Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.618
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(9): e2312987121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377214

RESUMEN

Babesiosis is an emerging zoonosis and widely distributed veterinary infection caused by 100+ species of Babesia parasites. The diversity of Babesia parasites and the lack of specific drugs necessitate the discovery of broadly effective antibabesials. Here, we describe a comparative chemogenomics (CCG) pipeline for the identification of conserved targets. CCG relies on parallel in vitro evolution of resistance in independent populations of Babesia spp. (B. bovis and B. divergens). We identified a potent antibabesial, MMV019266, from the Malaria Box, and selected for resistance in two species of Babesia. After sequencing of multiple independently derived lines in the two species, we identified mutations in a membrane-bound metallodependent phosphatase (phoD). In both species, the mutations were found in the phoD-like phosphatase domain. Using reverse genetics, we validated that mutations in bdphoD confer resistance to MMV019266 in B. divergens. We have also demonstrated that BdPhoD localizes to the endomembrane system and partially with the apicoplast. Finally, conditional knockdown and constitutive overexpression of BdPhoD alter the sensitivity to MMV019266 in the parasite. Overexpression of BdPhoD results in increased sensitivity to the compound, while knockdown increases resistance, suggesting BdPhoD is a pro-susceptibility factor. Together, we have generated a robust pipeline for identification of resistance loci and identified BdPhoD as a resistance mechanism in Babesia species.


Asunto(s)
Antiinfecciosos , Babesia , Babesiosis , Humanos , Babesia/genética , Fosfatasa Alcalina , Antiparasitarios/farmacología , Antiparasitarios/uso terapéutico , Babesiosis/tratamiento farmacológico , Babesiosis/parasitología , Genómica , Antiinfecciosos/farmacología
2.
Infect Immun ; 92(7): e0048123, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38837339

RESUMEN

The currently accepted initiation of Babesia infection describes a sporozoite stage infused into the host, along with other saliva components, by the tick vector. This sporozoite can enter and initiate erythrocyte infection directly. In the particular case of Babesia microti, however, that sporozoite loses the ability to further propagate in vitro once deprived of its natural host. True B. sensu stricto do not require the host collaboration described in this study. Hence it has become a current topic of research involving B. microti (B. sensu lato), a rather unique species that requires host collaboration to maintain an erythrocyte propagation cycle. The main attachment protein is synthesized by this parasite in excess and exported to the host from the erythrocyte infrastructure to immunize the host at all stages of infection. The synthesis of host immune IgM antibody is necessary for the propagation of B. microti, being central to entry into uninfected host erythrocytes. Sequential use of the host immune system then involves complement factor C3b to complete the three-part assembly necessary to initiate the rhoptry sequence for invasion of uninfected erythrocytes and further propagation. These several components must be furnished within the in vitro culture medium and the sequence of these reactions is discussed. The corollary view of the parasite survival versus the host immune defenses is also discussed as it involves the same host factors promoting continuing parasite growth. This is the first description of continuous in vitro propagation of B. microti.


Asunto(s)
Babesia microti , Eritrocitos , Babesia microti/inmunología , Eritrocitos/parasitología , Humanos , Animales , Babesiosis/parasitología , Babesiosis/inmunología , Interacciones Huésped-Parásitos
3.
Infect Immun ; 92(7): e0021524, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38884473

RESUMEN

Human babesiosis is a malaria-like illness caused by protozoan parasites of the genus Babesia. Babesia microti is responsible for most cases of human babesiosis in the United States, particularly in the Northeast and the Upper Midwest. Babesia microti is primarily transmitted to humans through the bite of infected deer ticks but also through the transfusion of blood components, particularly red blood cells. There is a high risk of severe and even fatal disease in immunocompromised patients. To date, serology testing relies on an indirect immunofluorescence assay that uses the whole Babesia microti antigen. Here, we report the construction of phage display cDNA libraries from Babesia microti-infected erythrocytes as well as human reticulocytes obtained from donors with hereditary hemochromatosis. Plasma samples were obtained from patients who were or had been infected with Babesia microti. The non-specific antibody reactivity of these plasma samples was minimized by pre-exposure to the human reticulocyte library. Using this novel experimental strategy, immunoreactive segments were identified in three Babesia microti antigens termed BmSA1 (also called BMN1-9; BmGPI12), BMN1-20 (BMN1-17; Bm32), and BM4.12 (N1-15). Moreover, our findings indicate that the major immunoreactive segment of BmSA1 does not overlap with the segment that mediates BmSA1 binding to mature erythrocytes. When used in combination, the three immunoreactive segments form the basis of a sensitive and comprehensive diagnostic immunoassay for human babesiosis, with implications for vaccine development.


Asunto(s)
Antígenos de Protozoos , Babesia microti , Babesiosis , Biblioteca de Genes , Babesia microti/inmunología , Babesia microti/genética , Humanos , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/genética , Babesiosis/inmunología , Babesiosis/parasitología , Anticuerpos Antiprotozoarios/inmunología , Anticuerpos Antiprotozoarios/sangre , Eritrocitos/parasitología , Eritrocitos/inmunología , Técnicas de Visualización de Superficie Celular , Animales
4.
BMC Vet Res ; 20(1): 302, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978113

RESUMEN

Babesia spp. and Theileria spp. are tick-borne protozoan parasites with veterinary importance. In China, epidemiological and genetic investigations on many Babesia and Theileria species were still absent in many areas and many tick species. From Aug 2021 to May 2023, 645 ticks were collected from the body surface of domestic animals (camels, goats, sheep, and cattle) using tweezers in seven counties in three provinces including Xinjiang (Qitai, Mulei, Hutubi, and Shihezi counties), Chongqing (Youyang and Yunyang counties), and Qinghai (Huangzhong county). Three tick species were morphologically and molecularly identified (334 Hyalomma asiaticum from Xinjiang, 245 Rhipicephalus microplus from Chongqing, and 66 Haemaphysalis qinghaiensis from Qinghai). A total of three Babesia species and two Theileria species were detected targeting the 18S gene. The COI and cytb sequences were also recovered from Babesia strains for further identification. In R. microplus from Chongqing, Babesia bigemina, the agent of bovine babesiosis, was detected. Notably, in H. asiaticum ticks from Xinjiang, a putative novel genotype of Babesia caballi was identified (0.90%, 3/334), whose COI and cytb genes have as low as 85.82% and 90.64-90.91% nucleotide identities to currently available sequences. It is noteworthy whether the sequence differences of its cytb contribute to the drug resistance of this variant due to the involvement of cytb in the drug resistance of Babesia. In addition, Theileria orientalis and Theileria annulata were detected in R. microplus from Chongqing (12.20%, 31/245) and H. asiaticum from Xinjiang (1.50%, 5/334), respectively. These results suggest that these protozoan parasites may be circulating in domestic animals in these areas. The pathogenicity of the novel genotype of B. caballi also warrants further investigation.


Asunto(s)
Babesia , Genotipo , Theileria , Animales , Babesia/genética , Babesia/aislamiento & purificación , Babesia/clasificación , Theileria/genética , Theileria/aislamiento & purificación , China/epidemiología , Bovinos , Filogenia , Ixodidae/parasitología , Ovinos , Babesiosis/parasitología , Babesiosis/epidemiología , Theileriosis/epidemiología , Theileriosis/parasitología , Cabras
5.
Exp Parasitol ; 262: 108786, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38762200

RESUMEN

Piroplasmids and Hepatozoon spp. Are apicomplexan protozoa that may cause disease in several canid species. The present study aimed to expand the knowledge on the diversity of piroplasmids and Hepatozoon in crab-eating foxes (Cerdocyon thous; n = 12) sampled in the Pantanal of Mato Grosso do Sul State, central-western Brazil. PCR assays based on the 18S rRNA were used as screening. Three (25%) and 11 (91.7%) were positive for piroplasmids and Hepatozoon spp., respectively. Co-infection was found in three C. thous. Phylogenetic analyses based on the near-complete 18S rRNA, cox-1 and hsp70 genes evidenced the occurrence of a novel of Babesia spp. (namely Babesia pantanalensis nov. sp.) closely related to Rangelia vitalii and Babesia sp. 'Coco'. This finding was supported by the genetic divergence analysis which showed (i) high divergence, ranging from 4.17 to 5.62% for 18 S rRNA, 6.16% for hps70 and 4.91-9.25% for cox-1 and (ii) the genotype network (which displayed sequences separated from the previously described Piroplasmida species by median vectors and several mutational events). Also, phylogenetic analysis based on the 18S rRNA gene of Hepatozoon spp. positioned the sequences obtained herein in a clade phylogenetically related to Hepatozoon sp. 'Curupira 2', Hepatozoon sp. detected in domestic and wild canids from Uruguay and Hepatozoon americanum. The present study described Babesia pantanalensis nov sp. and Hepatozoon closely related to H. americanum in crab-eating foxes from Brazil. Moreover, the coinfection by piroplasmids and Hepatozoon sp. for the first time in crab-eating foxes strongly suggesting that this wild canid species potentially acts as a bio-accumulate of hemoprotozoan in wild environment.


Asunto(s)
Babesia , Babesiosis , Coccidiosis , ADN Protozoario , Genotipo , Filogenia , ARN Ribosómico 18S , Animales , Babesia/genética , Babesia/clasificación , Babesia/aislamiento & purificación , ARN Ribosómico 18S/genética , Babesiosis/parasitología , Babesiosis/epidemiología , Brasil/epidemiología , Coccidiosis/veterinaria , Coccidiosis/parasitología , Coccidiosis/epidemiología , ADN Protozoario/química , ADN Protozoario/aislamiento & purificación , Eucoccidiida/genética , Eucoccidiida/clasificación , Eucoccidiida/aislamiento & purificación , Ciclooxigenasa 1/genética , Reacción en Cadena de la Polimerasa/veterinaria , Proteínas HSP70 de Choque Térmico/genética , Coinfección/veterinaria , Coinfección/parasitología , Zorros/parasitología , Canidae/parasitología , Complejo IV de Transporte de Electrones/genética
6.
J Vector Borne Dis ; 61(2): 259-266, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38922661

RESUMEN

BACKGROUND OBJECTIVES: Vector-borne haemoprotozoan diseases comprise diverse group of single celled organism transmitted by haematophagus invertebrates. The current study was aimed at the identification of major haemoprotozoan (Babesia, Theileria and Trypanosoma) in dromedary camel of North Gujarat region in India using microscopy and Polymerase Chain Reaction (PCR). METHODS: A total of 234 blood samples were screened by the microscopic and molecular detection assays. Molecular prevalence studies of Theileria, Trypanosoma spp and Babesia was undertaken using 18s ribosomal DNA, RoTat 1.2 and SS rRNA gene respectively. The data relating to microscopic and molecular prevalence along with associated risk factors were analysed by statistical methods. RESULTS: The overall prevalence of hamoprotozoan disease based on microscopic and molecular investigation was 23.50%. The sensitivity and specificity (95% Confidence Interval) of PCR assay was 100% in comparison to microscopy (45.45 % sensitive and 100 % specific). The kappa coefficient between PCR and microscopy indicated good level of agreement with a value of 0.704 and SE of 0.159. INTERPRETATION CONCLUSION: Despite holding much significance to the animal sector, little work has been undertaken in regional parts of India regarding camel parasites. The present study offers first preliminary research data investigating haemoprotozoan disease using parasitological and molecular methods in camels in the region.


Asunto(s)
Babesia , Camelus , Microscopía , Reacción en Cadena de la Polimerasa , ARN Ribosómico 18S , Theileria , Theileriosis , Trypanosoma , Animales , Camelus/parasitología , India/epidemiología , Trypanosoma/genética , Trypanosoma/aislamiento & purificación , Trypanosoma/clasificación , Theileria/genética , Theileria/aislamiento & purificación , Theileria/clasificación , Babesia/genética , Babesia/aislamiento & purificación , Babesia/clasificación , Theileriosis/epidemiología , Theileriosis/parasitología , ARN Ribosómico 18S/genética , ADN Protozoario/genética , Babesiosis/epidemiología , Babesiosis/parasitología , Prevalencia , Masculino , Sensibilidad y Especificidad , Tripanosomiasis/veterinaria , Tripanosomiasis/epidemiología , Tripanosomiasis/parasitología , Femenino , Enfermedades Transmitidas por Vectores/epidemiología , Enfermedades Transmitidas por Vectores/parasitología , ADN Ribosómico/genética
7.
Clin Infect Dis ; 76(3): e1385-e1391, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35983604

RESUMEN

BACKGROUND: Human babesiosis is a worldwide emerging tick-borne disease caused by intraerythrocytic protozoa. Most patients experience mild to moderate illness, but life-threatening complications can occur. Although cardiac complications are common, the full spectrum of cardiac disease and the frequency, risk factors, and outcomes in patients experiencing cardiac complications are unclear. Accordingly, we carried out a record review of cardiac complications among patients with babesiosis admitted to Yale-New Haven Hospital over the last decade to better characterize cardiac complications of babesiosis. METHODS: We reviewed the medical records of all adult patients with babesiosis admitted to Yale-New Haven Hospital from January 2011 to October 2021, confirmed by identification of Babesia parasites on thin blood smear and/or by polymerase chain reaction. The presence of Lyme disease and other tick-borne disease coinfections were recorded. RESULTS: Of 163 enrolled patients, 32 (19.6%) had ≥1 cardiac complication during hospitalization. The most common cardiac complications were atrial fibrillation (9.4%), heart failure (8.6%), corrected QT interval prolongation (8.0%), and cardiac ischemia (6.8%). Neither cardiovascular disease risk factors nor preexisting cardiac conditions were significantly associated with the development of cardiac complications. The cardiac complication group had a greater prevalence of high-grade parasitemia (>10%) (P < .001), longer median length of both hospital (P < .001) and intensive care unit stay (P < .001), and a higher mortality rate (P = .02) than the group without cardiac complications. CONCLUSIONS: Cardiac complications of acute babesiosis are common and occurred in approximately one-fifth of this inpatient sample. Further investigation is needed to elucidate the relationship between babesiosis severity and cardiac outcomes.


Asunto(s)
Babesia microti , Babesiosis , Cardiopatías , Enfermedad de Lyme , Enfermedades por Picaduras de Garrapatas , Adulto , Humanos , Babesiosis/complicaciones , Babesiosis/epidemiología , Babesiosis/parasitología , Cardiopatías/complicaciones , Cardiopatías/epidemiología , Enfermedad de Lyme/complicaciones
8.
Mol Ecol ; 32(5): 1197-1210, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36478482

RESUMEN

Apicomplexans are a protozoan phylum of obligate parasites which may be highly virulent during acute infections, but may also persist as chronic infections which appear to have little fitness cost. Babesia microti is an apicomplexan haemoparasite that, in immunocompromised individuals, can cause severe, potentially fatal disease. However, in its natural host, wild field voles (Microtus agrestis), it exhibits chronic infections that have no detectable impact on survival or female fecundity. How is damage minimized, and what is the impact on the host's immune state and health? We examine the differences in immune state (here represented by expression of immune-related genes in multiple tissues) associated with several common chronic infections in a population of wild field voles. While some infections show little impact on immune state, we find strong associations between immune state and B. microti. These include indications of clearance of infected erythrocytes (increased macrophage activity in the spleen) and activity likely associated with minimizing damage from the infection (anti-inflammatory and antioxidant activity in the blood). By analysing gene expression from the same individuals at multiple time points, we show that the observed changes are a response to infection, rather than a risk factor. Our results point towards continual investment to minimize the damage caused by the infection. Thus, we shed light on how wild animals can tolerate some chronic infections, but emphasize that this tolerance does not come without a cost.


Asunto(s)
Babesiosis , Animales , Femenino , Babesiosis/epidemiología , Babesiosis/parasitología , Roedores , Infección Persistente , Arvicolinae , Inmunomodulación
9.
Microb Pathog ; 181: 106179, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37245631

RESUMEN

The genetic variability of apicomplexan parasite Babesia species is a principal strategy used by piroplasma to evade their hosts' immune responses. The purpose of this review was to evaluate our current knowledge on global haplotype distribution and phylogeography of Babesia ovis derived from sheep, goat, horse and ixodid (hard) ticks. Bibliographic English databases were searched from 2017 to 2023, identifying a total of 11 publications. The 18S ribosomal RNA (18S rRNA) sequences of B. ovis from Asia, Europe, and Africa were retrieved and subjected to estimate the genetic diversity and phylogenetic assessment. A haplotype network indicated a total of 29 haplotypes being classified into two distinct geographical haplogroups I and II including Nigeria and Uganda-derived B. ovis isolates. A moderately high level of genetic diversity was characterized in sheep/tick-derived B. ovis isolates originating from Iraq (Haplotype diversity: 0.781) and Turkey (Hd: 0.841). Based on the cladistic phylogenetic tree, two geographically different lineages of A and B were genetically differentiated except for Turkish isolates, indicating haplotype migration occurred between various geographical clades. In addition, the topology of UPGMA tree indicated that B. ovis population has a distinct clade compared to the rest clades of ovine babesiosis (B. crassa and B. motasi). The present results strengthen our knowledge to evaluate the evolutionary paradigms and transmission dynamics of B. ovis in different regions of the world; also it will provide groundwork for public health policy to control ovine babesiosis.


Asunto(s)
Babesia , Babesiosis , Ixodidae , Enfermedades de las Ovejas , Animales , Babesia/genética , Babesiosis/epidemiología , Babesiosis/parasitología , Cabras , Haplotipos , Caballos , Nigeria , Filogenia , Filogeografía , ARN Ribosómico 18S/genética , Ovinos , Enfermedades de las Ovejas/epidemiología
10.
Exp Parasitol ; 246: 108461, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36642297

RESUMEN

The prevalence of canine babesiosis due to Babesia gibsoni has increased throughout the world including in southern India. The polymerase chain reaction (PCR) based molecular characterization of B. gibsoni in dogs of Kerala, south India, targeting three specific genes viz., apical membrane antigen (AMA1), 50 kDa surface antigen (P50), and heat shock protein (HSP70) was undertaken in this study. Out of 297 blood samples collected from clinically suspected animals, microscopy detected piroplasms of B. gibsoni in 60 (20.20 per cent), while the PCR targeting the BgP50 gene detected 85 (28.61 per cent). Polymerase chain reaction targeting the BgAMA1 and BgHSP70 detected a lesser number of samples (60 and 65 respectively) as positive. The phylogenetic analysis of BgHSP70 gene sequences did not reveal genetic heterogeneity among the B. gibsoni isolates of South India and from other countries, while the BgP50 gene differentiated the Indian isolates from Japanese isolates. When BgAMA1 was used for phylogenetic analysis, genetic variation was not observed among Indian and Taiwanese isolates, however, differentiated them from the Japanese isolates.


Asunto(s)
Babesia , Babesiosis , Enfermedades de los Perros , Animales , Perros , Antígenos de Superficie , Babesia/clasificación , Babesia/genética , Babesiosis/parasitología , Enfermedades de los Perros/parasitología , Proteínas HSP70 de Choque Térmico/genética , Filogenia
11.
Exp Parasitol ; 251: 108567, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37308002

RESUMEN

The present study investigated the role of heat shock protein 90 (HSP90) in the proliferation and survival of Babesia gibsoni in vitro. To detect the effect on the entry of B. gibsoni into host erythrocytes, the parasite was incubated with an antibody against B. gibsoni HSP90 (BgHSP90) for 24 h. The results of this experiment demonstrated that both the incorporation of [3H]hypoxanthine into the nucleic acids of B. gibsoni and the number of parasites were not altered, indicating that an anti-BgHSP90 antibody did not directly inhibit the entry of the parasite into erythrocytes. Moreover, two HSP90 inhibitors, geldanamycin (GA) and tanespimycin (17-AAG), were used to evaluate the function of BgHSP90. GA and 17-AAG decreased both the incorporation of [3H]hypoxanthine and the number of infected erythrocytes, suggesting that BgHSP90 plays important roles in DNA synthesis and the proliferation of B. gibsoni. The effect of 17-AAG on the parasites was weaker than that of GA. Additionally, the effect of GA on the survival and superoxide generation of canine neutrophils was assessed. The survival of canine neutrophils was not affected. The superoxide generation was strongly suppressed by GA. This result indicated that GA inhibited the function of canine neutrophils. Additional studies are necessary to elucidate the role of BgHSP90 in the proliferation of the parasite.


Asunto(s)
Babesia , Babesiosis , Enfermedades de los Perros , Animales , Perros , Superóxidos/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Hipoxantinas/metabolismo , Hipoxantinas/farmacología , Proliferación Celular , Enfermedades de los Perros/parasitología , Babesiosis/parasitología
12.
Parasitol Res ; 122(8): 1935-1941, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37314510

RESUMEN

Procellariiformes includes pelagic seabirds that only use land for breeding; and also, these sites mostly occur in insular habitats. These peculiar habits make the investigation of hemoparasites a challenging issue. Thus, the data on the blood parasites of Procellariiformes are still scarce. In the order Piroplasmida, 16 species of Babesia have been described in terrestrial birds and seabirds. However, there is no register for Babesia spp. in procellariiform seabirds. Hence, the objective of this survey was to investigate the occurrence of Babesia spp. in these seabirds. A total of 220 tissue samples from 18 different seabird species were analyzed; the samples comprised blood and fragments of liver and spleen. The samples were obtained from live rescued animals and carcasses found along the southern coast of Brazil. Polymerase chain reaction (PCR) was conducted, followed by phylogenetic analysis. Only one blood sample yielded a positive result, from an adult female Thalassarche chlororhynchos (Atlantic yellow-nosed albatross). The sequence obtained showed the highest identity with sequences of Babesia spp. of birds from the South Pacific, and the isolate was named Babesia sp. strain Albatross. In the phylogenetic analysis, the sequence was grouped within the Babesia sensu stricto group, and further still into a subgroup including Babesia spp. of the Kiwiensis clade (parasites from birds). The phylogenetic analysis also showed that Babesia sp. strain Albatross clustered apart from the Peircei group, a clade that includes Babesia spp. from seabirds. As far as it is known, this is the first report of Babesia sp. in procellariiform seabirds. Babesia sp. strain Albatross may constitute a novel variant of tick-borne piroplasmids associated with the Procellariiformes order.


Asunto(s)
Babesia , Babesiosis , Piroplasmida , Garrapatas , Animales , Femenino , Filogenia , Garrapatas/parasitología , Aves , Babesiosis/parasitología
13.
BMC Biol ; 20(1): 153, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790982

RESUMEN

BACKGROUND: Human babesiosis, caused by parasites of the genus Babesia, is an emerging and re-emerging tick-borne disease that is mainly transmitted by tick bites and infected blood transfusion. Babesia duncani has caused majority of human babesiosis in Canada; however, limited data are available to correlate its genomic information and biological features. RESULTS: We generated a B. duncani reference genome using Oxford Nanopore Technology (ONT) and Illumina sequencing technology and uncovered its biological features and phylogenetic relationship with other Apicomplexa parasites. Phylogenetic analyses revealed that B. duncani form a clade distinct from B. microti, Babesia spp. infective to bovine and ovine species, and Theileria spp. infective to bovines. We identified the largest species-specific gene family that could be applied as diagnostic markers for this pathogen. In addition, two gene families show signals of significant expansion and several genes that present signatures of positive selection in B. duncani, suggesting their possible roles in the capability of this parasite to infect humans or tick vectors. CONCLUSIONS: Using ONT sequencing and Illumina sequencing technologies, we provide the first B. duncani reference genome and confirm that B. duncani forms a phylogenetically distinct clade from other Piroplasm parasites. Comparative genomic analyses show that two gene families are significantly expanded in B. duncani and may play important roles in host cell invasion and virulence of B. duncani. Our study provides basic information for further exploring B. duncani features, such as host-parasite and tick-parasite interactions.


Asunto(s)
Babesia , Babesiosis , Animales , Babesia/genética , Babesiosis/diagnóstico , Babesiosis/parasitología , Bovinos , Genómica , Humanos , Filogenia , Ovinos
14.
Epidemiol Mikrobiol Imunol ; 72(3): 184-190, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37871992

RESUMEN

Babesiosis is a less common but important tick-borne infectious disease. Over the last 50 years, an increasing number of cases have been reported worldwide, especially in the USA. The northern part of the US is an endemic area where the incidence has risen to 2,000 cases per year in the last decade. Babesia microti, a parasite of small rodents, is the cause of most of these infections in that region. In Europe, 56 autochthonous cases of human babesiosis have been reported since 1957. Most of them were caused by the species Babesia divergens, a parasite of cattle. Since 1992, 13 cases of B. microti infection have been imported from North America into Europe. The disease is serious especially for splenectomised and immunocompromised patients. Although the most important vector of babesiosis in Europe is the tick Ixodes ricinus, infection was transmitted through blood transfusion in number of patients, which can be fatal for immunosuppressed patients. The diagnosis of babesiosis is based on the identification of intraerythrocytic parasites in a blood smear, PCR detection of Babesia DNA, and determination of antibodies by serology and immunofluorescence assays. The disease is treated with antibiotics (azithromycin or clindamycin in a severe course of the disease) and quinine. The increase in human babesiosis is not only due to climate change and tick activity, outdoor leisure activities, and increased human migration, but an important role is also played by improved molecular methods and growing awareness of the disease.


Asunto(s)
Babesia , Babesiosis , Humanos , Animales , Bovinos , Babesiosis/diagnóstico , Babesiosis/epidemiología , Babesiosis/parasitología , Babesia/genética , Europa (Continente)
15.
Emerg Infect Dis ; 28(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35076004

RESUMEN

Babesia spp. are tickborne parasites that cause the clinical infection babesiosis, which has an increasing incidence in the United States. We performed an analysis of hospitalizations in the United States during 2010-2016 in which babesiosis was listed as a diagnosis. We used the National Inpatient Sample database to characterize the epidemiology of Babesia-associated admissions, reflecting severe Babesia-related disease. Over a 7-year period, a total of 7,818 hospitalizations listed babesiosis as a primary or secondary admitting diagnosis. Hospitalizations were seasonal (71.2% occurred during June-August) and situated overwhelmingly in the Northeast and Midwest. The patients were predominantly male and of advanced age, which is consistent with the expected epidemiology. Despite a higher severity of illness in more than (58.5%), the mortality rate was low (1.6%). Comparison with state reporting data suggests that the number of hospitalized persons with babesiosis increased modestly during the observation period.


Asunto(s)
Babesia , Babesiosis , Babesiosis/parasitología , Bases de Datos Factuales , Hospitalización , Humanos , Pacientes Internos , Masculino , Estados Unidos/epidemiología
16.
Emerg Infect Dis ; 28(2): 449-452, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35076002

RESUMEN

Human babesiosis in Europe is caused by multiple zoonotic species. We describe a case in a splenectomized patient, in which a routine Babesia divergens PCR result was negative. A universal Babesia spp. PCR yielded a positive result and enabled classification of the parasite into the less-described Babesia crassa-like complex.


Asunto(s)
Babesia , Babesiosis , Babesia/genética , Babesiosis/diagnóstico , Babesiosis/parasitología , Francia , Humanos , Técnicas de Amplificación de Ácido Nucleico , Reacción en Cadena de la Polimerasa
17.
Mol Microbiol ; 115(5): 882-890, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33274587

RESUMEN

Babesia species are tick-borne intracellular parasites that infect the red blood cells of their mammalian host, leading to severe or fatal disease. Babesia spp. infect a wide range of mammalian species and cause a significant economic burden globally, predominantly through disease in cattle. Several Babesia spp. are increasingly being recognized as zoonotic pathogens of humans. Babesia spp. have complex life cycles involving multiple stages in the tick and the mammalian host. The parasite utilizes complex signaling pathways during replication, egress, and invasion in each of these stages. They must also rapidly respond to their environment when switching between the mammalian and tick stages. This review will focus on the signaling pathways and environmental stimuli that Babesia spp. utilize in the bloodstream and for transmission to the tick, with an emphasis on the role of phosphorylation- and calcium-based signaling during egress and invasion. The expanding availability of in vitro and in vivo culture systems, genomes, transcriptomes, and transgenic systems available for a range of Babesia spp. should encourage further biological and translational studies of these ubiquitous parasites.


Asunto(s)
Babesia/crecimiento & desarrollo , Babesia/metabolismo , Babesiosis/parasitología , Animales , Babesia/clasificación , Babesia/genética , Babesiosis/transmisión , Humanos , Estadios del Ciclo de Vida , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Transducción de Señal , Garrapatas/parasitología
18.
Antimicrob Agents Chemother ; 66(9): e0057422, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35924942

RESUMEN

The present study aimed to evaluate the anti-Babesia effect of MMV390048, a drug that inhibits Plasmodium by targeting the phosphatidylinositol 4-kinase (PI4K). The half inhibitory concentration (IC50) of MMV390048 against the in vitro growth of Babesia gibsoni was 6.9 ± 0.9 µM. In immunocompetent mice, oral treatment with MMV390048 at a concentration of 20 mg/kg effectively inhibited the growth of B. microti (Peabody mjr strain). The peak parasitemia in the control group was 30.5%, whereas the peak parasitemia in the MMV390048-treated group was 3.4%. Meanwhile, MMV390048 also showed inhibition on the growth of B. rodhaini (Australia strain), a highly pathogenic rodent Babesia species. All MMV390048-treated mice survived, whereas the mice in control group died within 10 days postinfection (DPI). The first 7-day administration of MMV390048 in B. microti-infected, severe combined immunodeficiency (SCID) mice delayed the rise of parasitemia by 26 days. Subsequently, a second 7-day administration was given upon recurrence. At 52 DPI, a parasite relapse (in 1 out of 5 mice) and a mutation in the B. microti PI4K L746S, a MMV390048 resistance-related gene, were detected. Although the radical cure of B. microti infection in immunocompromised host SCID mice was not achieved, results from this study showed that MMV390048 has excellent inhibitory effects on Babesia parasites, revealing a new treatment strategy for babesiosis: targeting the B. microti PI4K.


Asunto(s)
Antimaláricos , Babesia , Babesiosis , 1-Fosfatidilinositol 4-Quinasa , Aminopiridinas , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Babesiosis/tratamiento farmacológico , Babesiosis/parasitología , Ratones , Ratones SCID , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Sulfonas
19.
PLoS Pathog ; 16(10): e1008917, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33017449

RESUMEN

Babesia bovis causes a pathogenic form of babesiosis in cattle. Following invasion of red blood cells (RBCs) the parasite extensively modifies host cell structural and mechanical properties via the export of numerous proteins. Despite their crucial role in virulence and pathogenesis, such proteins have not been comprehensively characterized in B. bovis. Here we describe the surface biotinylation of infected RBCs (iRBCs), followed by proteomic analysis. We describe a multigene family (mtm) that encodes predicted multi-transmembrane integral membrane proteins which are exported and expressed on the surface of iRBCs. One mtm gene was downregulated in blasticidin-S (BS) resistant parasites, suggesting an association with BS uptake. Induced knockdown of a novel exported protein encoded by BBOV_III004280, named VESA export-associated protein (BbVEAP), resulted in a decreased growth rate, reduced RBC surface ridge numbers, mis-localized VESA1, and abrogated cytoadhesion to endothelial cells, suggesting that BbVEAP is a novel virulence factor for B. bovis.


Asunto(s)
Babesia bovis/patogenicidad , Babesiosis/parasitología , Células Endoteliales/parasitología , Eritrocitos/parasitología , Animales , Babesia bovis/genética , Bovinos , Enfermedades de los Bovinos/parasitología , Proteínas de la Membrana , Parásitos/patogenicidad , Proteómica/métodos , Factores de Virulencia/genética
20.
Parasitology ; 149(9): 1160-1163, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35591780

RESUMEN

Babesias are obligate apicomplexan parasites that affect the red blood cells (RBCs) of animals. Humans can serve as accidental hosts for them. Asexual reproduction of a parasite occurs in a vertebrate host through asynchronous binary fission, yielding a complex pleomorphic population of intraerythrocytic forms. In natural hosts (Bos taurus), paired pyriforms ('figure 8') of Babesia divergens are usual, but tetrads ('Maltese Cross') are very rare (only in 0.02% infected erythrocytes); in humans, however, up to 5% of infected erythrocytes show tetrads. The current study shows that B. divergens proliferating in an accidental human host can promote extraordinarily high level of fission. This phenomenon is expressed as the simultaneous division of the parasite into 6 and possibly a greater number of merozoites, forming a 'daisy head' (vs the usual 2, less often 4 merozoites). Reproduction is possible without egressing merozoites from the erythrocyte, which results in multi-occupancy of an RBC (≥5 parasites per RBC). An unusually high polyparasitism ­ up to 14 parasites developed in the affected erythrocytes ­ was observed. This phenomenon is rare in natural hosts (usually ≤5), but when B. divergens is cultured in vitro it can be 10­12.


Asunto(s)
Babesia , Babesiosis , Enfermedades de los Bovinos , Animales , Babesiosis/parasitología , Bovinos , Enfermedades de los Bovinos/parasitología , Eritrocitos/parasitología , Humanos , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA