Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Cell ; 168(1-2): 73-85.e11, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-27916274

RESUMEN

The recent discovery that genetically modified α cells can regenerate and convert into ß-like cells in vivo holds great promise for diabetes research. However, to eventually translate these findings to human, it is crucial to discover compounds with similar activities. Herein, we report the identification of GABA as an inducer of α-to-ß-like cell conversion in vivo. This conversion induces α cell replacement mechanisms through the mobilization of duct-lining precursor cells that adopt an α cell identity prior to being converted into ß-like cells, solely upon sustained GABA exposure. Importantly, these neo-generated ß-like cells are functional and can repeatedly reverse chemically induced diabetes in vivo. Similarly, the treatment of transplanted human islets with GABA results in a loss of α cells and a concomitant increase in ß-like cell counts, suggestive of α-to-ß-like cell conversion processes also in humans. This newly discovered GABA-induced α cell-mediated ß-like cell neogenesis could therefore represent an unprecedented hope toward improved therapies for diabetes.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Células Secretoras de Glucagón/citología , Células Secretoras de Insulina/citología , Ácido gamma-Aminobutírico/administración & dosificación , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular/efectos de los fármacos , Diabetes Mellitus/inducido químicamente , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Células Secretoras de Glucagón/efectos de los fármacos , Humanos , Islotes Pancreáticos/citología , Masculino , Ratones , Proteínas del Tejido Nervioso , Ratas , Ratas Wistar , Ácido gamma-Aminobutírico/farmacología
2.
Nature ; 567(7746): 43-48, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30760930

RESUMEN

Cell-identity switches, in which terminally differentiated cells are converted into different cell types when stressed, represent a widespread regenerative strategy in animals, yet they are poorly documented in mammals. In mice, some glucagon-producing pancreatic α-cells and somatostatin-producing δ-cells become insulin-expressing cells after the ablation of insulin-secreting ß-cells, thus promoting diabetes recovery. Whether human islets also display this plasticity, especially in diabetic conditions, remains unknown. Here we show that islet non-ß-cells, namely α-cells and pancreatic polypeptide (PPY)-producing γ-cells, obtained from deceased non-diabetic or diabetic human donors, can be lineage-traced and reprogrammed by the transcription factors PDX1 and MAFA to produce and secrete insulin in response to glucose. When transplanted into diabetic mice, converted human α-cells reverse diabetes and continue to produce insulin even after six months. Notably, insulin-producing α-cells maintain expression of α-cell markers, as seen by deep transcriptomic and proteomic characterization. These observations provide conceptual evidence and a molecular framework for a mechanistic understanding of in situ cell plasticity as a treatment for diabetes and other degenerative diseases.


Asunto(s)
Diabetes Mellitus/patología , Diabetes Mellitus/terapia , Células Secretoras de Glucagón/citología , Células Secretoras de Glucagón/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/patología , Animales , Biomarcadores/análisis , Linaje de la Célula/efectos de los fármacos , Reprogramación Celular/efectos de los fármacos , Diabetes Mellitus/inmunología , Diabetes Mellitus/metabolismo , Modelos Animales de Enfermedad , Femenino , Glucagón/metabolismo , Células Secretoras de Glucagón/efectos de los fármacos , Células Secretoras de Glucagón/trasplante , Glucosa/farmacología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/inmunología , Islotes Pancreáticos/metabolismo , Factores de Transcripción Maf de Gran Tamaño/genética , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Masculino , Ratones , Especificidad de Órganos/efectos de los fármacos , Polipéptido Pancreático/metabolismo , Células Secretoras de Polipéptido Pancreático/citología , Células Secretoras de Polipéptido Pancreático/efectos de los fármacos , Células Secretoras de Polipéptido Pancreático/metabolismo , Proteómica , Análisis de Secuencia de ARN , Transactivadores/genética , Transactivadores/metabolismo , Transcriptoma , Transducción Genética
3.
Genes Dev ; 31(4): 383-398, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28275001

RESUMEN

A critical role of circadian oscillators in orchestrating insulin secretion and islet gene transcription has been demonstrated recently. However, these studies focused on whole islets and did not explore the interplay between α-cell and ß-cell clocks. We performed a parallel analysis of the molecular properties of α-cell and ß-cell oscillators using a mouse model expressing three reporter genes: one labeling α cells, one specific for ß cells, and a third monitoring circadian gene expression. Thus, phase entrainment properties, gene expression, and functional outputs of the α-cell and ß-cell clockworks could be assessed in vivo and in vitro at the population and single-cell level. These experiments showed that α-cellular and ß-cellular clocks are oscillating with distinct phases in vivo and in vitro. Diurnal transcriptome analysis in separated α and ß cells revealed that a high number of genes with key roles in islet physiology, including regulators of glucose sensing and hormone secretion, are differentially expressed in these cell types. Moreover, temporal insulin and glucagon secretion exhibited distinct oscillatory profiles both in vivo and in vitro. Altogether, our data indicate that differential entrainment characteristics of circadian α-cell and ß-cell clocks are an important feature in the temporal coordination of endocrine function and gene expression.


Asunto(s)
Relojes Circadianos/fisiología , Regulación de la Expresión Génica , Células Secretoras de Glucagón/fisiología , Glucagón/metabolismo , Células Secretoras de Insulina/fisiología , Insulina/metabolismo , Animales , Células Cultivadas , Relojes Circadianos/efectos de los fármacos , Colforsina/farmacología , Activadores de Enzimas/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Glucagón/sangre , Células Secretoras de Glucagón/efectos de los fármacos , Insulina/sangre , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Modelos Animales , Análisis de Secuencia de ARN , Factores de Tiempo
4.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R515-R527, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38618911

RESUMEN

Inhibition of the bromodomain and extraterminal domain (BET) protein family is a potential strategy to prevent and treat diabetes; however, the clinical use of BET bromodomain inhibitors (BETis) is associated with adverse effects. Here, we explore a strategy for targeting BETis to ß cells by exploiting the high-zinc (Zn2+) concentration in ß cells relative to other cell types. We report the synthesis of a novel, Zn2+-chelating derivative of the pan-BETi (+)-JQ1, (+)-JQ1-DPA, in which (+)-JQ1 was conjugated to dipicolyl amine (DPA). As controls, we synthesized (+)-JQ1-DBA, a non-Zn2+-chelating derivative, and (-)-JQ1-DPA, an inactive enantiomer that chelates Zn2+. Molecular modeling and biophysical assays showed that (+)-JQ1-DPA and (+)-JQ1-DBA retain potent binding to BET bromodomains in vitro. Cellular assays demonstrated (+)-JQ1-DPA attenuated NF-ĸB target gene expression in ß cells stimulated with the proinflammatory cytokine interleukin 1ß. To assess ß-cell selectivity, we isolated islets from a mouse model that expresses green fluorescent protein in insulin-positive ß cells and mTomato in insulin-negative cells (non-ß cells). Surprisingly, Zn2+ chelation did not confer ß-cell selectivity as (+)-JQ1-DPA was equally effective in both ß and α cells; however, (+)-JQ1-DPA was less effective in macrophages, a nonendocrine islet cell type. Intriguingly, the non-Zn2+-chelating derivative (+)-JQ1-DBA displayed the opposite selectivity, with greater effect in macrophages compared with (+)-JQ1-DPA, suggesting potential as a macrophage-targeting molecule. These findings suggest that Zn2+-chelating small molecules confer endocrine cell selectivity rather than ß-cell selectivity in pancreatic islets and provide valuable insights and techniques to assess Zn2+ chelation as an approach to selectively target small molecules to pancreatic ß cells.NEW & NOTEWORTHY Inhibition of BET bromodomains is a novel potential strategy to prevent and treat diabetes mellitus. However, BET inhibitors have negative side effects. We synthesized a BET inhibitor expected to exploit the high zinc concentration in ß cells to accumulate in ß cells. We show our inhibitor targeted pancreatic endocrine cells; however, it was less effective in immune cells. A control inhibitor showed the opposite effect. These findings help us understand how to target specific cells in diabetes treatment.


Asunto(s)
Quelantes , Células Secretoras de Insulina , Zinc , Animales , Zinc/química , Zinc/farmacología , Zinc/metabolismo , Quelantes/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Triazoles/farmacología , Triazoles/química , Humanos , Masculino , Azepinas/farmacología , Azepinas/química , Células Secretoras de Glucagón/efectos de los fármacos , Células Secretoras de Glucagón/metabolismo , Ratones Endogámicos C57BL , Proteínas que Contienen Bromodominio , Proteínas Nucleares
5.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33619103

RESUMEN

We evaluated the potential for a monoclonal antibody antagonist of the glucagon receptor (Ab-4) to maintain glucose homeostasis in type 1 diabetic rodents. We noted durable and sustained improvements in glycemia which persist long after treatment withdrawal. Ab-4 promoted ß-cell survival and enhanced the recovery of insulin+ islet mass with concomitant increases in circulating insulin and C peptide. In PANIC-ATTAC mice, an inducible model of ß-cell apoptosis which allows for robust assessment of ß-cell regeneration following caspase-8-induced diabetes, Ab-4 drove a 6.7-fold increase in ß-cell mass. Lineage tracing suggests that this restoration of functional insulin-producing cells was at least partially driven by α-cell-to-ß-cell conversion. Following hyperglycemic onset in nonobese diabetic (NOD) mice, Ab-4 treatment promoted improvements in C-peptide levels and insulin+ islet mass was dramatically increased. Lastly, diabetic mice receiving human islet xenografts showed stable improvements in glycemic control and increased human insulin secretion.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Diabetes Mellitus Experimental/terapia , Células Secretoras de Glucagón/efectos de los fármacos , Hipoglucemiantes/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Receptores de Glucagón/antagonistas & inhibidores , Animales , Glucemia/metabolismo , Péptido C/metabolismo , Linaje de la Célula/efectos de los fármacos , Transdiferenciación Celular/efectos de los fármacos , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/terapia , Expresión Génica , Glucagón/antagonistas & inhibidores , Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Glucagón/patología , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/fisiología , Trasplante de Islotes Pancreáticos , Ratones , Ratones Endogámicos NOD , Tamaño de los Órganos/efectos de los fármacos , Receptores de Glucagón/genética , Receptores de Glucagón/metabolismo , Resultado del Tratamiento
6.
J Biol Chem ; 296: 100297, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33460647

RESUMEN

The nutrient sensor O-GlcNAc transferase (OGT) catalyzes posttranslational addition of O-GlcNAc onto target proteins, influencing signaling pathways in response to cellular nutrient levels. OGT is highly expressed in pancreatic glucagon-secreting cells (α-cells), which secrete glucagon in response to hypoglycemia. The objective of this study was to determine whether OGT is necessary for the regulation of α-cell mass and function in vivo. We utilized genetic manipulation to produce two α-cell specific OGT-knockout models: a constitutive glucagon-Cre (αOGTKO) and an inducible glucagon-Cre (i-αOGTKO), which effectively delete OGT in α-cells. Using approaches including immunoblotting, immunofluorescent imaging, and metabolic phenotyping in vivo, we provide the first insight on the role of O-GlcNAcylation in α-cell mass and function. αOGTKO mice demonstrated normal glucose tolerance and insulin sensitivity but displayed significantly lower glucagon levels during both fed and fasted states. αOGTKO mice exhibited significantly lower α-cell glucagon content and α-cell mass at 6 months of age. In fasting, αOGTKO mice showed impaired pyruvate stimulated gluconeogenesis in vivo and reduced glucagon secretion in vitro. i-αOGTKO mice showed similarly reduced blood glucagon levels, defective in vitro glucagon secretion, and normal α-cell mass. Interestingly, both αOGTKO and i-αOGTKO mice had no deficiency in maintaining blood glucose homeostasis under fed or fasting conditions, despite impairment in α-cell mass and function, and glucagon content. In conclusion, these studies provide a first look at the role of OGT signaling in the α-cell, its effect on α-cell mass, and its importance in regulating glucagon secretion in hypoglycemic conditions.


Asunto(s)
Glucemia/metabolismo , Células Secretoras de Glucagón/enzimología , Glucagón/biosíntesis , N-Acetilglucosaminiltransferasas/genética , Obesidad/genética , Acilación/efectos de los fármacos , Animales , Ayuno/metabolismo , Femenino , Efecto Fundador , Glucagón/deficiencia , Células Secretoras de Glucagón/efectos de los fármacos , Células Secretoras de Glucagón/patología , Gluconeogénesis/efectos de los fármacos , Gluconeogénesis/genética , Prueba de Tolerancia a la Glucosa , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Resistencia a la Insulina , Integrasas/genética , Integrasas/metabolismo , Masculino , Ratones , Ratones Noqueados , N-Acetilglucosaminiltransferasas/deficiencia , Obesidad/enzimología , Obesidad/patología , Ácido Pirúvico/metabolismo , Ácido Pirúvico/farmacología
7.
Ecotoxicol Environ Saf ; 239: 113695, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35623150

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) have been detected throughout the human body. Whether exposure to PAHs is associated with the incidence of type 1 diabetes mellitus should be investigated. To this end, pregnant mice were exposed to mixed PAHs (5, 50, or 500 µg/kg) once every other day during gestation. The adult male offspring displayed impaired glucose tolerance and reduced serum levels of glucagon and insulin. Immunohistochemical staining revealed increased numbers of apoptotic ß-cells and a reduced ß-cell mass in these males. The downregulated expression of pancreatic estrogen receptor α, androgen receptor, and transcription factor PDX1 was responsible for impacting ß-cell development. The relatively reduced α-cell area was associated with downregulated ARX expression. The transcription of Isn2 and Gcg in pancreatic tissue was downregulated, which indicated that the function of ß-cells and α-cells was impaired. Methylation levels in the Isn2 promotor were significantly elevated in mice prenatally exposed to 500 µg/kg PAHs, which was consistent with the change in its mRNA levels. The number of macrophages infiltrating islets was significantly increased, indicating that prenatal PAH exposure might reduce islet cell numbers in an autoimmune manner. This study shows that prenatal exposure to PAHs may promote the pathogenesis of type 1 diabetes mellitus.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Glucagón , Islotes Pancreáticos , Hidrocarburos Policíclicos Aromáticos , Efectos Tardíos de la Exposición Prenatal , Animales , Diabetes Mellitus Tipo 1/inducido químicamente , Femenino , Glucagón , Células Secretoras de Glucagón/efectos de los fármacos , Células Secretoras de Glucagón/patología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/patología , Masculino , Ratones , Hidrocarburos Policíclicos Aromáticos/efectos adversos , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología
8.
Diabetologia ; 64(1): 142-151, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33043402

RESUMEN

AIMS/HYPOTHESIS: The endocrine pancreas comprises the islets of Langerhans, primarily consisting of beta cells, alpha cells and delta cells responsible for secretion of insulin, glucagon and somatostatin, respectively. A certain level of intra-islet communication is thought to exist, where the individual hormones may reach the other islet cells and regulate their secretion. Glucagon has been demonstrated to importantly regulate insulin secretion, while somatostatin powerfully inhibits both insulin and glucagon secretion. In this study we investigated how secretion of somatostatin is regulated by paracrine signalling from glucagon and insulin. METHODS: Somatostatin secretion was measured from perfused mouse pancreases isolated from wild-type as well as diphtheria toxin-induced alpha cell knockdown, and global glucagon receptor knockout (Gcgr-/-) mice. We studied the effects of varying glucose concentrations together with infusions of arginine, glucagon, insulin and somatostatin, as well as infusions of antagonists of insulin, somatostatin and glucagon-like peptide 1 (GLP-1) receptors. RESULTS: A tonic inhibitory role of somatostatin was demonstrated with infusion of somatostatin receptor antagonists, which significantly increased glucagon secretion at low and high glucose, whereas insulin secretion was only increased at high glucose levels. Infusion of glucagon dose-dependently increased somatostatin secretion approximately twofold in control mice. Exogenous glucagon had no effect on somatostatin secretion in Gcgr-/- mice, and a reduced effect when combined with the GLP-1 receptor antagonist exendin 9-39. Diphtheria toxin-induced knockdown of glucagon producing cells led to reduced somatostatin secretion in response to 12 mmol/l glucose and arginine infusions. In Gcgr-/- mice (where glucagon levels are dramatically increased) overall somatostatin secretion was increased. However, infusion of exendin 9-39 in Gcgr-/- mice completely abolished somatostatin secretion in response to glucose and arginine. Neither insulin nor an insulin receptor antagonist (S961) had any effect on somatostatin secretion. CONCLUSIONS/INTERPRETATION: Our findings demonstrate that somatostatin and glucagon secretion are linked in a reciprocal feedback cycle with somatostatin inhibiting glucagon secretion at low and high glucose levels, and glucagon stimulating somatostatin secretion via the glucagon and GLP-1 receptors. Graphical abstract.


Asunto(s)
Glucagón/fisiología , Insulina/fisiología , Somatostatina/metabolismo , Animales , Arginina/administración & dosificación , Comunicación Celular , Toxina Diftérica/farmacología , Técnicas de Silenciamiento del Gen , Glucagón/administración & dosificación , Receptor del Péptido 1 Similar al Glucagón/efectos de los fármacos , Receptor del Péptido 1 Similar al Glucagón/fisiología , Células Secretoras de Glucagón/efectos de los fármacos , Células Secretoras de Glucagón/fisiología , Glucosa/administración & dosificación , Insulina/administración & dosificación , Secreción de Insulina/efectos de los fármacos , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Glucagón/deficiencia , Receptores de Glucagón/genética , Receptores de Glucagón/fisiología , Receptores de Somatostatina/antagonistas & inhibidores , Transducción de Señal/fisiología , Somatostatina/administración & dosificación
9.
J Biol Chem ; 295(16): 5419-5426, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32156704

RESUMEN

Hypersecretion of glucagon from pancreatic α-cells strongly contributes to diabetic hyperglycemia. Moreover, failure of α-cells to increase glucagon secretion in response to falling blood glucose concentrations compromises the defense against hypoglycemia, a common complication in diabetes therapy. However, the mechanisms underlying glucose regulation of glucagon secretion are poorly understood and likely involve both α-cell-intrinsic and intraislet paracrine signaling. Among paracrine factors, glucose-stimulated release of the GABA metabolite γ-hydroxybutyric acid (GHB) from pancreatic ß-cells might mediate glucose suppression of glucagon release via GHB receptors on α-cells. However, the direct effects of GHB on α-cell signaling and glucagon release have not been investigated. Here, we found that GHB (4-10 µm) lacked effects on the cytoplasmic concentrations of the secretion-regulating messengers Ca2+ and cAMP in mouse α-cells. Glucagon secretion from perifused mouse islets was also unaffected by GHB at both 1 and 7 mm glucose. The GHB receptor agonist 3-chloropropanoic acid and the antagonist NCS-382 had no effects on glucagon secretion and did not affect stimulation of secretion induced by a drop in glucose from 7 to 1 mm Inhibition of endogenous GHB formation with the GABA transaminase inhibitor vigabatrin also failed to influence glucagon secretion at 1 mm glucose and did not prevent the suppressive effect of 7 mm glucose. In human islets, GHB tended to stimulate glucagon secretion at 1 mm glucose, an effect mimicked by 3-chloropropanoic acid. We conclude that GHB does not mediate the inhibitory effect of glucose on glucagon secretion.


Asunto(s)
Células Secretoras de Glucagón/metabolismo , Glucagón/metabolismo , Glucosa/metabolismo , Oxibato de Sodio/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Benzocicloheptenos/farmacología , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Femenino , GABAérgicos/farmacología , Células Secretoras de Glucagón/efectos de los fármacos , Glucosa/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Propionatos/farmacología , Vigabatrin/farmacología
10.
Arterioscler Thromb Vasc Biol ; 40(12): 2941-2952, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33086869

RESUMEN

OBJECTIVE: Subjects with low levels of HDL (high-density lipoprotein) and ApoA-1 (apolipoprotein A-1) have increased risk to develop type 2 diabetes. HDL levels are an independent predictor of ß-cell function and positively modulate it. Type 2 diabetes is characterized by defects in both ß and α-cell function, but the effect of HDL and ApoA1 on α-cell function is unknown. Approach and Results: We observed a significant negative correlation (r=-0.422, P<0.0001) between HDL levels and fasting glucagon in a cohort of 132 Italian subjects. In a multivariable regression analysis including potential confounders such as age, sex, BMI, triglycerides, total cholesterol, fasting and 2-hour postload glucose, and fasting insulin, the association between HDL and fasting glucagon remained statistically significant (ß=-0.318, P=0.006). CD1 mice treated with HDL or ApoA-1 for 3 consecutive days showed a 32% (P<0.001) and 23% (P<0.05) reduction, respectively, in glucagon levels following insulin-induced hypoglycemia, compared with controls. Treatment of pancreatic αTC1 clone 6 cells with HDL or ApoA-1 for 24 hours resulted in a significant reduction of glucagon expression (P<0.04) and secretion (P<0.01) after an hypoglycemic stimulus and increased Akt (RAC-alpha serine/threonine-protein kinase) and FoxO1 (forkhead/winged helix box gene, group O-1) phosphorylation. Pretreatment with Akt inhibitor VIII, PI3K (phosphatidylinositol 3-kinase) inhibitor LY294002, and HDL receptor SCARB-1 (scavenger receptor class B type 1) inhibitor BLT-1 (block lipid transport-1) restored αTC1 cell response to low glucose levels. CONCLUSIONS: These results support the notion that HDL and ApoA-1 modulate glucagon expression and secretion by binding their cognate receptor SCARB-1, and activating the PI3K/Akt/FoxO1 signaling cascade in an in vitro α-cell model. Overall, these results raise the hypothesis that HDL and ApoA-1 may have a role in modulating glucagon secretion.


Asunto(s)
Apolipoproteína A-I/farmacología , Células Secretoras de Glucagón/efectos de los fármacos , Glucagón/sangre , Lipoproteínas HDL/farmacología , Adulto , Animales , Apolipoproteína A-I/sangre , Línea Celular , Femenino , Proteína Forkhead Box O1/metabolismo , Células Secretoras de Glucagón/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Italia , Lipoproteínas HDL/sangre , Masculino , Ratones Endogámicos ICR , Persona de Mediana Edad , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Depuradores de Clase B/metabolismo , Vías Secretoras , Transducción de Señal , Factores de Tiempo
11.
Am J Physiol Endocrinol Metab ; 318(6): E920-E929, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32255678

RESUMEN

The aim of this study was to identify the amino acids that stimulate glucagon secretion in mice and whose metabolism depends on glucagon receptor signaling. Pancreata of female C57BL/6JRj mice were perfused with 19 individual amino acids and pyruvate (at 10 mM), and secretion of glucagon was assessed using a specific glucagon radioimmunoassay. Separately, a glucagon receptor antagonist (GRA; 25-2648, 100 mg/kg) or vehicle was administered to female C57BL/6JRj mice 3 h before an intraperitoneal injection of four different isomolar amino acid mixtures (in total 7 µmol/g body wt) as follows: mixture 1 contained alanine, arginine, cysteine, and proline; mixture 2 contained aspartate, glutamate, histidine, and lysine; mixture 3 contained citrulline, methionine, serine, and threonine; and mixture 4 contained glutamine, leucine, isoleucine, and valine. Blood glucose, plasma glucagon, amino acid, and insulin concentrations were measured using well-characterized methodologies. Alanine (P = 0.03), arginine (P < 0.0001), cysteine (P = 0.01), glycine (P = 0.02), lysine (P = 0.02), and proline (P = 0.03), but not glutamine (P = 0.9), stimulated glucagon secretion from the perfused mouse pancreas. However, when the four isomolar amino acid mixtures were administered in vivo, the four mixtures elicited similar glucagon responses (P > 0.5). Plasma concentrations of total amino acids in vivo were higher after administration of GRA when mixture 1 (P = 0.004) or mixture 3 (P = 0.04) were injected. Our data suggest that alanine, arginine, cysteine, and proline, but not glutamine, are involved in the acute regulation of the liver-α-cell axis in female mice, as they all increased glucagon secretion and their disappearance rate was altered by GRA.


Asunto(s)
Aminoácidos/metabolismo , Glucemia/metabolismo , Células Secretoras de Glucagón/metabolismo , Glucagón/metabolismo , Hígado/metabolismo , Alanina/metabolismo , Animales , Arginina/metabolismo , Cisteína/metabolismo , Femenino , Células Secretoras de Glucagón/efectos de los fármacos , Glutamina/metabolismo , Técnicas In Vitro , Insulina/metabolismo , Ratones , Prolina/metabolismo , Receptores de Glucagón/antagonistas & inhibidores , Receptores de Glucagón/metabolismo
12.
Am J Physiol Endocrinol Metab ; 319(6): E1074-E1083, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33044845

RESUMEN

This study aimed to investigate the contributions of two factors potentially impairing glucagon response to insulin-induced hypoglycemia (IIH) in insulin-deficient diabetes: 1) loss of paracrine disinhibition by intra-islet insulin and 2) defects in the activation of the autonomic inputs to the islet. Plasma glucagon responses during hyperinsulinemic-hypoglycemic clamps ([Formula: see text]40 mg/dL) were assessed in dogs with spontaneous diabetes (n = 13) and in healthy nondiabetic dogs (n = 6). Plasma C-peptide responses to intravenous glucagon were measured to assess endogenous insulin secretion. Plasma pancreatic polypeptide, epinephrine, and norepinephrine were measured as indices of parasympathetic and sympathoadrenal autonomic responses to IIH. In 8 of the 13 diabetic dogs, glucagon did not increase during IIH (diabetic nonresponder [DMN]; ∆ = -6 ± 12 pg/mL). In five other diabetic dogs (diabetic responder [DMR]), glucagon responses (∆ = +26 ± 12) were within the range of nondiabetic control dogs (∆ = +27 ± 16 pg/mL). C-peptide responses to intravenous glucagon were absent in diabetic dogs. Activation of all three autonomic responses were impaired in DMN dogs but remained intact in DMR dogs. Each of the three autonomic responses to IIH was positively correlated with glucagon responses across the three groups. The study conclusions are as follows: 1) Impairment of glucagon responses in DMN dogs is not due to generalized impairment of α-cell function. 2) Loss of tonic inhibition of glucagon secretion by insulin is not sufficient to produce loss of the glucagon response; impairment of autonomic activation is also required. 3) In dogs with major ß-cell function loss, activation of the autonomic inputs is sufficient to mediate an intact glucagon response to IIH.NEW & NOTEWORTHY In dogs with naturally occurring, insulin-dependent (C-peptide negative) diabetes mellitus, impairment of glucagon responses is not due to generalized impairment of α-cell function. Loss of tonic inhibition of glucagon secretion by insulin is not sufficient, by itself, to produce loss of the glucagon response. Rather, impaired activation of the parasympathetic and sympathoadrenal autonomic inputs to the pancreas is also required. Activation of the autonomic inputs to the pancreas is sufficient to mediate an intact glucagon response to insulin-induced hypoglycemia in dogs with naturally occurring diabetes mellitus. These results have important implications that include leading to a greater understanding and insight into the pathophysiology, prevention, and treatment of hypoglycemia during insulin treatment of diabetes in companion dogs and in human patients.


Asunto(s)
Sistema Nervioso Autónomo/efectos de los fármacos , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/veterinaria , Enfermedades de los Perros/metabolismo , Glucagón/farmacología , Hipoglucemia/inducido químicamente , Hipoglucemia/metabolismo , Hipoglucemiantes , Insulina , Animales , Glucemia/metabolismo , Péptido C/metabolismo , Perros , Epinefrina/sangre , Células Secretoras de Glucagón/efectos de los fármacos , Técnica de Clampeo de la Glucosa , Células Secretoras de Insulina/efectos de los fármacos , Norepinefrina/sangre , Polipéptido Pancreático/metabolismo
13.
Cell Biol Int ; 44(4): 926-936, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31903671

RESUMEN

In vivo regeneration of lost or dysfunctional islet ß cells can fulfill the promise of improved therapy for diabetic patients. To achieve this, many mitogenic factors have been attempted, including gamma-aminobutyric acid (GABA). GABA remarkably affects pancreatic islet cells' (α cells and ß cells) function through paracrine and/or autocrine binding to its membrane receptors on these cells. GABA has also been studied for promoting the transformation of α cells to ß cells. Nonetheless, the gimmickry of GABA-induced α-cell transformation to ß cells has two different perspectives. On the one hand, GABA was found to induce α-cell transformation to ß cells in vivo and insulin-secreting ß-like cells in vitro. On the other hand, GABA treatment showed that it has no α- to ß-cell transformation response. Here, we will summarize the physiological effects of GABA on pancreatic islet ß cells with an emphasis on its regenerative effects for transdifferentiation of islet α cells to ß cells. We will also critically discuss the controversial results about GABA-mediated transdifferentiation of α cells to ß cells.


Asunto(s)
Transdiferenciación Celular/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Células Secretoras de Glucagón/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Ácido gamma-Aminobutírico/farmacología , Animales , Células Secretoras de Glucagón/patología , Humanos , Células Secretoras de Insulina/patología , Ratones , Regeneración/efectos de los fármacos
14.
Proc Natl Acad Sci U S A ; 114(25): 6611-6616, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28584109

RESUMEN

Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a class of antidiabetic drug used for the treatment of diabetes. These drugs are thought to lower blood glucose by blocking reabsorption of glucose by SGLT2 in the proximal convoluted tubules of the kidney. To investigate the effect of inhibiting SGLT2 on pancreatic hormones, we treated perfused pancreata from rats with chemically induced diabetes with dapagliflozin and measured the response of glucagon secretion by alpha cells in response to elevated glucose. In these type 1 diabetic rats, glucose stimulated glucagon secretion by alpha cells; this was prevented by dapagliflozin. Two models of type 2 diabetes, severely diabetic Zucker rats and db/db mice fed dapagliflozin, showed significant improvement of blood glucose levels and glucose disposal, with reduced evidence of glucagon signaling in the liver, as exemplified by reduced phosphorylation of hepatic cAMP-responsive element binding protein, reduced expression of phosphoenolpyruvate carboxykinase 2, increased hepatic glycogen, and reduced hepatic glucose production. Plasma glucagon levels did not change significantly. However, dapagliflozin treatment reduced the expression of the liver glucagon receptor. Dapagliflozin in rodents appears to lower blood glucose levels in part by suppressing hepatic glucagon signaling through down-regulation of the hepatic glucagon receptor.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Glucagón/metabolismo , Glucósidos/farmacología , Hipoglucemiantes/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Glucemia/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Células Secretoras de Glucagón/efectos de los fármacos , Células Secretoras de Glucagón/metabolismo , Glucosa/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Masculino , Ratones , Ratas , Ratas Sprague-Dawley , Ratas Zucker , Roedores/metabolismo , Transportador 2 de Sodio-Glucosa/metabolismo
15.
Ecotoxicol Environ Saf ; 188: 109875, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31706244

RESUMEN

Previous works showed that chronic exposure to Aroclor 1254 disrupted glucose homeostasis and induced insulin resistance in male mice. To further observe the different effects of Aroclor 1254 exposure on the pancreatic α-cells and ß-cells, male mice were exposed to Aroclor 1254 (0, 0.5, 5, 50, 500 µg/kg) for 60 days, the pancreas was performed a histological examination. The results showed that the percentage of apoptosis cell (indicated by TUNEL assay) was increased in both α-cells and ß-cells, as the Aroclor 1254 dose was increased; the proliferation (indicated by PCNA expression) rate of ß-cells was elevated while that of α-cells was not affected, resulting in an increased ß-cell mass and a decreased α-cell mass in a dose-depend manner. The number of Pdx-1 positive ß-cells was significantly increased whereas that of Arx positive α-cells was markedly decreased, indicating an enhanced ß-cell neogenesis and a weakened α-cell neogenesis. The drastically reduction of serum testosterone levels in all the treatments suggested an anti-androgenic potency of Aroclor 1254. The up-regulation of estrogen receptors (ERα and ERß) and androgen receptor in ß-cells might be responsible for the increased ß-cell mass and neogenesis.


Asunto(s)
Antitiroideos/toxicidad , Células Secretoras de Glucagón/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Glucagón/patología , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Masculino , Ratones , Receptores Androgénicos/metabolismo , Receptores de Estrógenos/metabolismo , Testosterona/sangre , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
16.
Sheng Li Xue Bao ; 72(2): 133-138, 2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-32328606

RESUMEN

Lycopene is an antioxidant which has potential anti-diabetic activity, but the cellular mechanisms have not been clarified. In this study, different concentrations of lycopene were used to treat pancreatic alpha and beta cell lines, and the changes of cell growth, cell apoptosis, cell cycle, reactive oxygen species (ROS), ATP levels and expression of related cytokines were determined. The results exhibited that lycopene did not affect cell growth, cell apoptosis, cell cycle, ROS and ATP levels of alpha cells, while it promoted the growth of beta cells, increased the ratio of S phase, reduced the ROS levels and increased the ATP levels of beta cells. At the same time, lycopene treatment elevated the mRNA expression levels of tnfα, tgfß and hif1α in beta cells. These findings suggest that lycopene plays cell-specific role and activates pancreatic beta cells, supporting its application in diabetes therapy.


Asunto(s)
Células Secretoras de Glucagón/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Licopeno/farmacología , Adenosina Trifosfato/metabolismo , Apoptosis , Carotenoides/farmacología , Ciclo Celular , Células Cultivadas , Citocinas/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo
17.
Biochem Biophys Res Commun ; 508(4): 1056-1061, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30553443

RESUMEN

ß-cell deficiency is common feature of type 1 and late-stage of type 2 diabetes mellitus. Thus, ß-cell replacement therapy has been the focus of regenerative medicine past several decades. Particularly, evidences suggest that ß-cell regeneration via transdifferentiation from sources including α-cells is promising. However, data using higher mammals besides rodents are scarce. Here, we examined whether endogenous pancreatic ß-cells could regenerate spontaneously or under normoglycemia following porcine islet transplantation for varied periods up to 1197 days after streptozotocin-induced diabetes, and remaining α-cells transdifferentiate into ß-cells by GABA treatment in vivo and in vitro. The results showed that endogenous ß-cells rarely regenerate in both conditions as evidenced by stagnant serum C-peptide levels and ß-cell number in the pancreas, and the remaining α-cells did not transdifferentiate into ß-cells by GABA treatment. Collectively, we concluded that monkey ß-cells had relatively low regenerative potential compared with rodent counterpart and GABA treatment could not induce α-to-ß-cell transdifferentitation.


Asunto(s)
Transdiferenciación Celular , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/patología , Células Secretoras de Glucagón/patología , Células Secretoras de Insulina/patología , Regeneración , Ácido gamma-Aminobutírico/farmacología , Animales , Transdiferenciación Celular/efectos de los fármacos , Células Secretoras de Glucagón/efectos de los fármacos , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Macaca mulatta , Regeneración/efectos de los fármacos , Porcinos
18.
Int J Mol Sci ; 20(2)2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30646613

RESUMEN

Dipeptidyl peptidase IV (DPP-IV) inhibitors occupy a growing place in the drugs used for the management of type 2 diabetes. Recently, food components, including food-derived bioactive peptides, have been suggested as sources of DPP-IV inhibitors without side effects. Chinese black tea is a traditional health beverage, and it was used for finding DPP-IV inhibitory peptides in this study. The ultra-filtrated fractions isolated from the aqueous extracts of black tea revealed DPP-IV inhibitory activity in vitro. Four peptides under 1 kDa were identified by SDS-PAGE and LC-MS/MS (Liquid Chromatography-Mass Spectrometry-Mass Spectrometry) from the ultra-filtrate. The peptide II (sequence: AGFAGDDAPR), with a molecular mass of 976 Da, showed the greatest DPP-IV inhibitory activity (in vitro) among the four peptides. After administration of peptide II (400 mg/day) for 57 days to streptozotocin (STZ)-induced hyperglycemic mice, the concentration of glucagon-like peptide-1 (GLP-1) in the blood increased from 9.85 ± 1.96 pmol/L to 19.22 ± 6.79 pmol/L, and the insulin level was increased 4.3-fold compared to that in STZ control mice. Immunohistochemistry revealed the improved function of pancreatic beta-cells and suppressed proliferation of pancreatic alpha-cells. This study provides new insight into the use of black tea as a potential resource of food-derived DPP-IV inhibitory peptides for the management of type 2 diabetes.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores de la Dipeptidil-Peptidasa IV/administración & dosificación , Animales , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Dipeptidil Peptidasa 4/genética , Inhibidores de la Dipeptidil-Peptidasa IV/química , Péptido 1 Similar al Glucagón/sangre , Células Secretoras de Glucagón/efectos de los fármacos , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Té/química
19.
Am J Physiol Endocrinol Metab ; 314(1): E93-E103, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28978545

RESUMEN

Glucagon secreted from the pancreatic alpha-cells is essential for regulation of blood glucose levels. However, glucagon may play an equally important role in the regulation of amino acid metabolism by promoting ureagenesis. We hypothesized that disruption of glucagon receptor signaling would lead to an increased plasma concentration of amino acids, which in a feedback manner stimulates the secretion of glucagon, eventually associated with compensatory proliferation of the pancreatic alpha-cells. To address this, we performed plasma profiling of glucagon receptor knockout ( Gcgr-/-) mice and wild-type (WT) littermates using liquid chromatography-mass spectrometry (LC-MS)-based metabolomics, and tissue biopsies from the pancreas were analyzed for islet hormones and by histology. A principal component analysis of the plasma metabolome from Gcgr-/- and WT littermates indicated amino acids as the primary metabolic component distinguishing the two groups of mice. Apart from their hyperaminoacidemia, Gcgr-/- mice display hyperglucagonemia, increased pancreatic content of glucagon and somatostatin (but not insulin), and alpha-cell hyperplasia and hypertrophy compared with WT littermates. Incubating cultured α-TC1.9 cells with a mixture of amino acids (Vamin 1%) for 30 min and for up to 48 h led to increased glucagon concentrations (~6-fold) in the media and cell proliferation (~2-fold), respectively. In anesthetized mice, a glucagon receptor-specific antagonist (Novo Nordisk 25-2648, 100 mg/kg) reduced amino acid clearance. Our data support the notion that glucagon secretion and hepatic amino acid metabolism are linked in a close feedback loop, which operates independently of normal variations in glucose metabolism.


Asunto(s)
Aminoácidos/efectos adversos , Aminoácidos/sangre , Comunicación Celular , Células Secretoras de Glucagón/fisiología , Hepatocitos/fisiología , Receptores de Glucagón/genética , Animales , Comunicación Celular/efectos de los fármacos , Comunicación Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Electrólitos/efectos adversos , Electrólitos/sangre , Femenino , Células Secretoras de Glucagón/efectos de los fármacos , Células Secretoras de Glucagón/patología , Glucosa/efectos adversos , Hepatocitos/efectos de los fármacos , Hiperplasia/genética , Hiperplasia/metabolismo , Hiperplasia/patología , Hígado/efectos de los fármacos , Hígado/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/genética , Soluciones/efectos adversos
20.
J Cell Sci ; 129(12): 2462-71, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27173492

RESUMEN

Imbalanced glucagon and insulin release leads to the onset of type 2 diabetes. To pinpoint the underlying primary driving force, here we have developed a fast, non-biased optical method to measure ratios of pancreatic α- and ß-cell mass and function simultaneously. We firstly label both primary α- and ß-cells with the red fluorescent probe ZinRhodaLactam-1 (ZRL1), and then highlight α-cells by selectively quenching the ZRL1 signal from ß-cells. Based on the signals before and after quenching, we calculate the ratio of the α-cell to ß-cell mass within live islets, which we found matched the results from immunohistochemistry. From the same islets, glucagon and insulin release capability can be concomitantly measured. Thus, we were able to measure the ratio of α-cell to ß-cell mass and their function in wild-type and diabetic Lepr(db)/Lepr(db) (denoted db/db) mice at different ages. We find that the initial glucose intolerance that appears in 10-week-old db/db mice is associated with further expansion of α-cell mass prior to deterioration in functional ß-cell mass. Our method is extendable to studies of islet mass and function in other type 2 diabetes animal models, which shall benefit mechanistic studies of imbalanced hormone secretion during type 2 diabetes progression.


Asunto(s)
Células Secretoras de Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Óptica y Fotónica/métodos , Animales , Células Cultivadas , Diabetes Mellitus Tipo 2/patología , Progresión de la Enfermedad , Etilaminas/farmacología , Fluorescencia , Células Secretoras de Glucagón/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Tamaño de los Órganos/efectos de los fármacos , Piridinas/farmacología , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA