Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33972420

RESUMEN

Venom is a key adaptive innovation in snakes, and how nonvenom genes were co-opted to become part of the toxin arsenal is a significant evolutionary question. While this process has been investigated through the phylogenetic reconstruction of toxin sequences, evidence provided by the genomic context of toxin genes remains less explored. To investigate the process of toxin recruitment, we sequenced the genome of Bothrops jararaca, a clinically relevant pitviper. In addition to producing a road map with canonical structures of genes encoding 12 toxin families, we inferred most of the ancestral genes for their loci. We found evidence that 1) snake venom metalloproteinases (SVMPs) and phospholipases A2 (PLA2) have expanded in genomic proximity to their nonvenomous ancestors; 2) serine proteinases arose by co-opting a local gene that also gave rise to lizard gilatoxins and then expanded; 3) the bradykinin-potentiating peptides originated from a C-type natriuretic peptide gene backbone; and 4) VEGF-F was co-opted from a PGF-like gene and not from VEGF-A. We evaluated two scenarios for the original recruitment of nontoxin genes for snake venom: 1) in locus ancestral gene duplication and 2) in locus ancestral gene direct co-option. The first explains the origins of two important toxins (SVMP and PLA2), while the second explains the emergence of a greater number of venom components. Overall, our results support the idea of a locally assembled venom arsenal in which the most clinically relevant toxin families expanded through posterior gene duplications, regardless of whether they originated by duplication or gene co-option.


Asunto(s)
Bothrops/genética , Venenos de Crotálidos/genética , Evolución Molecular , Genoma/genética , Venenos de Serpiente/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bothrops/clasificación , Venenos de Crotálidos/clasificación , Femenino , Perfilación de la Expresión Génica/métodos , Filogenia , Proteoma/metabolismo , Proteómica/métodos , RNA-Seq/métodos , Análisis de Secuencia de ADN/métodos , Venenos de Serpiente/clasificación
2.
Brief Bioinform ; 22(5)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33515000

RESUMEN

MOTIVATION: Over the past decade, the field of next-generation sequencing (NGS) has seen dramatic advances in methods and a decrease in costs. Consequently, a large expansion of data has been generated by NGS, most of which have originated from RNA-sequencing (RNA-seq) experiments. Because mitochondrial genes are expressed in most eukaryotic cells, mitochondrial mRNA sequences are usually co-sequenced within the target transcriptome, generating data that are commonly underused or discarded. Here, we present MITGARD, an automated pipeline that reliably recovers the mitochondrial genome from RNA-seq data from various sources. The pipeline identifies mitochondrial sequence reads based on a phylogenetically related reference, assembles them into contigs, and extracts a complete mtDNA for the target species. RESULTS: We demonstrate that MITGARD can reconstruct the mitochondrial genomes of several species throughout the tree of life. We noticed that MITGARD can recover the mitogenomes in different sequencing schemes and even in a scenario of low-sequencing depth. Moreover, we showed that the use of references from congeneric species diverging up to 30 million years ago (MYA) from the target species is sufficient to recover the entire mitogenome, whereas the use of species diverging between 30 and 60 MYA allows the recovery of most mitochondrial genes. Additionally, we provide a case study with original data in which we estimate a phylogenetic tree of snakes from the genus Bothrops, further demonstrating that MITGARD is suitable for use on biodiversity projects. MITGARD is then a valuable tool to obtain high-quality information for studies focusing on the phylogenetic and evolutionary aspects of eukaryotes and provides data for easily identifying a sample using barcoding, and to check for cross-contamination using third-party tools.


Asunto(s)
Bothrops/genética , Genoma Mitocondrial , RNA-Seq , Programas Informáticos , Animales , Bothrops/clasificación , Células Eucariotas
3.
Cladistics ; 39(2): 71-100, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36701490

RESUMEN

Crotalines (pitvipers) in the Americas are distributed from southern Canada to southern Argentina, and are represented by 13 genera and 163 species that constitute a monophyletic group. Their phylogenetic relationships have been assessed mostly based on DNA sequences, while morphological data have scarcely been used for phylogenetic inquiry. We present a total-evidence phylogeny of New World pitvipers, the most taxon/character comprehensive phylogeny to date. Our analysis includes all genera, morphological data from external morphology, cranial osteology and hemipenial morphology, and DNA sequences from mitochondrial and nuclear genes. We performed analyses with parsimony as an optimality criterion, using different schemes for character weighting. We evaluated the contribution of the different sources of characters to the phylogeny through analyses of reduced datasets and calculation of weighted homoplasy and retention indexes. We performed a morphological character analysis to identify synapomorphies for the main clades. In terms of biogeography, our results support a single colonization event of the Americas by pitvipers, and a cladogenetic event into a Neotropical clade and a North American/Neotropical clade. The results also shed light on the previously unstable position of some taxa, although they could not sufficiently resolve the position of Bothrops lojanus, which may lead to the paraphyly of either Bothrops or Bothrocophias. The morphological character analyses demonstrated that an important phylogenetic signal is contained in characters related to head scalation, the jaws and the dorsum of the skull, and allowed us to detect morphological convergences in external morphology associated with arboreality.


Asunto(s)
Bothrops , Crotalinae , Viperidae , Animales , Filogenia , Viperidae/genética , Crotalinae/genética , Evolución Biológica , Secuencia de Bases , Bothrops/genética
4.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446341

RESUMEN

RNA purification and cDNA synthesis represents the starting point for molecular analyses of snake venom proteins-enzymes. Usually, the sacrifice of snakes is necessary for venom gland extraction to identify protein-coding transcripts; however, the venom can be used as a source of transcripts. Although there are methods for obtaining RNA from venom, no comparative analysis has been conducted in the Bothrops genus. In the present study, we compared four commercial methods for RNA purification and cDNA synthesis from venom (liquid, lyophilized, or long-term storage) of four clinically relevant species of Peruvian Bothrops. Our results show that the TRIzol method presents the highest yield of RNA purified from venom (59 ± 11 ng/100 µL or 10 mg). The SuperScript First-Strand Synthesis System kit produced high amounts of cDNA (3.2 ± 1.2 ng cDNA/ng RNA), and the highest value was from combination with the Dynabeads mRNA DIRECT kit (4.8 ± 2.0 ng cDNA/ng RNA). The utility of cDNA was demonstrated with the amplification of six relevant toxins: thrombin-like enzymes, P-I and P-III metalloproteinases, acid and basic phospholipases A2, and disintegrins. To our knowledge, this is the first comparative study of RNA purification and cDNA synthesis methodologies from Bothrops genus venom.


Asunto(s)
Bothrops , Venenos de Crotálidos , Animales , ADN Complementario/genética , Bothrops/genética , Perú , Relevancia Clínica , Venenos de Crotálidos/genética , Proteínas , ARN
5.
Proc Natl Acad Sci U S A ; 114(12): E2524-E2532, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28265084

RESUMEN

Pain-producing animal venoms contain evolutionarily honed toxins that can be exploited to study and manipulate somatosensory and nociceptive signaling pathways. From a functional screen, we have identified a secreted phospholipase A2 (sPLA2)-like protein, BomoTx, from the Brazilian lancehead pit viper (Bothrops moojeni). BomoTx is closely related to a group of Lys49 myotoxins that have been shown to promote ATP release from myotubes through an unknown mechanism. Here we show that BomoTx excites a cohort of sensory neurons via ATP release and consequent activation of P2X2 and/or P2X3 purinergic receptors. We provide pharmacological and electrophysiological evidence to support pannexin hemichannels as downstream mediators of toxin-evoked ATP release. At the behavioral level, BomoTx elicits nonneurogenic inflammatory pain, thermal hyperalgesia, and mechanical allodynia, of which the latter is completely dependent on purinergic signaling. Thus, we reveal a role of regulated endogenous nucleotide release in nociception and provide a detailed mechanism of a pain-inducing Lys49 myotoxin from Bothrops species, which are responsible for the majority of snake-related deaths and injuries in Latin America.


Asunto(s)
Adenosina Trifosfato/metabolismo , Bothrops/fisiología , Fosfolipasas A2 Grupo II/toxicidad , Dolor/metabolismo , Proteínas de Reptiles/toxicidad , Células Receptoras Sensoriales/efectos de los fármacos , Mordeduras de Serpientes/metabolismo , Toxinas Biológicas/toxicidad , Venenos de Víboras/enzimología , Animales , Bothrops/genética , Brasil , Femenino , Fosfolipasas A2 Grupo II/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Dolor/etiología , Dolor/genética , Dolor/parasitología , Ratas , Receptores Purinérgicos/metabolismo , Proteínas de Reptiles/genética , Células Receptoras Sensoriales/metabolismo , Transducción de Señal , Mordeduras de Serpientes/genética , Mordeduras de Serpientes/parasitología , Venenos de Víboras/toxicidad
6.
J Proteome Res ; 18(9): 3419-3428, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31337208

RESUMEN

Snakebite is a major medical concern in many parts of the world with metalloproteases playing important roles in the pathological effects of Viperidae venoms, including local tissue damage, hemorrhage, and coagulopathy. Hemorrhagic Factor 3 (HF3), a metalloprotease from Bothrops jararaca venom, induces local hemorrhage and targets extracellular matrix (ECM) components, including collagens and proteoglycans, and plasma proteins. However, the full substrate repertoire of this metalloprotease is unknown. We report positional proteomic studies identifying >2000 N-termini, including neo-N-termini of HF3 cleavage sites in mouse embryonic fibroblast secretome proteins. Terminal amine isotopic labeling of substrates (TAILS) analysis identified a preference for Leu at the P1' position among candidate HF3 substrates including proteins of the ECM and focal adhesions and the cysteine protease inhibitor cystatin-C. Interestingly, 190 unique peptides matched to annotated cleavage sites in the TopFIND N-termini database, suggesting that these cleavages occurred at a site prone to cleavage or might have been generated by other proteases activated upon incubation with HF3, including caspases-3 and -7, cathepsins D and E, granzyme B, and MMPs 2 and 9. Using Proteomic identification of cleavage site specificity (PICS), a tryptic library derived from THP-1 monocytic cells was used as HF3 substrates for identifying protease cleavage sites and sequence preferences in peptides. A total of 799 unique cleavage sites were detected and, in accordance with TAILS analysis using native secreted protein substrates of MEF cells, revealed a clear preference for Leu at P1'. Taken together, these results greatly expand the known substrate degradome of HF3 and reveal potential new targets, which may serve as a basis to better elucidate the complex pathophysiology of snake envenomation.


Asunto(s)
Metaloproteasas/genética , Proteoma/genética , Proteómica , Venenos de Serpiente/genética , Secuencia de Aminoácidos/genética , Animales , Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/aislamiento & purificación , Bothrops/genética , Humanos , Marcaje Isotópico , Metaloproteasas/química , Metaloproteasas/aislamiento & purificación , Ratones , Biblioteca de Péptidos , Proteoma/química , Venenos de Serpiente/química , Especificidad por Sustrato/genética , Espectrometría de Masas en Tándem
7.
Protein Expr Purif ; 154: 33-43, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30205154

RESUMEN

A mRNA transcript that codes for a phospholipase (PLA2) was isolated from a single venom gland of the Bothrops ammodytoides viper. The PLA2 transcript was cloned onto a pCR®2.1-TOPO vector and subsequently expressed heterologously in the E. coli strain M15, using the pQE30 vector. The recombinant phospholipase was named rBamPLA2_1, and is composed of an N-terminal fusion protein of 16 residues, along with 122 residues from the mature protein that includes 14 cysteines that form 7 disulfide bonds. Following bacterial expression, rBamPLA2_1 was obtained from inclusion bodies and extracted using a chaotropic agent. rBamPLA2_1 had an experimental molecular mass of 15,692.5 Da that concurred with its theoretical molecular mass. rBamPLA2_1 was refolded in in vitro conditions and after refolding, three main protein fractions with similar molecular masses, were identified. Although, the three fractions were considered to represent different oxidized cystine isoforms, their secondary structures were comparable. All three recombinant isoforms were active on egg-yolk phospholipid and recognized similar cell membrane phospholipids to be native PLA2s, isolated from B. ammodytoides venom. A mixture of the three rBamPLA2_1 cystine isoforms was used to immunize a horse in order to produce serum antibodies (anti-rBamPLA2_1), which partially inhibited the indirect hemolytic activity of B. ammodytoides venom. Although, anti-rBamPLA2_1 antibodies were not able to recognize crotoxin, a PLA2 from the venom of a related but different viper genus, Crotalus durissus terrificus, they recognized PLA2s in other venoms from regional species of Bothrops.


Asunto(s)
Bothrops/genética , Clonación Molecular , Venenos de Crotálidos , ADN Complementario , Expresión Génica , Fosfolipasas A2 , Pliegue de Proteína , Animales , Venenos de Crotálidos/biosíntesis , Venenos de Crotálidos/enzimología , Venenos de Crotálidos/genética , Venenos de Crotálidos/inmunología , Escherichia coli/enzimología , Escherichia coli/genética , Caballos/inmunología , Fosfolipasas A2/biosíntesis , Fosfolipasas A2/genética , Fosfolipasas A2/inmunología , Fosfolipasas A2/aislamiento & purificación
8.
BMC Mol Biol ; 17: 7, 2016 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-26944950

RESUMEN

BACKGROUND: Bothrops colombiensis is a highly dangerous pit viper and responsible for over 70% of snakebites in Venezuela. Although the composition in B. colombiensis venom has been identified using a proteome analysis, the venom gland transcriptome is currently lacking. RESULTS: We constructed a cDNA library from the venom gland of B. colombiensis, and a set of 729 high quality expressed sequence tags (ESTs) was identified. A total number of 344 ESTs (47.2% of total ESTs) was related to toxins. The most abundant toxin transcripts were metalloproteinases (37.5%), phospholipases A2s (PLA2, 29.7%), and serine proteinases (11.9%). Minor toxin transcripts were linked to waprins (5.5%), C-type lectins (4.1%), ATPases (2.9%), cysteine-rich secretory proteins (CRISP, 2.3%), snake venom vascular endothelium growth factors (svVEGF, 2.3%), L-amino acid oxidases (2%), and other putative toxins (1.7%). While 160 ESTs (22% of total ESTs) coded for translation proteins, regulatory proteins, ribosomal proteins, elongation factors, release factors, metabolic proteins, and immune response proteins. Other proteins detected in the transcriptome (87 ESTs, 11.9% of total ESTs) were undescribed proteins with unknown functions. The remaining 138 (18.9%) cDNAs had no match with known GenBank accessions. CONCLUSION: This study represents the analysis of transcript expressions and provides a physical resource of unique genes for further study of gene function and the development of novel molecules for medical applications.


Asunto(s)
Bothrops/genética , Transcriptoma , Ponzoñas/genética , Secuencia de Aminoácidos , Animales , Biología Computacional/métodos , Bases de Datos Genéticas , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Familia de Multigenes , Sistemas de Lectura Abierta , Alineación de Secuencia , Ponzoñas/química , Ponzoñas/clasificación
9.
Mol Biol Evol ; 32(3): 754-66, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25502939

RESUMEN

Attempts to reconstruct the evolutionary history of snake toxins in the context of their co-option to the venom gland rarely account for nonvenom snake genes that are paralogous to toxins, and which therefore represent important connectors to ancestral genes. In order to reevaluate this process, we conducted a comparative transcriptomic survey on body tissues from a venomous snake. A nonredundant set of 33,000 unigenes (assembled transcripts of reference genes) was independently assembled from six organs of the medically important viperid snake Bothrops jararaca, providing a reference list of 82 full-length toxins from the venom gland and specific products from other tissues, such as pancreatic digestive enzymes. Unigenes were then screened for nontoxin transcripts paralogous to toxins revealing 1) low level coexpression of approximately 20% of toxin genes (e.g., bradykinin-potentiating peptide, C-type lectin, snake venom metalloproteinase, snake venom nerve growth factor) in body tissues, 2) the identity of the closest paralogs to toxin genes in eight classes of toxins, 3) the location and level of paralog expression, indicating that, in general, co-expression occurs in a higher number of tissues and at lower levels than observed for toxin genes, and 4) strong evidence of a toxin gene reverting back to selective expression in a body tissue. In addition, our differential gene expression analyses identify specific cellular processes that make the venom gland a highly specialized secretory tissue. Our results demonstrate that the evolution and production of venom in snakes is a complex process that can only be understood in the context of comparative data from other snake tissues, including the identification of genes paralogous to venom toxins.


Asunto(s)
Bothrops/genética , Venenos de Crotálidos/genética , Especificidad de Órganos/genética , Transcriptoma/genética , Animales , Bothrops/metabolismo , Venenos de Crotálidos/metabolismo , Evolución Molecular , Perfilación de la Expresión Génica
10.
Amino Acids ; 48(5): 1331-5, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27020778

RESUMEN

The Proteomic Identification of Cleavage Sites (PICS) approach was employed for profiling the substrate specificity of HF3, a hemorrhagic snake venom metalloproteinase (SVMP) from Bothrops jararaca. A tryptic peptide library from human plasma was subject to HF3 cleavage and amino acid occurrence for P6 to P6' sites was mapped. 71 cleavage sites were detected and revealed a clear preference for leucine at P1' position, followed by hydrophobic residues in P2'. PICS confirmed existing data on prime site specificity of SVMPs.


Asunto(s)
Bothrops/genética , Metaloproteasas/química , Metaloproteasas/metabolismo , Proteínas de Reptiles/química , Proteínas de Reptiles/metabolismo , Venenos de Serpiente/química , Secuencia de Aminoácidos , Animales , Bothrops/metabolismo , Metaloproteasas/genética , Datos de Secuencia Molecular , Biblioteca de Péptidos , Proteoma , Proteínas de Reptiles/genética , Venenos de Serpiente/metabolismo , Especificidad por Sustrato
11.
Mol Phylogenet Evol ; 71: 1-14, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24140980

RESUMEN

Eight current species of snakes of the Bothrops neuwiedi group are widespread in South American open biomes from northeastern Brazil to southeastern Argentina. In this paper, 140 samples from 93 different localities were used to investigate species boundaries and to provide a hypothesis of phylogenetic relationships among the members of this group based on 1122bp of cyt b and ND4 from mitochondrial DNA and also investigate the patterns and processes occurring in the evolutionary history of the group. Combined data recovered the B. neuwiedi group as a highly supported monophyletic group in maximum parsimony, maximum likelihood and Bayesian analyses, as well as four major clades (Northeast I, Northeast II, East-West, West-South) highly-structured geographically. Monophyly was recovered only for B. pubescens. By contrast, B. diporus, B. lutzi, B. erythromelas, B. mattogrossensis, B. neuwiedi, B. marmoratus, and B. pauloensis, as currently defined on the basis of morphology, were polyphyletic. Sympatry, phenotypic intergrades and shared mtDNA haplotypes, mainly between B. marmoratus and B. pauloensis suggest recent introgressive hybridization and the possible occurrence of a narrow hybrid zone in Central Brazil. Our data suggest at least three candidate species: B. neuwiedi from Espinhaço Range, B. mattogrossensis (TM173) from Serra da Borda (MT) and B. diporus (PT3404) from Castro Barros, Argentina. Divergence estimates highlight the importance of Neogene events in the origin of B. neuwiedi group, and the origin of species and diversification of populations of the Neotropical fauna from open biomes during the Quaternary climate fluctuations. Data reported here represent a remarkable increase of the B. neuwiedi group sampling size, since representatives of all the current recognized species from a wide geographic range are included in this study, providing basic information for understanding the evolution and conservation of Neotropical biodiversity.


Asunto(s)
Bothrops/genética , Filogenia , Animales , ADN Mitocondrial/genética , Haplotipos , Hibridación Genética , Fenotipo , Análisis de Secuencia de ADN , América del Sur
12.
Toxicon ; 222: 106992, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36493931

RESUMEN

Snake venom metalloproteinases (SVMPs) are enzymatic proteins present in large amounts in snake venoms presenting proteolytic, hemorrhagic, and coagulant activities. BjussuMP-II, a class P-I SVMP, isolated from the Bothrops jararacussu snake venom does not have relevant hemorrhagic activity but presents fibrinolytic, fibrinogenolytic, antiplatelet, gelatinolytic, and collagenolytic action. This study aimed to verify the action of BjussuMP-II on human neutrophil functionality focusing on the lipid bodies formation and hydrogen peroxide production, the release of dsDNA through colorimetric and microscopic assays, and cytokines by immunoenzymatic assays. Results showed that BjussuMP-II at concentrations of 1.5 up to 50 µg/mL for 24 h is not toxic to human neutrophils using an MTT assay. Under non-cytotoxic concentrations, BjussuMP-II can induce an increase in the formation of lipid bodies, production of hydrogen peroxide and cytokines [tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and interleukin-8 (IL-8)] liberation and, the release of dsDNA to form NETs. Taken together, the data obtained show for the first time that BjussuMP-II has a pro-inflammatory action and activates human neutrophils that can contribute to local damage observed in snakebite victims.


Asunto(s)
Bothrops , Venenos de Crotálidos , Animales , Humanos , Venenos de Crotálidos/metabolismo , Neutrófilos , Bothrops/genética , Peróxido de Hidrógeno/metabolismo , Metaloproteasas/metabolismo , Citocinas/metabolismo , Interleucina-6
13.
Biochem Biophys Res Commun ; 427(2): 321-5, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22995294

RESUMEN

Bothrops diporus is a very common viper in Argentina. At present, no complete sequence of secreted phospholipase A(2) (sPLA(2)) from this snake has been reported. We have cloned two sPLA(2) isoenzymes as well as a putative sPLA(2)-like myotoxin from venom gland. The two sPLA(2) were expressed as inclusion bodies in Escherichia coli with an N-terminal tag of ubiquitin. After in vitro renaturation and cleavage step, using an ubiquitin specific peptidase, the recombinants exhibited sPLA(2) activity when analyzed by means of Langmuir dilauroylphosphatidylcholine monolayers as substrate. Both enzymes have a similar surface pressure-activity profile when compared with non-recombinant purified isoforms. To our knowledge, this is the first time that analysis of optimal lateral pressure of substrate monolayers by using the surface barostat technique is performed on recombinant sPLA(2)s.


Asunto(s)
Bothrops/metabolismo , Fosfolipasas A2 Secretoras/genética , Secuencia de Aminoácidos , Animales , Bothrops/genética , Clonación Molecular , Hidrólisis , Datos de Secuencia Molecular , Fosfolipasas A2 Secretoras/química , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
14.
Toxins (Basel) ; 14(4)2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35448846

RESUMEN

Interspecific differences in snake venom compositions can result from distinct regulatory mechanisms acting in each species. However, comparative analyses focusing on identifying regulatory elements and patterns that led to distinct venom composition are still scarce. Among venomous snakes, Bothrops cotiara and Bothrops fonsecai represent ideal models to complement our understanding of the regulatory mechanisms of venom production. These recently diverged species share a similar specialized diet, habitat, and natural history, but each presents a distinct venom phenotype. Here, we integrated data from the venom gland transcriptome and miRNome and the venom proteome of B. fonsecai and B. cotiara to better understand the regulatory mechanisms that may be acting to produce differing venom compositions. We detected not only the presence of similar toxin isoforms in both species but also distinct expression profiles of phospholipases A2 (PLA2) and some snake venom metalloproteinases (SVMPs) and snake venom serine proteinases (SVSPs) isoforms. We found evidence of modular expression regulation of several toxin isoforms implicated in venom divergence and observed correlated expression of several transcription factors. We did not find strong evidence for miRNAs shaping interspecific divergence of the venom phenotypes, but we identified a subset of toxin isoforms whose final expression may be fine-tuned by specific miRNAs. Sequence analysis on orthologous toxins showed a high rate of substitutions between PLA2s, which indicates that these toxins may be under strong positive selection or represent paralogous toxins in these species. Our results support other recent studies in suggesting that gene regulation is a principal mode of venom evolution across recent timescales, especially among species with conserved ecotypes.


Asunto(s)
Bothrops , Venenos de Crotálidos , MicroARNs , Toxinas Biológicas , Animales , Bothrops/genética , Bothrops/metabolismo , Brasil , Venenos de Crotálidos/genética , Venenos de Crotálidos/metabolismo , MicroARNs/metabolismo , Fosfolipasas A2/genética , Fosfolipasas A2/metabolismo , Venenos de Serpiente/metabolismo , Toxinas Biológicas/metabolismo
15.
BMC Genet ; 12: 94, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22044657

RESUMEN

BACKGROUND: Snake venom metalloproteinases (SVMPs) are widely distributed in snake venoms and are versatile toxins, targeting many important elements involved in hemostasis, such as basement membrane proteins, clotting proteins, platelets, endothelial and inflammatory cells. The functional diversity of SVMPs is in part due to the structural organization of different combinations of catalytic, disintegrin, disintegrin-like and cysteine-rich domains, which categorizes SVMPs in 3 classes of precursor molecules (PI, PII and PIII) further divided in 11 subclasses, 6 of them belonging to PII group. This heterogeneity is currently correlated to genetic accelerated evolution and post-translational modifications. RESULTS: Thirty-one SVMP cDNAs were full length cloned from a single specimen of Bothrops neuwiedi snake, sequenced and grouped in eleven distinct sequences and further analyzed by cladistic analysis. Class P-I and class P-III sequences presented the expected tree topology for fibrinolytic and hemorrhagic SVMPs, respectively. In opposition, three distinct segregations were observed for class P-II sequences. P-IIb showed the typical segregation of class P-II SVMPs. However, P-IIa grouped with class P-I cDNAs presenting a 100% identity in the 365 bp at their 5' ends, suggesting post-transcription events for interclass recombination. In addition, catalytic domain of P-IIx sequences segregated with non-hemorrhagic class P-III SVMPs while their disintegrin domain grouped with other class P-II disintegrin domains suggesting independent evolution of catalytic and disintegrin domains. Complementary regions within cDNA sequences were noted and may participate in recombination either at DNA or RNA levels. Proteins predicted by these cDNAs show the main features of the correspondent classes of SVMP, but P-IIb and P-IIx included two additional cysteines cysteines at the C-termini of the disintegrin domains in positions not yet described. CONCLUSIONS: In B. neuwiedi venom gland, class P-II SVMPs were represented by three different types of transcripts that may have arisen by interclass recombination with P-I and P-III sequences after the divergence of the different classes of SVMPs. Our observations indicate that exon shuffling or post-transcriptional mechanisms may be driving these recombinations generating new functional possibilities for this complex group of snake toxins.


Asunto(s)
Bothrops/genética , Variación Genética , Metaloproteasas/genética , Venenos de Serpiente/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Dominio Catalítico/genética , Clonación Molecular , ADN Complementario , Metaloproteasas/química , Metaloproteasas/metabolismo , Filogenia , Procesamiento Proteico-Postraduccional , Recombinación Genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Venenos de Serpiente/metabolismo
16.
PLoS One ; 16(4): e0248901, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33905416

RESUMEN

Snake venom thrombin-like enzymes (SVTLEs) are serine proteinases that clot fibrinogen. SVTLEs are distributed mainly in venoms from snakes of the Viperidae family, comprising venomous pit viper snakes. Bothrops snakes are distributed throughout Central and South American and are responsible for most venomous snakebites. Most Bothrops snakes display thrombin-like activity in their venoms, but it has been shown that some species do not present it. In this work, to understand SVTLE polymorphism in Bothrops snake venoms, we studied individual samples from two species of medical importance in Brazil: Bothrops jararaca, distributed in Southeastern Brazil, which displays coagulant activity on plasma and fibrinogen, and Bothrops erythromelas, found in Northeastern Brazil, which lacks direct fibrinogen coagulant activity but shows plasma coagulant activity. We tested the coagulant activity of venoms and the presence of SVTLE genes by a PCR approach. The SVTLE gene structure in B. jararaca is similar to the Bothrops atrox snake, comprising five exons. We could not amplify SVTLE sequences from B. erythromelas DNA, except for a partial pseudogene. These genes underwent a positive selection in some sites, leading to an amino acid sequence diversification, mostly in exon 2. The phylogenetic tree constructed using SVTLE coding sequences confirms that they are related to the chymotrypsin/kallikrein family. Interestingly, we found a B. jararaca specimen whose venom lacked thrombin-like activity, and its gene sequence was a pseudogene with SVTLE structure, presenting nonsense and frameshift mutations. Our results indicate an association of the lack of thrombin-like activity in B. jararaca and B. erythromelas venoms with mutations and deletions of snake venom thrombin-like enzyme genes.


Asunto(s)
Bothrops , Venenos de Crotálidos/enzimología , Trombina/genética , Animales , Bothrops/genética , Bothrops/metabolismo , Brasil
17.
Front Immunol ; 12: 778302, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975866

RESUMEN

The two-striped forest-pitviper (Bothrops bilineatus) is an arboreal snake that is currently represented by two subspecies (B. b. bilineatus and B. b. smaragdinus) that comprise a species complex, and its distribution is in the Amazon and the Atlantic Forest. The rarity of encounters with this snake is reflected in the low occurrence of cases of snakebites throughout its geographic distribution and the resulting low number of published clinical reports. However, in some areas, B. bilineatus proves to be more frequent and causes envenomations in a greater proportion. Herein, we review the main aspects of the species complex B. bilineatus, including its biology, ecology, taxonomy, morphology, genetic and molecular studies, geographic distribution, conservation status, venom, pathophysiology and clinical aspects, and epidemiology. In addition, the different antivenoms available for the treatment of envenomations caused by B. bilineatus are presented along with suggestions for future studies that are needed for a better understanding of the snakebites caused by this snake.


Asunto(s)
Bothrops , Adulto , Animales , Antivenenos/uso terapéutico , Bothrops/anatomía & histología , Bothrops/genética , Bothrops/fisiología , Brasil , Conservación de los Recursos Naturales , Venenos de Crotálidos/toxicidad , Bosques , Humanos , Masculino , Mordeduras de Serpientes/epidemiología , Mordeduras de Serpientes/terapia
18.
J Proteome Res ; 9(1): 564-77, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19911849

RESUMEN

Intraspecific snake venom variations have implications in the preparation of venom pools for the generation of antivenoms. The impact of such variation in the cross-reactivity of antivenoms against Bothrops asper venom was assessed by comparing two commercial and four experimental antivenoms. All antivenoms showed similar immunorecognition pattern toward the venoms from adult and neonate specimens. They completely immunodepleted most P-III snake venom metalloproteinases (SVMPs), l-amino acid oxidases, serine proteinases, DC fragments, cysteine-rich secretory proteins (CRISPs), and C-type lectin-like proteins, and partially immunodepleted medium-sized disintegrins, phospholipases A(2) (PLA(2)s), some serine proteinases, and P-I SVMPs. Although all antivenoms abrogated the lethal, hemorrhagic, coagulant, proteinase, and PLA(2) venoms activities, monospecific experimental antivenoms were more effective than the polyspecific experimental antivenom. In addition, the commercial antivenoms, produced in horses subjected to repeated immunization cycles, showed higher neutralization than experimental polyspecific antivenom, produced by a single round of immunization. Overall, a conspicuous pattern of cross-neutralization was evident for all effects by all antivenoms, and monospecific antivenoms raised against venom from the Caribbean population were effective against venom from the Pacific population, indicating that geographic variations in venom proteomes of B. asper from Costa Rica do not result in overt variations in immunological cross-reactivity between antivenoms.


Asunto(s)
Antivenenos/química , Bothrops/genética , Venenos de Crotálidos/química , Fosfolipasas A2 Grupo II/química , Proteínas de Reptiles/química , Secuencia de Aminoácidos , Animales , Antivenenos/metabolismo , Western Blotting , Bothrops/metabolismo , Venenos de Crotálidos/genética , Venenos de Crotálidos/metabolismo , Ensayo de Inmunoadsorción Enzimática , Fosfolipasas A2 Grupo II/genética , Fosfolipasas A2 Grupo II/metabolismo , Datos de Secuencia Molecular , Pruebas de Neutralización , Proteínas de Reptiles/genética , Proteínas de Reptiles/metabolismo
19.
BMC Genomics ; 11: 605, 2010 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-20977763

RESUMEN

BACKGROUND: The genus Bothrops is widespread throughout Central and South America and is the principal cause of snakebite in these regions. Transcriptomic and proteomic studies have examined the venom composition of several species in this genus, but many others remain to be studied. In this work, we used a transcriptomic approach to examine the venom gland genes of Bothrops alternatus, a clinically important species found in southeastern and southern Brazil, Uruguay, northern Argentina and eastern Paraguay. RESULTS: A cDNA library of 5,350 expressed sequence tags (ESTs) was produced and assembled into 838 contigs and 4512 singletons. BLAST searches of relevant databases showed 30% hits and 70% no-hits, with toxin-related transcripts accounting for 23% and 78% of the total transcripts and hits, respectively. Gene ontology analysis identified non-toxin genes related to general metabolism, transcription and translation, processing and sorting, (polypeptide) degradation, structural functions and cell regulation. The major groups of toxin transcripts identified were metalloproteinases (81%), bradykinin-potentiating peptides/C-type natriuretic peptides (8.8%), phospholipases A2 (5.6%), serine proteinases (1.9%) and C-type lectins (1.5%). Metalloproteinases were almost exclusively type PIII proteins, with few type PII and no type PI proteins. Phospholipases A2 were essentially acidic; no basic PLA2 were detected. Minor toxin transcripts were related to L-amino acid oxidase, cysteine-rich secretory proteins, dipeptidylpeptidase IV, hyaluronidase, three-finger toxins and ohanin. Two non-toxic proteins, thioredoxin and double-specificity phosphatase Dusp6, showed high sequence identity to similar proteins from other snakes. In addition to the above features, single-nucleotide polymorphisms, microsatellites, transposable elements and inverted repeats that could contribute to toxin diversity were observed. CONCLUSIONS: Bothrops alternatus venom gland contains the major toxin classes described for other Bothrops venoms based on trancriptomic and proteomic studies. The predominance of type PIII metalloproteinases agrees with the well-known hemorrhagic activity of this venom, whereas the lower content of serine proteases and C-type lectins could contribute to less marked coagulopathy following envenoming by this species. The lack of basic PLA2 agrees with the lower myotoxicity of this venom compared to other Bothrops species with these toxins. Together, these results contribute to our understanding of the physiopathology of envenoming by this species.


Asunto(s)
Estructuras Animales/metabolismo , Bothrops/anatomía & histología , Bothrops/genética , Venenos de Crotálidos/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Secuencia de Aminoácidos , Animales , Elementos Transponibles de ADN/genética , Bases de Datos de Ácidos Nucleicos , Etiquetas de Secuencia Expresada , Secuencias Invertidas Repetidas/genética , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple/genética , Proteínas/clasificación , Proteínas/genética , Proteínas/metabolismo , Proteómica , Alineación de Secuencia
20.
Toxins (Basel) ; 12(12)2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322460

RESUMEN

Ontogenetic changes in venom composition have been described in Bothrops snakes, but only a few studies have attempted to identify the targeted paralogues or the molecular mechanisms involved in modifications of gene expression during ontogeny. In this study, we decoded B. jararacussu venom gland transcripts from six specimens of varying sizes and analyzed the variability in the composition of independent venom proteomes from 19 individuals. We identified 125 distinct putative toxin transcripts, and of these, 73 were detected in venom proteomes and only 10 were involved in the ontogenetic changes. Ontogenetic variability was linearly related to snake size and did not correspond to the maturation of the reproductive stage. Changes in the transcriptome were highly predictive of changes in the venom proteome. The basic myotoxic phospholipases A2 (PLA2s) were the most abundant components in larger snakes, while in venoms from smaller snakes, PIII-class SVMPs were the major components. The snake venom metalloproteinases (SVMPs) identified corresponded to novel sequences and conferred higher pro-coagulant and hemorrhagic functions to the venom of small snakes. The mechanisms modulating venom variability are predominantly related to transcriptional events and may consist of an advantage of higher hematotoxicity and more efficient predatory function in the venom from small snakes.


Asunto(s)
Tamaño Corporal/genética , Bothrops/genética , Venenos de Crotálidos/genética , Proteómica/métodos , Transcriptoma/genética , Animales , Venenos de Crotálidos/análisis , Venenos de Crotálidos/química , Femenino , Ontología de Genes , Masculino , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA