Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.053
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nat Immunol ; 25(6): 981-993, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811816

RESUMEN

Viral infection makes us feel sick as the immune system alters systemic metabolism to better fight the pathogen. The extent of these changes is relative to the severity of disease. Whether blood glucose is subject to infection-induced modulation is mostly unknown. Here we show that strong, nonlethal infection restricts systemic glucose availability, which promotes the antiviral type I interferon (IFN-I) response. Following viral infection, we find that IFNγ produced by γδ T cells stimulates pancreatic ß cells to increase glucose-induced insulin release. Subsequently, hyperinsulinemia lessens hepatic glucose output. Glucose restriction enhances IFN-I production by curtailing lactate-mediated inhibition of IRF3 and NF-κB signaling. Induced hyperglycemia constrained IFN-I production and increased mortality upon infection. Our findings identify glucose restriction as a physiological mechanism to bring the body into a heightened state of responsiveness to viral pathogens. This immune-endocrine circuit is disrupted in hyperglycemia, possibly explaining why patients with diabetes are more susceptible to viral infection.


Asunto(s)
Glucemia , Inmunidad Innata , Interferón gamma , Animales , Interferón gamma/metabolismo , Interferón gamma/inmunología , Ratones , Glucemia/metabolismo , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Insulina/metabolismo , Insulina/inmunología , Ratones Noqueados , Hiperglucemia/inmunología , Factor 3 Regulador del Interferón/metabolismo , FN-kappa B/metabolismo , Humanos , Hígado/inmunología , Hígado/virología , Hígado/metabolismo , Masculino
2.
Cell ; 173(1): 11-19, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29570991

RESUMEN

The construction of a predictive model of an entire eukaryotic cell that describes its dynamic structure from atomic to cellular scales is a grand challenge at the intersection of biology, chemistry, physics, and computer science. Having such a model will open new dimensions in biological research and accelerate healthcare advancements. Developing the necessary experimental and modeling methods presents abundant opportunities for a community effort to realize this goal. Here, we present a vision for creation of a spatiotemporal multi-scale model of the pancreatic ß-cell, a relevant target for understanding and modulating the pathogenesis of diabetes.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Modelos Biológicos , Biología Computacional , Descubrimiento de Drogas , Humanos , Células Secretoras de Insulina/citología , Proteínas/química , Proteínas/metabolismo
3.
Cell ; 173(5): 1135-1149.e15, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29754817

RESUMEN

A primary cause of disease progression in type 2 diabetes (T2D) is ß cell dysfunction due to inflammatory stress and insulin resistance. However, preventing ß cell exhaustion under diabetic conditions is a major therapeutic challenge. Here, we identify the vitamin D receptor (VDR) as a key modulator of inflammation and ß cell survival. Alternative recognition of an acetylated lysine in VDR by bromodomain proteins BRD7 and BRD9 directs association to PBAF and BAF chromatin remodeling complexes, respectively. Mechanistically, ligand promotes VDR association with PBAF to effect genome-wide changes in chromatin accessibility and enhancer landscape, resulting in an anti-inflammatory response. Importantly, pharmacological inhibition of BRD9 promotes PBAF-VDR association to restore ß cell function and ameliorate hyperglycemia in murine T2D models. These studies reveal an unrecognized VDR-dependent transcriptional program underpinning ß cell survival and identifies the VDR:PBAF/BAF association as a potential therapeutic target for T2D.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Receptores de Calcitriol/metabolismo , Factores de Transcripción/metabolismo , Vitamina D/farmacología , Animales , Calcitriol/análogos & derivados , Calcitriol/farmacología , Ensamble y Desensamble de Cromatina , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Humanos , Insulina/sangre , Insulina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Mutagénesis Sitio-Dirigida , Fosforilación Oxidativa/efectos de los fármacos , Unión Proteica , Interferencia de ARN , ARN Guía de Kinetoplastida/genética , ARN Interferente Pequeño/metabolismo , Receptores de Calcitriol/antagonistas & inhibidores , Receptores de Calcitriol/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos
4.
Cell ; 168(1-2): 7-9, 2017 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-28086099

RESUMEN

GABA and the antimalarial drug artemether, which acts on GABAergic pathways, can drive pancreatic cells with an α-cell phenotype toward a ß-cell-like phenotype. As reported in two papers (Ben-Othman et al. and Li et al.), these drugs can stimulate the production of sufficient numbers of new ß-like cells to reverse severe diabetes in mice.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Ratones , Regeneración , Transducción de Señal , Ácido gamma-Aminobutírico/metabolismo
5.
Cell ; 168(5): 775-788.e12, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28235195

RESUMEN

Stem-cell-based therapies can potentially reverse organ dysfunction and diseases, but the removal of impaired tissue and activation of a program leading to organ regeneration pose major challenges. In mice, a 4-day fasting mimicking diet (FMD) induces a stepwise expression of Sox17 and Pdx-1, followed by Ngn3-driven generation of insulin-producing ß cells, resembling that observed during pancreatic development. FMD cycles restore insulin secretion and glucose homeostasis in both type 2 and type 1 diabetes mouse models. In human type 1 diabetes pancreatic islets, fasting conditions reduce PKA and mTOR activity and induce Sox2 and Ngn3 expression and insulin production. The effects of the FMD are reversed by IGF-1 treatment and recapitulated by PKA and mTOR inhibition. These results indicate that a FMD promotes the reprogramming of pancreatic cells to restore insulin generation in islets from T1D patients and reverse both T1D and T2D phenotypes in mouse models. PAPERCLIP.


Asunto(s)
Diabetes Mellitus Tipo 1/dietoterapia , Diabetes Mellitus Tipo 2/dietoterapia , Ayuno , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Dieta , Prueba de Tolerancia a la Glucosa , Humanos , Técnicas In Vitro , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos , Ratones , Proteínas del Tejido Nervioso/genética , Páncreas/citología , Páncreas/metabolismo , Transducción de Señal , Transcriptoma
6.
Nat Immunol ; 20(6): 677-686, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31110312

RESUMEN

Consumption of a high-energy Western diet triggers mild adaptive ß cell proliferation to compensate for peripheral insulin resistance; however, the underlying molecular mechanism remains unclear. In the present study we show that the toll-like receptors TLR2 and TLR4 inhibited the diet-induced replication of ß cells in mice and humans. The combined, but not the individual, loss of TLR2 and TLR4 increased the replication of ß cells, but not that of α cells, leading to enlarged ß cell area and hyperinsulinemia in diet-induced obesity. Loss of TLR2 and TLR4 increased the nuclear abundance of the cell cycle regulators cyclin D2 and Cdk4 in a manner dependent on the signaling mediator Erk. These data reveal a regulatory mechanism controlling the proliferation of ß cells in diet-induced obesity and suggest that selective targeting of the TLR2/TLR4 pathways may reverse ß cell failure in patients with diabetes.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética , Animales , Proliferación Celular , Ciclina D2/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Humanos , Insulina/sangre , Insulina/metabolismo , Células Secretoras de Insulina/ultraestructura , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Noqueados , Complejos Multiproteicos/metabolismo , Obesidad/tratamiento farmacológico , Parabiosis , Unión Proteica , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo
7.
Cell ; 163(6): 1457-67, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26627735

RESUMEN

A variety of signals finely tune insulin secretion by pancreatic ß cells to prevent both hyper-and hypoglycemic states. Here, we show that post-translational regulation of the transcription factors ETV1, ETV4, and ETV5 by the ubiquitin ligase COP1 (also called RFWD2) in ß cells is critical for insulin secretion. Mice lacking COP1 in ß cells developed diabetes due to insulin granule docking defects that were fully rescued by genetic deletion of Etv1, Etv4, and Etv5. Genes regulated by ETV1, ETV4, or ETV5 in the absence of mouse COP1 were enriched in human diabetes-associated genes, suggesting that they also influence human ß-cell pathophysiology. In normal ß cells, ETV4 was stabilized upon membrane depolarization and limited insulin secretion under hyperglycemic conditions. Collectively, our data reveal that ETVs negatively regulate insulin secretion for the maintenance of normoglycemia.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Diabetes Mellitus/metabolismo , Exocitosis , Eliminación de Gen , Glucosa/metabolismo , Humanos , Hiperglucemia/metabolismo , Secreción de Insulina , Ratones , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética
8.
Cell ; 159(3): 691-6, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25417115

RESUMEN

Recently, it was reported that angiopoietin-like protein 8 (ANGPTL8) was the long-sought "betatrophin" that could control pancreatic beta cell proliferation. However, studies of Angptl8(?/?) mice revealed profound reduction of triglyceride levels, but no abnormalities in glucose homeostasis. We now report that Angptl8(?/?) mice undergo entirely normal beta cell expansion in response to insulin resistance resulting from either a high-fat diet or from the administration of the insulin receptor antagonist S961. Furthermore, overexpression of ANGPTL8 in livers of mice doubles plasma triglyceride levels, but does not alter beta cell expansion nor glucose metabolism. These data indicate that ANGPTL8 does not play a role in controlling beta cell growth, nor can it be given to induce such expansion. The findings that plasma triglyceride levels are reduced by Angptl8 deletion and increased following ANGPTL8 overexpression support the possibility that inhibition of ANGPTL8 represents a therapeutic strategy for hypertriglyceridemia.


Asunto(s)
Angiopoyetinas/metabolismo , Células Secretoras de Insulina/citología , Proteína 8 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Angiopoyetinas/genética , Animales , Dieta Alta en Grasa , Resistencia a la Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Triglicéridos/metabolismo
9.
Cell ; 158(1): 41-53, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24995977

RESUMEN

A hallmark of type 2 diabetes mellitus (T2DM) is the development of pancreatic ß cell failure, which results in insulinopenia and hyperglycemia. We show that the adipokine adipsin has a beneficial role in maintaining ß cell function. Animals genetically lacking adipsin have glucose intolerance due to insulinopenia; isolated islets from these mice have reduced glucose-stimulated insulin secretion. Replenishment of adipsin to diabetic mice treated hyperglycemia by boosting insulin secretion. We identify C3a, a peptide generated by adipsin, as a potent insulin secretagogue and show that the C3a receptor is required for these beneficial effects of adipsin. C3a acts on islets by augmenting ATP levels, respiration, and cytosolic free Ca(2+). Finally, we demonstrate that T2DM patients with ß cell failure are deficient in adipsin. These findings indicate that the adipsin/C3a pathway connects adipocyte function to ß cell physiology, and manipulation of this molecular switch may serve as a therapy in T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Tejido Adiposo/metabolismo , Animales , Complemento C3a/metabolismo , Factor D del Complemento/genética , Factor D del Complemento/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Dieta Alta en Grasa , Glucosa/metabolismo , Humanos , Inflamación/metabolismo , Insulina/metabolismo , Secreción de Insulina , Ratones
10.
Cell ; 157(7): 1577-90, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24949970

RESUMEN

Clec16a has been identified as a disease susceptibility gene for type 1 diabetes, multiple sclerosis, and adrenal dysfunction, but its function is unknown. Here we report that Clec16a is a membrane-associated endosomal protein that interacts with E3 ubiquitin ligase Nrdp1. Loss of Clec16a leads to an increase in the Nrdp1 target Parkin, a master regulator of mitophagy. Islets from mice with pancreas-specific deletion of Clec16a have abnormal mitochondria with reduced oxygen consumption and ATP concentration, both of which are required for normal ß cell function. Indeed, pancreatic Clec16a is required for normal glucose-stimulated insulin release. Moreover, patients harboring a diabetogenic SNP in the Clec16a gene have reduced islet Clec16a expression and reduced insulin secretion. Thus, Clec16a controls ß cell function and prevents diabetes by controlling mitophagy. This pathway could be targeted for prevention and control of diabetes and may extend to the pathogenesis of other Clec16a- and Parkin-associated diseases.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Islotes Pancreáticos/patología , Lectinas Tipo C/metabolismo , Mitofagia , Proteínas de Transporte de Monosacáridos/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Diabetes Mellitus Tipo 1/patología , Predisposición Genética a la Enfermedad , Glucosa/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/genética , Lisosomas/química , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/genética , Polimorfismo de Nucleótido Simple , Ubiquitina-Proteína Ligasas
11.
Genes Dev ; 35(17-18): 1243-1255, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34385262

RESUMEN

Multiple G protein-coupled receptors (GPCRs) are expressed in pancreatic islet cells, but the majority have unknown functions. We observed specific GPCRs localized to primary cilia, a prominent signaling organelle, in pancreatic α and ß cells. Loss of cilia disrupts ß-cell endocrine function, but the molecular drivers are unknown. Using functional expression, we identified multiple GPCRs localized to cilia in mouse and human islet α and ß cells, including FFAR4, PTGER4, ADRB2, KISS1R, and P2RY14. Free fatty acid receptor 4 (FFAR4) and prostaglandin E receptor 4 (PTGER4) agonists stimulate ciliary cAMP signaling and promote glucagon and insulin secretion by α- and ß-cell lines and by mouse and human islets. Transport of GPCRs to primary cilia requires TULP3, whose knockdown in primary human and mouse islets relocalized ciliary FFAR4 and PTGER4 and impaired regulated glucagon or insulin secretion, without affecting ciliary structure. Our findings provide index evidence that regulated hormone secretion by islet α and ß cells is controlled by ciliary GPCRs providing new targets for diabetes.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Animales , Glucagón/metabolismo , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Receptores Acoplados a Proteínas G/genética
12.
Cell ; 153(4): 747-58, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23623304

RESUMEN

Replenishing insulin-producing pancreatic ß cell mass will benefit both type I and type II diabetics. In adults, pancreatic ß cells are generated primarily by self-duplication. We report on a mouse model of insulin resistance that induces dramatic pancreatic ß cell proliferation and ß cell mass expansion. Using this model, we identify a hormone, betatrophin, that is primarily expressed in liver and fat. Expression of betatrophin correlates with ß cell proliferation in other mouse models of insulin resistance and during gestation. Transient expression of betatrophin in mouse liver significantly and specifically promotes pancreatic ß cell proliferation, expands ß cell mass, and improves glucose tolerance. Thus, betatrophin treatment could augment or replace insulin injections by increasing the number of endogenous insulin-producing cells in diabetics.


Asunto(s)
Proliferación Celular , Células Secretoras de Insulina/metabolismo , Páncreas/citología , Hormonas Peptídicas/metabolismo , Tejido Adiposo Blanco/metabolismo , Secuencia de Aminoácidos , Proteína 8 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Animales , Femenino , Glucosa/metabolismo , Humanos , Resistencia a la Insulina , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Páncreas/metabolismo , Hormonas Peptídicas/química , Hormonas Peptídicas/genética , Péptidos/administración & dosificación , Receptor de Insulina/antagonistas & inhibidores , Alineación de Secuencia
13.
Cell ; 153(2): 413-25, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23582329

RESUMEN

Here, we demonstrate that the fractalkine (FKN)/CX3CR1 system represents a regulatory mechanism for pancreatic islet ß cell function and insulin secretion. CX3CR1 knockout (KO) mice exhibited a marked defect in glucose and GLP1-stimulated insulin secretion, and this defect was also observed in vitro in isolated islets from CX3CR1 KO mice. In vivo administration of FKN improved glucose tolerance with an increase in insulin secretion. In vitro treatment of islets with FKN increased intracellular Ca(2+) and potentiated insulin secretion in both mouse and human islets. The KO islets exhibited reduced expression of a set of genes necessary for the fully functional, differentiated ß cell state, whereas treatment of wild-type (WT) islets with FKN led to increased expression of these genes. Lastly, expression of FKN in islets was decreased by aging and high-fat diet/obesity, suggesting that decreased FKN/CX3CR1 signaling could be a mechanism underlying ß cell dysfunction in type 2 diabetes.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Receptores de Quimiocina/metabolismo , Transducción de Señal , Adulto , Envejecimiento , Animales , Receptor 1 de Quimiocinas CX3C , Cadáver , Quimiocina CX3CL1/administración & dosificación , Quimiocina CX3CL1/metabolismo , Dieta Alta en Grasa , Expresión Génica , Glucosa/metabolismo , Humanos , Hiperglucemia/metabolismo , Secreción de Insulina , Islotes Pancreáticos/citología , Islotes Pancreáticos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Receptores de Quimiocina/genética
14.
Annu Rev Biochem ; 81: 767-93, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22443930

RESUMEN

Given the functional importance of the endoplasmic reticulum (ER), an organelle that performs folding, modification, and trafficking of secretory and membrane proteins to the Golgi compartment, the maintenance of ER homeostasis in insulin-secreting ß-cells is very important. When ER homeostasis is disrupted, the ER generates adaptive signaling pathways, called the unfolded protein response (UPR), to maintain homeostasis of this organelle. However, if homeostasis fails to be restored, the ER initiates death signaling pathways. New observations suggest that both chronic hyperglycemia and hyperlipidemia, known as important causative factors of type 2 diabetes (T2D), disrupt ER homeostasis to induce unresolvable UPR activation and ß-cell death. This review examines how the UPR pathways, induced by high glucose and free fatty acids (FFAs), interact to disrupt ER function and cause ß-cell dysfunction and death.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Estrés del Retículo Endoplásmico , Células Secretoras de Insulina/metabolismo , Animales , Diabetes Mellitus Tipo 2/patología , Humanos , Células Secretoras de Insulina/patología , Transducción de Señal , Respuesta de Proteína Desplegada
15.
Genes Dev ; 34(15-16): 1089-1105, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32616519

RESUMEN

The circadian clock is encoded by a negative transcriptional feedback loop that coordinates physiology and behavior through molecular programs that remain incompletely understood. Here, we reveal rhythmic genome-wide alternative splicing (AS) of pre-mRNAs encoding regulators of peptidergic secretion within pancreatic ß cells that are perturbed in Clock-/- and Bmal1-/- ß-cell lines. We show that the RNA-binding protein THRAP3 (thyroid hormone receptor-associated protein 3) regulates circadian clock-dependent AS by binding to exons at coding sequences flanking exons that are more frequently skipped in clock mutant ß cells, including transcripts encoding Cask (calcium/calmodulin-dependent serine protein kinase) and Madd (MAP kinase-activating death domain). Depletion of THRAP3 restores expression of the long isoforms of Cask and Madd, and mimicking exon skipping in these transcripts through antisense oligonucleotide delivery in wild-type islets reduces glucose-stimulated insulin secretion. Finally, we identify shared networks of alternatively spliced exocytic genes from islets of rodent models of diet-induced obesity that significantly overlap with clock mutants. Our results establish a role for pre-mRNA alternative splicing in ß-cell function across the sleep/wake cycle.


Asunto(s)
Empalme Alternativo , Relojes Circadianos/genética , Exocitosis , Glucosa/metabolismo , Secreción de Insulina/genética , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/fisiología , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/fisiología , Células Cultivadas , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanilato-Quinasas/genética , Guanilato-Quinasas/metabolismo , Homeostasis , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Masculino , Ratones Endogámicos C57BL , Proteínas Nucleares/fisiología , Obesidad/genética , Obesidad/metabolismo , Proteína 25 Asociada a Sinaptosomas/genética , Proteína 25 Asociada a Sinaptosomas/metabolismo , Factores de Transcripción/fisiología
16.
Cell ; 150(6): 1223-34, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22980982

RESUMEN

Diabetes is associated with ß cell failure. But it remains unclear whether the latter results from reduced ß cell number or function. FoxO1 integrates ß cell proliferation with adaptive ß cell function. We interrogated the contribution of these two processes to ß cell dysfunction, using mice lacking FoxO1 in ß cells. FoxO1 ablation caused hyperglycemia with reduced ß cell mass following physiologic stress, such as multiparity and aging. Surprisingly, lineage-tracing experiments demonstrated that loss of ß cell mass was due to ß cell dedifferentiation, not death. Dedifferentiated ß cells reverted to progenitor-like cells expressing Neurogenin3, Oct4, Nanog, and L-Myc. A subset of FoxO1-deficient ß cells adopted the α cell fate, resulting in hyperglucagonemia. Strikingly, we identify the same sequence of events as a feature of different models of murine diabetes. We propose that dedifferentiation trumps endocrine cell death in the natural history of ß cell failure and suggest that treatment of ß cell dysfunction should restore differentiation, rather than promoting ß cell replication.


Asunto(s)
Desdiferenciación Celular , Diabetes Mellitus Tipo 2/patología , Células Secretoras de Insulina/patología , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Páncreas/patología
17.
Cell ; 148(6): 1160-71, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22424227

RESUMEN

Diabetes is a major global problem. During the past decade, the genetic basis of various monogenic forms of the disease, and their underlying molecular mechanisms, have been elucidated. Many genes that increase type 2 diabetes (T2DM) risk have also been identified, but how they do so remains enigmatic. Nevertheless, defective insulin secretion emerges as the main culprit in both monogenic and polygenic diabetes, with environmental and lifestyle factors, via obesity, accounting for the current dramatic increase in T2DM. There also have been significant advances in therapy, particularly for some monogenic disorders. We review here what ails the ß cell and how its function may be restored.


Asunto(s)
Diabetes Mellitus Tipo 2/patología , Células Secretoras de Insulina/citología , Animales , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Dieta , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología
18.
Cell ; 151(2): 372-83, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23063126

RESUMEN

Mammalian two-pore channel proteins (TPC1, TPC2; TPCN1, TPCN2) encode ion channels in intracellular endosomes and lysosomes and were proposed to mediate endolysosomal calcium release triggered by the second messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). By directly recording TPCs in endolysosomes from wild-type and TPC double-knockout mice, here we show that, in contrast to previous conclusions, TPCs are in fact sodium-selective channels activated by PI(3,5)P(2) and are not activated by NAADP. Moreover, the primary endolysosomal ion is Na(+), not K(+), as had been previously assumed. These findings suggest that the organellar membrane potential may undergo large regulatory changes and may explain the specificity of PI(3,5)P(2) in regulating the fusogenic potential of intracellular organelles.


Asunto(s)
Canales de Calcio/metabolismo , Lisosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/genética , Línea Celular , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Ratones Noqueados , NADP/análogos & derivados , NADP/metabolismo , Canales de Sodio/metabolismo
19.
Nature ; 590(7845): 326-331, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33505018

RESUMEN

Resistance to insulin and insulin-like growth factor 1 (IGF1) in pancreatic ß-cells causes overt diabetes in mice; thus, therapies that sensitize ß-cells to insulin may protect patients with diabetes against ß-cell failure1-3. Here we identify an inhibitor of insulin receptor (INSR) and IGF1 receptor (IGF1R) signalling in mouse ß-cells, which we name the insulin inhibitory receptor (inceptor; encoded by the gene Iir). Inceptor contains an extracellular cysteine-rich domain with similarities to INSR and IGF1R4, and a mannose 6-phosphate receptor domain that is also found in the IGF2 receptor (IGF2R)5. Knockout mice that lack inceptor (Iir-/-) exhibit signs of hyperinsulinaemia and hypoglycaemia, and die within a few hours of birth. Molecular and cellular analyses of embryonic and postnatal pancreases from Iir-/- mice showed an increase in the activation of INSR-IGF1R in Iir-/- pancreatic tissue, resulting in an increase in the proliferation and mass of ß-cells. Similarly, inducible ß-cell-specific Iir-/- knockout in adult mice and in ex vivo islets led to an increase in the activation of INSR-IGF1R and increased proliferation of ß-cells, resulting in improved glucose tolerance in vivo. Mechanistically, inceptor interacts with INSR-IGF1R to facilitate clathrin-mediated endocytosis for receptor desensitization. Blocking this physical interaction using monoclonal antibodies against the extracellular domain of inceptor resulted in the retention of inceptor and INSR at the plasma membrane to sustain the activation of INSR-IGF1R in ß-cells. Together, our findings show that inceptor shields insulin-producing ß-cells from constitutive pathway activation, and identify inceptor as a potential molecular target for INSR-IGF1R sensitization and diabetes therapy.


Asunto(s)
Glucemia/metabolismo , Antagonistas de Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas de Neoplasias/metabolismo , Transducción de Señal , Animales , Glucemia/análisis , Línea Celular , Proliferación Celular/efectos de los fármacos , Tamaño de la Célula , Clatrina/metabolismo , Células Endocrinas/metabolismo , Endocitosis , Retículo Endoplásmico/metabolismo , Prueba de Tolerancia a la Glucosa , Aparato de Golgi/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Lisosomas/metabolismo , Masculino , Proteínas de la Membrana , Ratones , Proteínas de Neoplasias/química , Receptor de Insulina/metabolismo , Transducción de Señal/efectos de los fármacos , Tamoxifeno/farmacología
20.
Proc Natl Acad Sci U S A ; 121(8): e2312621121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346191

RESUMEN

One of the hallmarks of type 1 but also type 2 diabetes is pancreatic islet inflammation, associated with altered pancreatic islet function and structure, if unresolved. IL-1ß is a proinflammatory cytokine which detrimentally affects ß-cell function. In the course of diabetes, complement components, including the central complement protein C3, are deregulated. Previously, we reported high C3 expression in human pancreatic islets, with upregulation after IL-1ß treatment. In the current investigation, using primary human and rodent material and CRISPR/Cas9 gene-edited ß-cells deficient in C3, or producing only cytosolic C3 from a noncanonical in-frame start codon, we report a protective effect of C3 against IL-1ß-induced ß-cell death, that is attributed to the cytosolic fraction of C3. Further investigation revealed that intracellular C3 alleviates IL-1ß-induced ß-cell death, by interaction with and inhibition of Fyn-related kinase (FRK), which is involved in the response of ß-cells to cytokines. Furthermore, these data were supported by increased ß-cell death in vivo in a ß-cell-specific C3 knockout mouse. Our data indicate that a functional, cytoprotective association exists between FRK and cytosolic C3.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Animales , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Muerte Celular , Citocinas/metabolismo , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA