Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Brain ; 143(1): 69-93, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31828288

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by homozygous mutation or deletion of the survival motor neuron 1 (SMN1) gene. A second copy, SMN2, is similar to SMN1 but produces ∼10% SMN protein because of a single-point mutation that causes splicing defects. Chronic low levels of SMN cause accumulation of co-transcriptional R-loops and DNA damage leading to genomic instability and neurodegeneration in SMA. Severity of SMA disease correlates inversely with SMN levels. SMN2 is a promising target to produce higher levels of SMN by enhancing its expression. Mechanisms that regulate expression of SMN genes are largely unknown. We report that zinc finger protein ZPR1 binds to RNA polymerase II, interacts in vivo with SMN locus and upregulates SMN2 expression in SMA mice and patient cells. Modulation of ZPR1 levels directly correlates and influences SMN2 expression levels in SMA patient cells. ZPR1 overexpression in vivo results in a systemic increase of SMN levels and rescues severe to moderate disease in SMA mice. ZPR1-dependent rescue improves growth and motor function and increases the lifespan of male and female SMA mice. ZPR1 reduces neurodegeneration in SMA mice and prevents degeneration of cultured primary spinal cord neurons derived from SMA mice. Further, we show that the low levels of ZPR1 associated with SMA pathogenesis cause accumulation of co-transcriptional RNA-DNA hybrids (R-loops) and DNA damage leading to genomic instability in SMA mice and patient cells. Complementation with ZPR1 elevates senataxin levels, reduces R-loop accumulation and rescues DNA damage in SMA mice, motor neurons and patient cells. In conclusion, ZPR1 is critical for preventing accumulation of co-transcriptional R-loops and DNA damage to avert genomic instability and neurodegeneration in SMA. ZPR1 enhances SMN2 expression and leads to SMN-dependent rescue of SMA. ZPR1 represents a protective modifier and a therapeutic target for developing a new method for the treatment of SMA.


Asunto(s)
Daño del ADN , Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Transporte de Membrana/genética , Estructuras R-Loop , Atrofias Musculares Espinales de la Infancia/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Animales , ADN Helicasas/metabolismo , Modelos Animales de Enfermedad , Femenino , Células HeLa , Humanos , Inmunohistoquímica , Técnicas In Vitro , Masculino , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Enzimas Multifuncionales/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Cultivo Primario de Células , ARN Helicasas/metabolismo , ARN Polimerasa II/metabolismo , Índice de Severidad de la Enfermedad , Médula Espinal/metabolismo , Médula Espinal/patología , Atrofias Musculares Espinales de la Infancia/metabolismo , Atrofias Musculares Espinales de la Infancia/patología , Atrofias Musculares Espinales de la Infancia/fisiopatología , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Regulación hacia Arriba
2.
J Neurosci ; 35(3): 936-42, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25609612

RESUMEN

Spinal muscular atrophy with pontocerebellar hypoplasia (SMA-PCH) is an infantile SMA variant with additional manifestations, particularly severe microcephaly. We previously identified a nonsense mutation in Vaccinia-related kinase 1 (VRK1), R358X, as a cause of SMA-PCH. VRK1-R358X is a rare founder mutation in Ashkenazi Jews, and additional mutations in patients of different origins have recently been identified. VRK1 is a nuclear serine/threonine protein kinase known to play multiple roles in cellular proliferation, cell cycle regulation, and carcinogenesis. However, VRK1 was not known to have neuronal functions before its identification as a gene mutated in SMA-PCH. Here we show that VRK1-R358X homozygosity results in lack of VRK1 protein, and demonstrate a role for VRK1 in neuronal migration and neuronal stem cell proliferation. Using shRNA in utero electroporation in mice, we show that Vrk1 knockdown significantly impairs cortical neuronal migration, and affects the cell cycle of neuronal progenitors. Expression of wild-type human VRK1 rescues both proliferation and migration phenotypes. However, kinase-dead human VRK1 rescues only the migration impairment, suggesting the role of VRK1 in neuronal migration is partly noncatalytic. Furthermore, we found that VRK1 deficiency in human and mouse leads to downregulation of amyloid-ß precursor protein (APP), a known neuronal migration gene. APP overexpression rescues the phenotype caused by Vrk1 knockdown, suggesting that VRK1 affects neuronal migration through an APP-dependent mechanism.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Movimiento Celular/genética , Cerebelo/anomalías , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Malformaciones del Sistema Nervioso/metabolismo , Neuronas/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Atrofias Musculares Espinales de la Infancia/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Ciclo Celular/genética , Línea Celular Tumoral , Enfermedades Cerebelosas/genética , Enfermedades Cerebelosas/metabolismo , Enfermedades Cerebelosas/patología , Cerebelo/metabolismo , Cerebelo/patología , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/metabolismo , Discapacidades del Desarrollo/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Imagen por Resonancia Magnética , Ratones , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/patología , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/patología
3.
Hum Mol Genet ; 22(17): 3415-24, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23656793

RESUMEN

The loss of functional Survival Motor Neuron (SMN) protein due to mutations or deletion in the SMN1 gene causes autosomal recessive neurodegenerative spinal muscle atrophy (SMA). A potential treatment strategy for SMA is to upregulate the amount of SMN protein originating from the highly homologous SMN2 gene, compensating in part for the absence of the functional SMN1 gene. We have previously shown that in vitro activation of the p38 pathway stabilizes and increases SMN mRNA levels leading to increased SMN protein levels. In this report, we explore the impact of the p38 activating, FDA-approved, blood brain barrier permeating compound celecoxib on SMN levels in vitro and in a mouse model of SMA. We demonstrate a significant induction of SMN protein levels in human and mouse neuronal cells upon treatment with celecoxib. We show that activation of the p38 pathway by low doses celecoxib increases SMN protein in a HuR protein-dependent manner. Furthermore, celecoxib treatment induces SMN expression in brain and spinal cord samples of wild-type mice in vivo. Critically, celecoxib treatment increased SMN levels, improved motor function and enhanced survival in a severe SMA mouse model. Our results identify low dose celecoxib as a potential new member of the SMA therapeutic armamentarium.


Asunto(s)
Encéfalo/efectos de los fármacos , Pirazoles/farmacología , Médula Espinal/efectos de los fármacos , Atrofias Musculares Espinales de la Infancia/metabolismo , Sulfonamidas/farmacología , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Adolescente , Animales , Encéfalo/metabolismo , Celecoxib , Células Cultivadas , Niño , Preescolar , Modelos Animales de Enfermedad , Proteínas ELAV/metabolismo , Regulación de la Expresión Génica , Humanos , Lactante , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Ratones , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Pirazoles/uso terapéutico , Médula Espinal/metabolismo , Atrofias Musculares Espinales de la Infancia/tratamiento farmacológico , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/fisiopatología , Sulfonamidas/uso terapéutico , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética
4.
J Pediatr ; 164(5): 1228-30, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24423433

RESUMEN

We investigated in children with spinal muscular atrophy type 2 the consistency of 4 different equations for predicting resting energy expenditure (REE) compared with measured REE by using indirect calorimetry. In patients with spinal muscular atrophy type 2, measured REE was lower than predicted. We also found a correlation between energy consumption and motor skills.


Asunto(s)
Metabolismo Basal , Atrofias Musculares Espinales de la Infancia/metabolismo , Adolescente , Calorimetría Indirecta/métodos , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino
5.
J Pathol ; 229(1): 49-61, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22847626

RESUMEN

Childhood spinal muscular atrophy is an autosomal recessive neuromuscular disorder caused by alterations in the Survival Motor Neuron 1 gene that triggers degeneration of motor neurons within the spinal cord. Spinal muscular atrophy is the second most common severe hereditary disease of infancy and early childhood. In the most severe cases (type I), the disease appears in the first months of life, suggesting defects in fetal development. However, it is not yet known how motor neurons, neuromuscular junctions, and muscle interact in the neuropathology of the disease. We report the structure of presynaptic and postsynaptic apparatus of the neuromuscular junctions in control and spinal muscular atrophy prenatal and postnatal human samples. Qualitative and quantitative data from confocal and electron microscopy studies revealed changes in acetylcholine receptor clustering, abnormal preterminal accumulation of vesicles, and aberrant ultrastructure of nerve terminals in the motor endplates of prenatal type I spinal muscular atrophy samples. Fetuses predicted to develop milder type II disease had a similar appearance to controls. Postnatal muscle of type I spinal muscular atrophy patients showed persistence of the fetal subunit of acetylcholine receptors, suggesting a delay in maturation of neuromuscular junctions. We observed that pathology in the severe form of the disease starts in fetal development and that a defect in maintaining the initial innervation is an early finding of neuromuscular dysfunction. These results will improve our understanding of the spinal muscular atrophy pathogenesis and help to define targets for possible presymptomatic therapy for this disease.


Asunto(s)
Neuronas Motoras/patología , Músculo Esquelético/patología , Unión Neuromuscular/patología , Atrofias Musculares Espinales de la Infancia/patología , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Edad Gestacional , Humanos , Lactante , Recién Nacido , Microscopía Confocal , Microscopía Electrónica , Morfogénesis , Placa Motora/patología , Neuronas Motoras/química , Neuronas Motoras/ultraestructura , Músculo Esquelético/embriología , Músculo Esquelético/inervación , Músculo Esquelético/ultraestructura , Unión Neuromuscular/embriología , Unión Neuromuscular/ultraestructura , Fenotipo , Terminales Presinápticos/química , Terminales Presinápticos/patología , Receptores Colinérgicos/análisis , Índice de Severidad de la Enfermedad , Atrofias Musculares Espinales de la Infancia/embriología , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/metabolismo
6.
J Biol Chem ; 287(52): 43741-52, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23112048

RESUMEN

Spinal muscular atrophy (SMA), the leading genetic disorder of infant mortality, is caused by low levels of survival motor neuron (SMN) protein. Currently it is not clear how the SMN protein levels are regulated at the post-transcriptional level. In this report, we find that Usp9x, a deubiquitinating enzyme, stably associates with the SMN complex via directly interacting with SMN. Usp9x deubiquitinates SMN that is mostly mono- and di-ubiquitinated. Knockdown of Usp9x promotes SMN degradation and reduces the protein levels of SMN and the SMN complex in cultured mammalian cells. Interestingly, Usp9x does not deubiquitinate nuclear SMNΔ7, the main protein product of the SMN2 gene, which is polyubiquitinated and rapidly degraded by the proteasome. Together, our results indicate that SMN and SMNΔ7 are differently ubiquitinated; Usp9x plays an important role in stabilizing SMN and the SMN complex, likely via antagonizing Ub-dependent SMN degradation.


Asunto(s)
Proteolisis , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , Estabilidad Proteica , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitinación/genética
7.
Mol Cell Neurosci ; 49(3): 282-9, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22197680

RESUMEN

Spinal muscular atrophy (SMA) is a neurodegenerative disease that affects alpha motoneurons in the spinal cord caused by homozygous deletion or specific mutations in the survival motoneuron-1 (SMN1) gene. Cell migration is critical at many stages of nervous system development; to investigate the role of SMN in cell migration, U87MG astroglioma cells were transduced with shSMN lentivectors and about 60% reduction in SMN expression was achieved. In a monolayer wound-healing assay, U87MG SMN-depleted cells exhibit reduced cell migration. In these cells, RhoA was activated and phosphorylated levels of myosin regulatory light chain (MLC), a substrate of the Rho kinase (ROCK), were found increased. The decrease in cell motility was related to activation of RhoA/Rho kinase (ROCK) signaling pathway as treatment with the ROCK inhibitor Y-27632 abrogated both the motility defects and MLC phosphorylation in SMN-depleted cells. As cell migration is regulated by continuous remodeling of the actin cytoskeleton, the actin distribution was studied in SMN-depleted cells. A shift from filamentous to monomeric (globular) actin, involving the disappearance of stress fibers, was observed. In addition, profilin I, an actin-sequestering protein showed an increased expression in SMN-depleted cells. SMN is known to physically interact with profilin, reducing its actin-sequestering activity. The present results suggest that in SMN-depleted cells, the increase in profilin I expression and the reduction in SMN inhibitory action on profilin could lead to reduced filamentous actin polymerization, thus decreasing cell motility. We propose that the alterations reported here in migratory activity in SMN-depleted cells, related to abnormal activation of RhoA/ROCK pathway and increased profilin I expression could have a role in developing nervous system by impairing normal neuron and glial cell migration and thus contributing to disease pathogenesis in SMA.


Asunto(s)
Astrocitoma/metabolismo , Movimiento Celular/fisiología , Profilinas/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Amidas/farmacología , Astrocitoma/genética , Movimiento Celular/genética , Humanos , Neuronas Motoras/metabolismo , Neuronas/metabolismo , Profilinas/genética , Piridinas/farmacología , Atrofias Musculares Espinales de la Infancia/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/genética
8.
Histochem Cell Biol ; 137(5): 657-67, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22302308

RESUMEN

Type I spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by loss or mutations of the survival motor neuron 1 (SMN1) gene. The reduction in SMN protein levels in SMA leads to degeneration and death of motor neurons. In this study, we have analyzed the nuclear reorganization of Cajal bodies, PML bodies and nucleoli in type I SMA motor neurons with homozygous deletion of exons 7 and 8 of the SMN1 gene. Western blot analysis is is revealed a marked reduction of SMN levels compared to the control sample. Using a neuronal dissociation procedure to perform a careful immunocytochemical and quantitative analysis of nuclear bodies, we demonstrated a severe decrease in the mean number of Cajal bodies per neuron and in the proportion of motor neurons containing these structures in type I SMA. Moreover, most Cajal bodies fail to recruit SMN and spliceosomal snRNPs, but contain the proteasome activator PA28, a molecular marker associated with the cellular stress response. Neuronal stress in SMA motor neurons also increases PML body number. The existence of chromatolysis and eccentric nuclei in SMA motor neurons correlates with Cajal body disruption and nucleolar relocalization of coil in, a Cajal body marker. Our results indicate that the Cajal body is a pathophysiological target in type I SMA motor neurons. They also suggest the Cajal body-dependent dysfunction of snRNP biogenesis and, therefore, pre-mRNA splicing in these neurons seems to be an essential component for SMA pathogenesis.


Asunto(s)
Nucléolo Celular/metabolismo , Cuerpos Enrollados/metabolismo , Neuronas Motoras/metabolismo , Proteínas Nucleares/metabolismo , Atrofias Musculares Espinales de la Infancia/metabolismo , Atrofias Musculares Espinales de la Infancia/patología , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Nucléolo Celular/química , Cuerpos Enrollados/química , Humanos , Atrofias Musculares Espinales de la Infancia/genética , Proteína 1 para la Supervivencia de la Neurona Motora/química , Proteína 1 para la Supervivencia de la Neurona Motora/genética
9.
Histochem Cell Biol ; 138(5): 737-48, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22810847

RESUMEN

Reduced levels of the SMN (survival of motoneuron) protein cause spinal muscular atrophy, the main form of motoneuron disease in children and young adults. In cultured motoneurons, reduced SMN levels lead to disturbed axon growth that correlates with reduced actin mRNA and protein in growth cones, indicating that anterograde transport and local translation of ß-actin mRNA are altered in this disease. However, it is not fully understood how local translation of the ß-actin mRNA is regulated in SMN-deficient motoneurons. Here, we established a lentiviral GFP-based reporter construct to monitor local translation of ß-actin mRNA. Time-lapse imaging of fluorescence recovery after photobleaching (FRAP) in living motoneurons revealed that ß-actin is locally translated in the growth cones of embryonic motoneurons. Interestingly, local translation of the ß-actin reporter construct was differentially regulated by various Laminin isoforms, indicating that Laminins provide extracellular cues for the regulation of local translation in growth cones. Notably, local translation of ß-actin mRNA was deregulated in motoneurons from a mouse model for the most severe form of SMA (Smn(-/-);SMN2). Taken together our findings suggest that local translation of ß-actin in growth cones of motoneurons is regulated by Laminin signalling and that this signalling is disturbed in SMA.


Asunto(s)
Actinas/biosíntesis , Axones/metabolismo , Laminina/metabolismo , Neuronas Motoras/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Conos de Crecimiento/metabolismo , Humanos , Ratones , Ratones Transgénicos , Fotoblanqueo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Transducción de Señal/genética , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/análisis , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Imagen de Lapso de Tiempo
10.
Ann Neurol ; 69(5): 866-71, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21337604

RESUMEN

OBJECTIVE: A recessively transmitted fatal hypertonic infantile muscular dystrophy has been described in Canadian aboriginals. The affected infants present with progressive limb and axial muscle stiffness and develop severe respiratory insufficiency, and most die in the first year of life. We sought to determine the genetic basis of this disease. METHODS: We performed histochemical, immunocytochemical, electron microscopy, and molecular genetic studies in a cohort of 12 patients affected by this disease. RESULTS: Conventional histochemical and electron microscopy studies suggested myofibrillar myopathy (MFM). Therefore, we searched for ectopic expression of multiple proteins typical of MFM. Alpha B-crystallin (αBC) expression was absent from all fibers using a monoclonal antibody raised against the entire protein. However, a monoclonal antibody directed against the first 10 residues of αBC immunostained portions of abnormal fibers. Pursuing this clue, we searched for mutations in the gene for αBC (CRYAB) in available DNA samples of 8 patients. All harbored a homozygous deletion, c.60C, predicting a Ser to Ala change at codon 21 and a stop codon after 23 missense residues (p.Ser21AlafsX24). Clinically unaffected parents were heterozygous for this mutation. INTERPRETATION: The homozygous c.60delC in CRYAB pinpoints the genetic basis of the fatal infantile hypertonic muscular dystrophy of Canadian aboriginals. MFMs are typically transmitted by dominant inheritance, but in this disease the parental phenotype is rescued by limited expression of the highly truncated nonfunctional mutant gene product. The severe patient phenotype is due to homozygosity for the markedly hypomorphic allele. Ann Neurol, 2011.


Asunto(s)
Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Grupos de Población , Atrofias Musculares Espinales de la Infancia/metabolismo , Atrofias Musculares Espinales de la Infancia/patología , Cadena B de alfa-Cristalina/metabolismo , Canadá , Estudios de Cohortes , Femenino , Pruebas Genéticas , Humanos , Lactante , Masculino , Músculo Esquelético/diagnóstico por imagen , Eliminación de Secuencia/genética , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/fisiopatología , Ultrasonografía , Cadena B de alfa-Cristalina/genética
11.
Stem Cells ; 29(12): 2090-3, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21956898

RESUMEN

Spinal muscular atrophy (SMA) is one of the most common autosomal recessive disorders in humans and is a common genetic cause of infant mortality. The disease is caused by loss of the survival of motoneuron (SMN) protein, resulting in the degeneration of alpha motoneurons in spinal cord and muscular atrophy in the limbs and trunk. One function of SMN involves RNA splicing. It is unclear why a deficiency in a housekeeping function such as RNA splicing causes profound effects only on motoneurons but not on other cell types. One difficulty in studying SMA is the scarcity of patient's samples. The discovery that somatic cells can be reprogrammed to become induced pluripotent stem cell (iPSCs) raises the intriguing possibility of modeling human diseases in vitro. We reported the establishment of five iPSC lines from the fibroblasts of a type 1 SMA patient. Neuronal cultures derived from these SMA iPSC lines exhibited a reduced capacity to form motoneurons and an abnormality in neurite outgrowth. Ectopic SMN expression in these iPSC lines restored normal motoneuron differentiation and rescued the phenotype of delayed neurite outgrowth. These results suggest that the observed abnormalities are indeed caused by SMN deficiency and not by iPSC clonal variability. Further characterization of the cellular and functional deficits in motoneurons derived from these iPSCs may accelerate the exploration of the underlying mechanisms of SMA pathogenesis.


Asunto(s)
Células Madre Pluripotentes Inducidas/patología , Fenotipo , Atrofias Musculares Espinales de la Infancia/patología , Animales , Diferenciación Celular , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patología , Técnica del Anticuerpo Fluorescente , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones SCID , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Neuritas/patología , Retroviridae/genética , Retroviridae/metabolismo , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Teratoma/metabolismo , Teratoma/patología
12.
J Neurol Neurosurg Psychiatry ; 82(8): 850-2, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20551479

RESUMEN

BACKGROUND: Spinal muscular atrophy (SMA) is caused by the homozygous deletion of the survival motor neuron (SMN)1 gene. The nearly identical SMN2 gene produces small amounts of full-length mRNA and functional SMN protein, due to a point mutation in a critical splicing site. Increasing SMN protein production by histone deacetylase inhibiting drugs such as valproic acid (VPA) is an experimental treatment strategy for SMA. OBJECTIVE: To investigate whether an SMN-specific ELISA could detect changes in SMN protein expression in peripheral blood mononuclear cells (PBMCs) after treatment with VPA. METHODS: The authors developed a sensitive SMN-specific ELISA. Six patients with SMA types 2 and 3 participated in the study. Recombinant SMN calibration curves were used to calculate SMN protein levels in PBMCs before and after 4 months of VPA treatment. RESULTS: The SMN ELISA was able to detect small differences in SMN protein concentrations, and differences in SMN protein levels in Epstein-Barr virus immortalised lymphocyte cell lines from SMA type 1 and 2 patients, carriers and healthy individuals (p<0.05). The mean SMN protein level in PBMCs from SMA patients was 22% (SD 15%) of the value in a healthy control. VPA treatment resulted in significantly increased SMN protein levels in five out of six SMA patients compared with baseline values (p<0.05), but did not restore SMN levels to normal values. CONCLUSIONS: SMN protein quantification by this SMN ELISA is a useful additional tool for evaluating the effects of experimental treatment in SMA.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática , GABAérgicos/farmacología , Atrofias Musculares Espinales de la Infancia/tratamiento farmacológico , Atrofias Musculares Espinales de la Infancia/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Ácido Valproico/farmacología , Adolescente , Niño , Preescolar , Femenino , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Masculino , Resultado del Tratamiento
13.
Nutrients ; 13(7)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34371910

RESUMEN

The management of patients with spinal muscular atrophy type 1 (SMA1) is constantly evolving. In just a few decades, the medical approach has switched from an exclusively palliative therapy to a targeted therapy, transforming the natural history of the disease, improving survival time and quality of life and creating new challenges and goals. Many nutritional problems, gastrointestinal disorders and metabolic and endocrine alterations are commonly identified in patients affected by SMA1 during childhood and adolescence. For this reason, a proper pediatric multidisciplinary approach is then required in the clinical care of these patients, with a specific focus on the prevention of most common complications. The purpose of this narrative review is to provide the clinician with a practical and usable tool about SMA1 patients care, through a comprehensive insight into the nutritional, gastroenterological, metabolic and endocrine management of SMA1. Considering the possible horizons opened thanks to new therapeutic frontiers, a nutritional and endo-metabolic surveillance is a crucial element to be considered for a proper clinical care of these patients.


Asunto(s)
Fenómenos Fisiológicos Nutricionales Infantiles , Metabolismo Energético , Sistema Nervioso Entérico/fisiopatología , Tracto Gastrointestinal/inervación , Estado Nutricional , Atrofias Musculares Espinales de la Infancia/terapia , Adolescente , Animales , Niño , Preescolar , Terapia Combinada , Suplementos Dietéticos , Nutrición Enteral , Absorción Gastrointestinal , Humanos , Lactante , Fármacos Neuroprotectores/uso terapéutico , Atrofias Musculares Espinales de la Infancia/metabolismo , Atrofias Musculares Espinales de la Infancia/fisiopatología , Resultado del Tratamiento
14.
Biochem Biophys Res Commun ; 394(1): 211-6, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20188701

RESUMEN

Childhood spinal muscular atrophy (SMA) is caused by a reduction in survival motor neuron (SMN) protein. SMN is expressed in every cell type, but it is predominantly the lower motor neurones of the spinal cord that degenerate in SMA. SMN has been linked to the axonal transport of beta-actin mRNA, a breakdown in which could trigger disease onset. It is known that SMN is present in transport ribonucleoproteins (RNPs) granules that also contain Gemin2 and Gemin3. To further characterise these granules we have performed live cell imaging of GFP-tagged SMN, GFP-Gemin2, GFP-Gemin3, GFP-Gemin6 and GFP-Gemin7. In all, we have made two important observations: (1) SMN granules appear metamorphic; and (2) the SMN-Gemin complex(es) appears to localise to two distinct subsets of bodies in neurites; stationary bodies and smaller dynamic bodies. This study provides an insight into the neuronal function of the SMN complex.


Asunto(s)
Neuritas/metabolismo , Proteínas del Complejo SMN/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Vesículas Transportadoras/metabolismo , Línea Celular Tumoral , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Atrofias Musculares Espinales de la Infancia/metabolismo
15.
J Mol Med (Berl) ; 87(1): 31-41, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18802676

RESUMEN

Distal spinal muscular atrophy type 1 (DSMA1) is caused by mutations in the immunoglobulin mu-binding protein 2 (IGHMBP2) gene. Patients with DSMA1 present between 6 weeks and 6 months of age with progressive muscle weakness and respiratory failure due to diaphragmatic palsy. Contrary to this "classic" infantile disease, we have previously described a DSMA1 patient with juvenile disease onset. In this paper, we present (1) a second juvenile case and (2) the first study of DSMA1 on protein level in patients with infantile (n = 3) as well as juvenile (n = 2) disease onset observing elevated residual steady-state IGHMBP2 protein levels in the patients with late onset DSMA1 as compared to those with classic DSMA1. Mutation screening in IGHMBP2 revealed two patients compound heterozygous for a novel missense mutation (c.1478C-->T; p.T493I) and another previously described mutation. In lymphoblastoid cells of both patients, steady-state IGHMBP2 protein levels were reduced. In comparison to wild-type IGHMBP2, the p.T493I variant protein had an increased tendency to aggregate and spontaneously degrade in vitro. We verified a change in the physicochemical properties of the p.T493I variant which may explain the pathogenicity of this mutation. Our data further suggest that the age of onset of DSMA1 is variable, and we discuss the effect of residual IGHMBP2 protein levels on the clinical course and the severity of the disease.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mutación Missense , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Adulto , Edad de Inicio , Análisis Mutacional de ADN , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Embarazo , Nacimiento Prematuro
16.
Ann Clin Transl Neurol ; 7(7): 1158-1165, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32558393

RESUMEN

OBJECTIVE: Recent advances in therapeutics have improved prognosis for severely affected spinal muscular atrophy (SMA) type 1 and 2 patients, while the best method of treatment for SMA type 3 patients with later onset of disease is unknown. To better characterize the SMA type 3 population and provide potential therapeutic targets, we aimed to understand gene expression differences in whole blood of SMA type 3 patients (n = 31) and age- and gender-matched controls (n = 34). METHODS: We performed the first large-scale whole blood transcriptomic screen with L1000, a rapid, high-throughput gene expression profiling technology that uses 978 landmark genes to capture a representation of the transcriptome and predict expression of 9196 additional genes. RESULTS: The primary downregulated KEGG pathway in adult SMA type 3 patients was "Regulation of Actin Cytoskeleton," and downregulated expression of key genes in this pathway, including ROCK1, RHOA, and ACTB, was confirmed in the same whole blood samples using RT-qPCR. SMA type 3 patient-derived fibroblasts had lower expression of these genes compared to control fibroblasts from unaffected first-degree relatives. Overexpression of SMN levels using an AAV vector in fibroblasts did not normalize ROCK1, RHOA, and ACTB mRNA expression, indicating the involvement of additional genes in cytoskeleton dynamic regulation. INTERPRETATION: Our findings from whole blood and patient-derived fibroblasts suggest SMA type 3 patients have decreased expression of actin cytoskeleton regulators. These observations provide new insights and potential therapeutic targets for SMA patients with longstanding denervation and secondary musculoskeletal pathophysiology.


Asunto(s)
Citoesqueleto de Actina/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/metabolismo , Adulto , Familia , Femenino , Fibroblastos , Humanos , Masculino , Persona de Mediana Edad , Atrofias Musculares Espinales de la Infancia/sangre
17.
Am J Clin Nutr ; 111(5): 983-996, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32145012

RESUMEN

BACKGROUND: Knowledge on resting energy expenditure (REE) in spinal muscular atrophy type I (SMAI) is still limited. The lack of a population-specific REE equation has led to poor nutritional support and impairment of nutritional status. OBJECTIVE: To identify the best predictors of measured REE (mREE) among simple bedside parameters, to include these predictors in population-specific equations, and to compare such models with the common predictive equations. METHODS: Demographic, clinical, anthropometric, and treatment variables were examined as potential predictors of mREE by indirect calorimetry (IC) in 122 SMAI children consecutively enrolled in an ongoing longitudinal observational study. Parameters predicting REE were identified, and prespecified linear regression models adjusted for nusinersen treatment (discrete: 0 = no; 1 = yes) were used to develop predictive equations, separately in spontaneously breathing and mechanically ventilated patients. RESULTS: In naïve patients, the median (25th, 75th percentile) mREE was 480 (412, 575) compared with 394 (281, 554) kcal/d in spontaneously breathing and mechanically ventilated patients, respectively (P = 0.009).In nusinersen-treated patients, the median (25th, 75th percentile) mREE was 609 (592, 702) compared with 639 (479, 723) kcal/d in spontaneously breathing and mechanically ventilated patients, respectively (P = 0.949).Both in spontaneously breathing and mechanically ventilated patients, the best prediction of REE was obtained from 3 models, all using as predictors: 1 body size related measurement and nusinersen treatment status. Nusinersen treatment was correlated with higher REE both in spontaneously breathing and mechanically ventilated patients. The population-specific equations showed a lower interindividual variability of the bias than the other equation tested, however, they showed a high root mean squared error. CONCLUSIONS: We demonstrated that ventilatory status, nusinersen treatment, demographic, and anthropometric characteristics determine energy requirements in SMAI. Our SMAI-specific equations include variables available in clinical practice and were generally more accurate than previously published equations. At the individual level, however, IC is strongly recommended for assessing energy requirements. Further research is needed to externally validate these predictive equations.


Asunto(s)
Atrofias Musculares Espinales de la Infancia/metabolismo , Metabolismo Basal , Calorimetría Indirecta , Niño , Preescolar , Metabolismo Energético , Femenino , Humanos , Lactante , Estudios Longitudinales , Masculino , Necesidades Nutricionales , Estado Nutricional , Oligonucleótidos/administración & dosificación , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/terapia , Ventiladores Mecánicos
18.
Arch Pediatr ; 27(7S): 7S3-7S8, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33357595

RESUMEN

Autosomal-recessive spinal muscular atrophy (SMA) is characterized by the loss of specific motor neurons of the spinal cord and skeletal muscle atrophy. SMA is caused by mutations or deletions of the survival motor neuron 1 (SMN1) gene, and disease severity correlates with the expression levels of the nearly identical copy gene, SMN2. Both genes ubiquitously express SMN protein, but SMN2 generates only low levels of protein that do not fully compensate for the loss-of-function of SMN1. SMN protein forms a multiprotein complex essential for the cellular assembly of ribonucleoprotein particles involved in diverse aspects of RNA metabolism. Other studies using animal models revealed a spatio-temporal requirement of SMN that is high during the development of the neuromuscular system and later, in the general maintenance of cellular and tissues homeostasis. These observations define a period for maximum therapeutic efficiency of SMN restoration, and suggest that cells outside the central nervous system may also participate in the pathogenesis of SMA. Finally, recent innovative therapies have been shown to mitigate SMN deficiency and have been approved to treat SMA patients. We briefly review major findings from the past twenty-five years of SMA research. © 2020 French Society of Pediatrics. Published by Elsevier Masson SAS. All rights reserved.


Asunto(s)
Terapia Genética/métodos , Fármacos Neuromusculares/uso terapéutico , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/terapia , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Biomarcadores/metabolismo , Marcadores Genéticos , Humanos , Mutación , ARN/metabolismo , Atrofias Musculares Espinales de la Infancia/metabolismo , Atrofias Musculares Espinales de la Infancia/fisiopatología , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
19.
J Neurol ; 267(4): 898-912, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31776722

RESUMEN

Only few studies have reported muscle involvement in spinal muscular atrophy using muscle MRI but this has not been systematically investigated in a large cohort of both pediatric and adult patients with type 2 and type 3 spinal muscular atrophy. The aim of the present study was to define possible patterns of muscle involvement on MRI, assessing both fatty replacement and muscle atrophy, in a cohort of type 2 and type 3 spinal muscular atrophy children and adults (age range 2-45 years), including both ambulant and non-ambulant patients. Muscle MRI protocol consisted in T1-weighted sequences acquired on axial plane covering the pelvis, the thigh, and the leg with contiguous slices. Each muscle was examined through its whole extension using a grading system that allows a semiquantitative evaluation of fatty infiltration. Thigh muscles were also grouped in anterior, posterior, and medial compartment for classification of global atrophy. The results showed a large variability in both type 2 and type 3 spinal muscular atrophy, with a various degree of proximal to distal gradient. Some muscles, such us the adductor longus and gracilis were always selectively spared. In all patients, the involvement was a combination of muscle atrophy and muscle infiltration. The variability observed may help to better understand both natural history and response to new treatments.


Asunto(s)
Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Atrofia Muscular Espinal/diagnóstico por imagen , Atrofia Muscular Espinal/patología , Adiposidad/fisiología , Adolescente , Adulto , Atrofia/patología , Niño , Preescolar , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/metabolismo , Estudios Prospectivos , Atrofias Musculares Espinales de la Infancia/diagnóstico por imagen , Atrofias Musculares Espinales de la Infancia/metabolismo , Atrofias Musculares Espinales de la Infancia/patología , Adulto Joven
20.
J Neurosci ; 28(4): 953-62, 2008 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-18216203

RESUMEN

Spinal muscular atrophy (SMA) is an inborn neuromuscular disorder caused by low levels of survival motor neuron protein, and for which no efficient therapy exists. Here, we show that the slower rate of postnatal motor-unit maturation observed in type 2 SMA-like mice is correlated with the motor neuron death. Physical exercise delays motor neuron death and leads to an increase in the postnatal maturation rate of the motor-units. Furthermore, exercise is capable of specifically enhancing the expression of the gene encoding the major activating subunit of the NMDA receptor in motor neurons, namely the NR2A subunit, which is dramatically downregulated in the spinal cord of type 2 SMA-like mice. Accordingly, inhibiting NMDA-receptor activity abolishes the exercise-induced effects on muscle development, motor neuron protection and life span gain. Thus, restoring NMDA-receptor function could be a promising therapeutic approach to SMA treatment.


Asunto(s)
Neuronas Motoras/metabolismo , Condicionamiento Físico Animal/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/metabolismo , Animales , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Neuronas Motoras/patología , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Receptores de N-Metil-D-Aspartato/deficiencia , Receptores de N-Metil-D-Aspartato/genética , Atrofias Musculares Espinales de la Infancia/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA