomicetos/virología , Virus ARN/genética , Regiones no Traducidas 3'/genética , Secuencia de Aminoácidos , Genoma Viral/genética , Nucleótidos/genética , Sistemas de Lectura Abierta/genética , Filogenia , ARN Bicatenario/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética
17.
Arch Virol ; 166(2): 633-637, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33222011

RESUMEN

Here, a novel mycovirus, Botryosphaeria dothidea mitovirus 1 (BdMV1), was isolated from a phytopathogenic fungus, Botryosphaeria dothidea, and its molecular characteristics were determined. BdMV1 has a genome of 2,667 nt that contains a single large open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF encodes an RNA-dependent RNA polymerase (RdRp) of 727 amino acids with a molecular mass of 81.64 kDa. BLASTp analysis revealed that the RdRp domain of BdMV1 has 39.59% and 39.18% sequence identity to Plasmopara viticola associated mitovirus 43 and Setosphaeria turcica mitovirus 1, respectively. Phylogenetic analysis further suggested that BdMV1 is a new member of the genus Mitovirus within the family Mitoviridae. To the best of our knowledge, this is the first report of a mitovirus in B. dothidea.


Asunto(s)
Ascomicetos/virología , Genoma Viral/genética , Plantas/microbiología , Virus ARN/genética , Aminoácidos/genética , Mitocondrias/genética , Sistemas de Lectura Abierta/genética , Filogenia , ARN Viral/genética , ARN Polimerasa Dependiente del ARN , Proteínas Virales/genética
18.
Arch Virol ; 166(8): 2315-2319, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34028604

RESUMEN

A putative polymycovirus tentatively named "Setosphaeria turcica polymycovirus 1" (StPmV1) was discovered in the phytopathogenic fungus Setosphaeria turcica. StPmV1 has a genome comprising five double-stranded RNAs (dsRNAs). dsRNA1, 2, and 3 each encode a protein sharing significant similarity but lower than 64% sequence identity to the corresponding proteins of other polymycoviruses. dsRNA4 and 5 each encode a protein with a sequence that is not conserved among polymycoviruses. However, the protein encoded by dsRNA4 is rich in proline (P), alanine (A), and serine (S) residues, which is a feature shared by the so-called PAS-rich proteins encoded by all polymycoviruses. Phylogeny reconstruction using the RNA-dependent RNA polymerase (RdRp) sequences of accepted or putative polymycoviruses revealed that StPmV1 is most closely related to Plasmopara viticola lesion associated polymycovirus 1 (PvaPolymyco1), a putative polymycovirus recovered from the phytopathogenic oomycetes Plasmopara viticola. These data suggest that StPmV1 may represent a novel species of the genus Polymycovirus, family Polymycoviridae. To our knowledge, this is the first polymycovirus reported from S. turcica.


Asunto(s)
Ascomicetos/virología , Virus Fúngicos/clasificación , ARN Bicatenario/genética , Secuenciación Completa del Genoma/métodos , Composición de Base , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Tamaño del Genoma , Sistemas de Lectura Abierta , Filogenia , Hojas de la Planta/microbiología , ARN de Hongos/genética , Zea mays/microbiología
19.
Arch Virol ; 166(10): 2881-2885, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34338875

RESUMEN

Here, we describe a novel mycovirus, tentatively designated as "Botryosphaeria dothidea mitovirus 3" (BdMV3), isolated from Botryosphaeria dothidea strain FJ, which causes pear ring rot disease in Fujian Province, China. The complete genome nucleotide sequence of BdMV3 is 2538 nt in length and contains a single 2070-nt open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) of 689 amino acids (aa) using the fungal mitochondrial genetic code. BLASTp analysis revealed that the RdRp of BdMV3 shares 28.91%-69.36% sequence identity (query sequence coverage more than 90%) with those of members of the genus Mitovirus, with the highest sequence identity of 69.36% and 68.79% to the corresponding RdRp aa sequences of Rhizoctonia solani mitovirus 10 and Macrophomina phaseolina mitovirus 4, respectively. Phylogenetic analysis based on RdRp aa sequences indicated that BdMV3 is a new member of the genus Mitovirus in the family Mitoviridae.


Asunto(s)
Ascomicetos/virología , Genoma Viral/genética , Enfermedades de las Plantas/microbiología , Pyrus/microbiología , Virus ARN/genética , Secuencia de Aminoácidos , China , Virus Fúngicos/clasificación , Virus Fúngicos/genética , Sistemas de Lectura Abierta/genética , Filogenia , Virus ARN/clasificación , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética
20.
Arch Virol ; 166(4): 1237-1240, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33560459

RESUMEN

Aplosporella javeedii is a pathogenic fungus that causes canker and dieback of jujube in China. In this study, we report a new mycovirus, Aplosporella javeedii partitivirus 1 (AjPV1), isolated from A. javeedii strain NX55-3. The AjPV1 genome contains two double-stranded RNA elements (dsRNA1 and dsRNA2). The size of dsRNA1 is 2,360 bp, and it encodes a putative RNA-dependent RNA polymerase (RdRp), while dsRNA2 is 2,301 bp in length and encodes a putative capsid protein (CP). The sequences of RdRp and CP have significant similarity to those of members of the family Partitiviridae. Sequence alignment and phylogenetic analysis showed that AjPV1 is a new member of the family Partitiviridae that is related to members of the genus Betapartitivirus. To our knowledge, AjPV1 is the first mycovirus reported from A. javeedii.


Asunto(s)
Ascomicetos/virología , Virus ARN Bicatenario/genética , Virus Fúngicos/genética , Enfermedades de las Plantas/microbiología , Secuencia de Aminoácidos , Secuencia de Bases , Virus ARN Bicatenario/clasificación , Virus ARN Bicatenario/aislamiento & purificación , Virus Fúngicos/clasificación , Virus Fúngicos/aislamiento & purificación , Genoma Viral/genética , Filogenia , Enfermedades de las Plantas/virología , ARN Viral/genética , Proteínas Virales/genética , Ziziphus/microbiología , Ziziphus/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA