Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nat Immunol ; 17(11): 1300-1311, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27668799

RESUMEN

Mucosal-associated invariant T cells (MAIT cells) detect microbial vitamin B2 derivatives presented by the antigen-presenting molecule MR1. Here we defined three developmental stages and checkpoints for the MAIT cell lineage in humans and mice. Stage 1 and stage 2 MAIT cells predominated in thymus, while stage 3 cells progressively increased in abundance extrathymically. Transition through each checkpoint was regulated by MR1, whereas the final checkpoint that generated mature functional MAIT cells was controlled by multiple factors, including the transcription factor PLZF and microbial colonization. Furthermore, stage 3 MAIT cell populations were expanded in mice deficient in the antigen-presenting molecule CD1d, suggestive of a niche shared by MAIT cells and natural killer T cells (NKT cells). Accordingly, this study maps the developmental pathway and checkpoints that control the generation of functional MAIT cells.


Asunto(s)
Diferenciación Celular/inmunología , Células T Invariantes Asociadas a Mucosa/citología , Células T Invariantes Asociadas a Mucosa/fisiología , Timo/inmunología , Timo/metabolismo , Animales , Antígenos CD1d/genética , Biomarcadores , Diferenciación Celular/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Inmunofenotipificación , Células Progenitoras Linfoides/inmunología , Células Progenitoras Linfoides/metabolismo , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética
2.
Diabetes Metab Res Rev ; 39(4): e3620, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36738300

RESUMEN

AIMS: It is acknowledged that aberrant liver immunity contributes to the development of type 2 diabetes mellitus (T2DM). Mucosal-associated invariant T (MAIT) cells, an innate-like T-cell subset, are enriched in the human liver. Nevertheless, the characterisation and potential role of hepatic MAIT cells in T2DM remain unclear. MATERIALS AND METHODS: Fourteen newly diagnosed T2DM subjects and 15 controls received liver biopsy. The frequency and cytokine production of MAIT cells were analysed by flow cytometry. The expression of genes involved in glucose metabolism was determined in HepG2 cells co-cultured with hepatic MAIT cells. RESULTS: Compared with controls, hepatic MAIT cell frequency was significantly increased in T2DM patients (24.66% vs. 14.61%, p = 0.001). There were more MAIT cells producing interferon-γ (IFN-γ, 60.49% vs. 33.33%, p = 0.021) and tumour necrosis factor-α (TNF-α, 46.84% vs. 5.91%, p = 0.021) in T2DM than in controls, whereas their production of interleukin 17 (IL-17) was comparable (15.25% vs. 4.55%, p = 0.054). Notably, an IFN-γ+ TNF-α+ IL-17+/- producing MAIT cell subset was focussed, which showed an elevated proportion in T2DM (42.66% vs. 5.85%, p = 0.021) and positively correlated with plasma glucose levels. A co-culture experiment further indicated that hepatic MAIT cells from T2DM upregulated the gene expression of pyruvate carboxylase, a key molecule involved in gluconeogenesis, in HepG2 cells, and this response was blocked with neutralising antibodies against IFN-γ and TNF-α. CONCLUSIONS: Our data implicate an increased Th1-like MAIT cell subset in the liver of newly diagnosed T2DM subjects, which induces hyperglycaemia by promoting hepatic gluconeogenesis. It provides novel insights into the immune regulation of metabolic homoeostasis. CLINICAL TRIAL REGISTRATION NUMBER: NCT03296605 (registered at www. CLINICALTRIALS: gov on 12 October 2018).


Asunto(s)
Diabetes Mellitus Tipo 2 , Células T Invariantes Asociadas a Mucosa , Humanos , Células T Invariantes Asociadas a Mucosa/fisiología , Interleucina-17 , Factor de Necrosis Tumoral alfa , Gluconeogénesis , Hígado
3.
J Infect Dis ; 223(4): 667-672, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32623457

RESUMEN

Measles virus (MeV) binds, infects, and kills CD150+ memory T cells, leading to immune amnesia. Whether MeV targets innate, memory-like T cells is unknown. We demonstrate that human peripheral blood and hepatic mucosa-associated invariant T (MAIT) cells and invariant natural killer T cells express surprisingly high levels of CD150, more than other lymphocyte subsets. Furthermore, exposing MAIT cells to MeV results in their efficient infection and rapid apoptosis. This constitutes the first report of direct MAIT cell infection by a viral pathogen. Given MAIT cells' antimicrobial properties, their elimination by MeV may contribute to measles-induced immunosuppression and heightened vulnerability to unrelated infections.


Asunto(s)
Apoptosis , Virus del Sarampión/fisiología , Células T Invariantes Asociadas a Mucosa/fisiología , Células T Invariantes Asociadas a Mucosa/virología , Femenino , Humanos , Interleucina-12/inmunología , Interleucina-18/inmunología , Leucocitos Mononucleares/inmunología , Masculino , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/metabolismo , Células T Invariantes Asociadas a Mucosa/inmunología , Células T Asesinas Naturales/inmunología , Células T Asesinas Naturales/metabolismo , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
4.
Eur J Immunol ; 50(8): 1098-1108, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32617963

RESUMEN

Mucosal associated invariant T (MAIT) cells are a population of evolutionarily conserved T cells, which express an invariant T cell receptor (TCR) and represent a significant subset of innate-like T cells in humans, yet their role in immunity is still emerging. Unlike conventional αß T cells, MAIT cells are not restricted by MHC molecules, but instead uniquely recognize microbially derived vitamin metabolites presented by the MHC-I like molecule MR1. MAIT cells are enriched in mucosal sites and tissues including liver and adipose tissue where they are thought to play an important role in immunosurveillance and immunity against microbial infection. In addition to their putative role in antimicrobial immunity, recent research on MAIT cells, in particular IL-17 producing MAIT cells, has demonstrated their involvement in numerous chronic inflammatory conditions. In this review, we give an overview of the work to date on the function and subsets of MAIT cells. We also examine the role of IL-17 producing MAIT cells in chronic inflammatory diseases ranging from autoimmune conditions, metabolic diseases to cancer. Furthermore, we discuss the most recent findings from the clinic that might help deepen our understanding about the biology of MAIT cells.


Asunto(s)
Inflamación/etiología , Interleucina-17/biosíntesis , Células T Invariantes Asociadas a Mucosa/fisiología , Enfermedades Autoinmunes/etiología , Infecciones Bacterianas/inmunología , Enfermedad Crónica , Humanos , Enfermedades Metabólicas/etiología , Células T Invariantes Asociadas a Mucosa/inmunología , Neoplasias/etiología , Fenotipo
5.
Hepatology ; 72(4): 1378-1393, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32012321

RESUMEN

BACKGROUND AND AIMS: Patients with advanced liver cirrhosis have an increased susceptibility to infections. As part of the cirrhosis-associated immune dysfunction, mucosal-associated invariant T (MAIT) cells, which have the capacity to respond to bacteria, are severely diminished in circulation and liver tissue. However, MAIT cell presence and function in the peritoneal cavity, a common anatomical site for infections in cirrhosis, remain elusive. In this study, we deliver a comprehensive investigation of the immune compartment present in ascites of patients with decompensated liver cirrhosis, and focus especially on MAIT cells. APPROACH AND RESULTS: To study this, matched peripheral blood and ascites fluid were collected from 35 patients with decompensated cirrhosis, with or without spontaneous bacterial peritonitis (SBP). MAIT cell phenotype and function were analyzed using high-dimensional flow cytometry, and the obtained data were compared with the blood samples of healthy controls (n = 24) and patients with compensated cirrhosis (n = 11). We found circulating MAIT cells to be severely decreased in patients with cirrhosis as compared with controls. In contrast, in ascites fluid, MAIT cells were significantly increased together with CD14+ CD16+ monocytes, innate lymphoid cells, and natural killer cells. This was paralleled by elevated levels of several pro-inflammatory cytokines and chemokines in ascites fluid as compared with plasma. Peritoneal MAIT cells displayed an activated tissue-resident phenotype, and this was corroborated by increased functional responses following stimulation with E. coli or interleukin (lL)-12 + IL-18 as compared with circulating MAIT cells. During SBP, peritoneal MAIT cell frequencies increased most among all major immune cell subsets, suggestive of active homing of MAIT cells to the site of infection. CONCLUSIONS: Despite severely diminished MAIT cell numbers and impaired phenotype in circulation, peritoneal MAIT cells remain abundant, activated, and highly functional in decompensated cirrhosis and are further enriched in SBP. This suggests that peritoneal MAIT cells could be of interest for immune-intervention strategies in patients with decompensated liver cirrhosis and SBP.


Asunto(s)
Ascitis/inmunología , Cirrosis Hepática/inmunología , Células T Invariantes Asociadas a Mucosa/fisiología , Adulto , Anciano , Infecciones Bacterianas/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Peritonitis/inmunología , Fenotipo
6.
J Immunol ; 202(12): 3404-3411, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31076528

RESUMEN

Obesity underpins the development of numerous chronic diseases, such as type II diabetes mellitus. It is well established that obesity negatively alters immune cell frequencies and functions. Mucosal-associated invariant T (MAIT) cells are a population of innate T cells, which we have previously reported are dysregulated in obesity, with altered circulating and adipose tissue frequencies and a reduction in their IFN-γ production, which is a critical effector function of MAIT cells in host defense. Hence, there is increased urgency to characterize the key molecular mechanisms that drive MAIT cell effector functions and to identify those which are impaired in the obesity setting. In this study, we found that MAIT cells significantly upregulate their rates of glycolysis upon activation in an mTORC1-dependent manner, and this is essential for MAIT cell IFN-γ production. Furthermore, we show that mTORC1 activation is dependent on amino acid transport via SLC7A5. In obese patients, using RNA sequencing, Seahorse analysis, and a series of in vitro experiments, we demonstrate that MAIT cells isolated from obese adults display defective glycolytic metabolism, mTORC1 signaling, and SLC7A5 aa transport. Collectively, our data detail the intrinsic metabolic pathways controlling MAIT cell cytokine production and highlight mTORC1 as an important metabolic regulator that is impaired in obesity, leading to altered MAIT cell responses.


Asunto(s)
Diabetes Mellitus Tipo 2/inmunología , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Células T Invariantes Asociadas a Mucosa/fisiología , Obesidad/inmunología , Adulto , Células Cultivadas , Femenino , Glucólisis , Humanos , Interferón gamma/metabolismo , Activación de Linfocitos , Masculino , Análisis de Secuencia de ARN , Transducción de Señal
7.
J Am Soc Nephrol ; 30(7): 1322-1335, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31186283

RESUMEN

BACKGROUND: Mucosal-associated invariant T (MAIT) cells represent a specialized lymphocyte population associated with chronic inflammatory disorders. Little is known, however, about MAIT cells in diseases of the kidney, including CKD. METHODS: To evaluate MAIT cells in human native kidneys with tubulointerstitial fibrosis, the hallmark of CKD, we used multicolor flow cytometry to identify, enumerate, and phenotype such cells from human kidney tissue biopsy samples, and immunofluorescence microscopy to localize these cells. We cocultured MAIT cells and human primary proximal tubular epithelial cells (PTECs) under hypoxic (1% oxygen) conditions to enable examination of mechanistic tubulointerstitial interactions. RESULTS: We identified MAIT cells (CD3+ TCR Vα7.2+ CD161hi) in healthy and diseased kidney tissues, detecting expression of tissue-resident markers (CD103/CD69) on MAIT cells in both states. Tissue samples from kidneys with tubulointerstitial fibrosis had significantly elevated numbers of MAIT cells compared with either nonfibrotic samples from diseased kidneys or tissue samples from healthy kidneys. Furthermore, CD69 expression levels, also an established marker of lymphocyte activation, were significantly increased on MAIT cells from fibrotic tissue samples. Immunofluorescent analyses of fibrotic kidney tissue identified MAIT cells accumulating adjacent to PTECs. Notably, MAIT cells activated in the presence of human PTECs under hypoxic conditions (modeling the fibrotic microenvironment) displayed significantly upregulated expression of CD69 and cytotoxic molecules perforin and granzyme B; we also observed a corresponding significant increase in PTEC necrosis in these cocultures. CONCLUSIONS: Our findings indicate that human tissue-resident MAIT cells in the kidney may contribute to the fibrotic process of CKD via complex interactions with PTECs.


Asunto(s)
Riñón/patología , Células T Invariantes Asociadas a Mucosa/fisiología , Insuficiencia Renal Crónica/inmunología , Adulto , Anciano , Antígenos CD/análisis , Antígenos de Diferenciación de Linfocitos T/análisis , Comunicación Celular , Técnicas de Cocultivo , Células Epiteliales/fisiología , Femenino , Fibrosis , Humanos , Túbulos Renales Proximales/citología , Lectinas Tipo C/análisis , Masculino , Persona de Mediana Edad , Insuficiencia Renal Crónica/patología
8.
Hepatology ; 68(1): 172-186, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29328499

RESUMEN

Autoimmune liver diseases (AILDs) are chronic liver pathologies characterized by fibrosis and cirrhosis due to immune-mediated liver damage. In this study, we addressed the question whether mucosal-associated invariant T (MAIT) cells, innate-like T cells, are functionally altered in patients with AILD and whether MAIT cells can promote liver fibrosis through activation of hepatic stellate cells (HSCs). We analyzed the phenotype and function of MAIT cells from AILD patients and healthy controls by multicolor flow cytometry and investigated the interaction between human MAIT cells and primary human hepatic stellate cells (hHSCs). We show that MAIT cells are significantly decreased in peripheral blood and liver tissue of patients with AILD. Notably, MAIT cell frequency tended to decrease with increasing fibrosis stage. MAIT cells from AILD patients showed signs of exhaustion, such as impaired interferon-γ (IFN-γ) production and high ex vivo expression of the activation and exhaustion markers CD38, HLA-DR, and CTLA-4. Mechanistically, this exhausted state could be induced by repetitive stimulation of MAIT cells with the cytokines interleukin (IL)-12 and IL-18, leading to decreased IFN-γ and increased exhaustion marker expression. Of note, repetitive stimulation with IL-12 further resulted in expression of the profibrogenic cytokine IL-17A by otherwise exhausted MAIT cells. Accordingly, MAIT cells from both healthy controls and AILD patients were able to induce an activated, proinflammatory and profibrogenic phenotype in hHSCs in vitro that was partly mediated by IL-17. CONCLUSION: Our data provide evidence that MAIT cells in AILD patients have evolved towards an exhausted, profibrogenic phenotype and can contribute to the development of HSC-mediated liver fibrosis. These findings reveal a cellular and molecular pathway for fibrosis development in AILD that could be exploited for antifibrotic therapy. (Hepatology 2018;68:172-186).


Asunto(s)
Enfermedades Autoinmunes/inmunología , Células Estrelladas Hepáticas/fisiología , Cirrosis Hepática/inmunología , Células T Invariantes Asociadas a Mucosa/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Muerte Celular , Femenino , Humanos , Interleucinas/metabolismo , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Fenotipo , Adulto Joven
9.
J Infect Dis ; 217(6): 988-999, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29267892

RESUMEN

Mucosal-associated invariant T (MAIT) cells represent an innate T-cell population that can recognize ligands generated by the microbial riboflavin synthesis pathway, presented via the major histocompatibility complex class I-related molecule (MR1). Streptococcus pneumoniae is a major human pathogen that is also associated with commensal carriage; thus, host control at the mucosal interface is critical. The recognition of pneumococci by MAIT cells has not been defined nor have the genomics and transcriptomics of the riboflavin operon. We observed robust recognition of pneumococci by MAIT cells, using both MR1-dependent and MR1-independent pathways. The pathway used was dependent on the antigen-presenting cell. The riboflavin operon was highly conserved across a range of 571 pneumococci from 39 countries, dating back to 1916, and different versions of the riboflavin operon were also identified in related Streptococcus species. These data indicate an important functional relationship between MAIT cells and pneumococci.


Asunto(s)
Citocinas/metabolismo , Genes MHC Clase I/inmunología , Células T Invariantes Asociadas a Mucosa/fisiología , Streptococcus pneumoniae/genética , Células Cultivadas , Citocinas/genética , Genoma Bacteriano , Humanos , Inmunidad Celular , Macrófagos , Operón , Riboflavina/biosíntesis , Streptococcus pneumoniae/clasificación , Regulación hacia Arriba
10.
Gut ; 67(5): 918-930, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29097439

RESUMEN

BACKGROUND/AIMS: Intestinal permeability with systemic distribution of bacterial products are central in the immunopathogenesis of alcoholic liver disease (ALD), yet links with intestinal immunity remain elusive. Mucosa-associated invariant T cells (MAIT) are found in liver, blood and intestinal mucosa and are a key component of antibacterial host defences. Their role in ALD is unknown. METHODS/DESIGN: We analysed frequency, phenotype, transcriptional regulation and function of blood MAIT cells in severe alcoholic hepatitis (SAH), alcohol-related cirrhosis (ARC) and healthy controls (HC). We also examined direct impact of ethanol, bacterial products from faecal extracts and antigenic hyperstimulation on MAIT cell functionality. Presence of MAIT cells in colon and liver was assessed by quantitative PCR and immunohistochemistry/gene expression respectively. RESULTS: In ARC and SAH, blood MAIT cells were dramatically depleted, hyperactivated and displayed defective antibacterial cytokine/cytotoxic responses. These correlated with suppression of lineage-specific transcription factors and hyperexpression of homing receptors in the liver with intrahepatic preservation of MAIT cells in ALD. These alterations were stronger in SAH, where surrogate markers of bacterial infection and microbial translocation were higher than ARC. Ethanol exposure in vitro, in vivo alcohol withdrawal and treatment with Escherichia coli had no effect on MAIT cell frequencies, whereas exposure to faecal bacteria/antigens induced functional impairments comparable with blood MAIT cells from ALD and significant MAIT cell depletion, which was not observed in other T cell compartments. CONCLUSIONS: In ALD, the antibacterial potency of MAIT cells is compromised as a consequence of contact with microbial products and microbiota, suggesting that the 'leaky' gut observed in ALD drives MAIT cell dysfunction and susceptibility to infection in these patients.


Asunto(s)
Etanol/efectos adversos , Mucosa Intestinal/inmunología , Hepatopatías Alcohólicas/inmunología , Células T Invariantes Asociadas a Mucosa/metabolismo , Adulto , Técnicas de Cultivo de Célula , Citocinas/metabolismo , Heces/microbiología , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Mucosa Intestinal/microbiología , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/microbiología , Masculino , Persona de Mediana Edad , Células T Invariantes Asociadas a Mucosa/inmunología , Células T Invariantes Asociadas a Mucosa/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
Immunol Cell Biol ; 96(6): 564-572, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29363173

RESUMEN

In humans, MAIT cells represent the most abundant T-cell subset reacting against bacteria. MAIT cells belong to the evolutionarily conserved family of "preset" T cells that includes also NKT cells. Both subsets are selected by double positive thymocytes leading to common features such as PLZF expression. Preset T cells correspond to subsets prepositioned in specific tissue locations with preprogrammed versatile effector functions such as antimicrobial functions and possibly also metabolic control and tissue repair activity. Herein, we recall how several groups studying human samples discovered MAIT cells as T cells expressing either a restricted T-cell receptors (TCR) repertoire or homogeneous and singular phenotypic and functional characteristics. We then highlight the main evolutionary features of this subset and its restricting element, MR1 (MHC-related protein (1) with a striking coevolution of TRAV1 and MR1. We introduce another evolutionarily conserved invariant TCRalpha chain coevolving with another MHC class Ib molecule, called MHX, sharing phylogenetic features with MR1. We finally discuss the relationship between MAIT cells and other subsets reacting to microbial antigens or to compounds presented by MR1 in light of confounding experimental issues.


Asunto(s)
Alergia e Inmunología/historia , Células T Invariantes Asociadas a Mucosa/fisiología , Animales , Evolución Biológica , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Filogenia
12.
Cell Immunol ; 328: 58-69, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29631725

RESUMEN

The role of MAIT cells in immunity against Mycobacterium tuberculosis infection in humans is still largely unexplored. In this study, we investigated the functional role of 4-1BB on MAIT cells. We found that 4-1BB was highly up-regulated on MAIT cells from tuberculous pleural effusions following Mtb antigen stimulation and its level of expression correlated with IFN-γ and IL-17 production. 4-1BB expression on MAIT cells in response to Mtb antigens was partially dependent on IL-2 and was associated with common γ chain receptor. By transcriptome sequencing, we identified numerous differentially expressed genes between 4-1BB- and 4-1BB+ MAIT cells. GO enrichment and KEGG pathway analysis of differentially expressed genes identified enriched pathways that included T-cell receptor and NF-κB signaling pathways. It is concluded that 4-1BB has the potential to be used as a biomarker to identify MAIT cells with enhanced IFN-γ and IL-17 responses that might be associated with tuberculosis infection control.


Asunto(s)
Células T Invariantes Asociadas a Mucosa/fisiología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/fisiología , Adulto , Biomarcadores/sangre , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Interferón gamma/inmunología , Interleucina-17/inmunología , Interleucina-2/inmunología , Masculino , Persona de Mediana Edad , Células T Invariantes Asociadas a Mucosa/metabolismo , Mycobacterium tuberculosis/inmunología , Tuberculosis/fisiopatología , Tuberculosis Pleural/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo
15.
Cytometry B Clin Cytom ; 104(3): 253-262, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36779834

RESUMEN

BACKGROUND: Aplastic anemia (AA) is known as an autoimmune disease in which T cell activation is aberrant. It has been reported that unconventional T cells, mucosal-associated invariant T (MAIT) cells, play an important role in several autoimmune diseases, but it is unclear if they are involved in AA. METHODS: In this study, we for the first time analyzed the proportions, phenotypes, and cytokine properties of MAIT cells in AA by flow cytometry. RESULTS: We found that the percentage of circulating MAIT cells was generally higher for CD3+ , CD8+ , and CD8- T cells in AA patients compared with healthy individuals. Moreover, the percentage of IL-18Rα-, NKG2D-, IFN-γ-, and TNF-α- positive MAIT cells was also significantly higher in AA patients. In addition, the percentage of IFN-γ+ CD3+ or TNF-α+ CD8- MAIT cells had a significant negative correlation with the absolute neutrophil count. CONCLUSIONS: We present the first observation of MAIT cells in patients with AA. MAIT cells are associated with a higher frequency of IFN-γ and TNF-α production and may contribute to the pathogenesis of AA.


Asunto(s)
Anemia Aplásica , Enfermedades Autoinmunes , Células T Invariantes Asociadas a Mucosa , Humanos , Células T Invariantes Asociadas a Mucosa/fisiología , Factor de Necrosis Tumoral alfa , Citometría de Flujo , Interferón gamma
16.
Front Endocrinol (Lausanne) ; 13: 1038184, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518256

RESUMEN

Background: Polycystic ovary syndrome (PCOS) is the most common endocrine disorder affecting reproductive age females and an important cause of infertility. Although the etiology is complex and its pathogenesis remains unclear, the pathological process of PCOS is tightly related with the immune dysfunction and gut microbial dysbiosis. Mucosal-associated invariant T (MAIT) cells are a subset of innate-like T cells which can regulate inflammation through the production of cytokines and play a role in regulating the gut microbiota. We aim to evaluate the correlation between characteristics of PCOS and MAIT cells as well as their impact on cytokine secretion. Methods: Peripheral blood samples were taken from PCOS patients (n=33) and healthy controls (n=30) during 2-5 days of the menstrual period. The frequencies of MAIT cells and T cells were measured by flow cytometry. Cytokines interleukin 17 (IL-17), interleukin 22(IL-22), interferon γ (IFN-γ) and granzyme B were determined by Enzyme-linked immunosorbent assay (ELISA). Results: The frequency of MAIT cells was significantly reduced in the blood of PCOS patients compared with the controls, and negatively correlated with Body Mass Index (BMI), Homeostatic model assessment- insulin resistance (HOMA-IR) index, and Anti Miillerian Hormone (AMH). Thus, the frequencies of MAIT cells decreased in PCOS patients with abnormal weight (BMI≥24kg/m2), higher HOMA-IR (≥1.5), and excessive AMH (≥8ng/ml). The Cytokine IL-17 was significantly higher in PCOS patients and negatively correlated with the frequency of MAIT cells. Even though the IL-22 was lower in PCOS Patients, no correlation with MAIT cells was detected. In subgroup, CD4+MAIT cells correlated with BMI, AMH, and testosterone (T) levels. Conclusion: The frequency change of MAIT cells may play a significant role in the pathogenesis of PCOS. Exploring these interactions with MAIT cells may provide a new target for PCOS treatment and prevention.


Asunto(s)
Resistencia a la Insulina , Células T Invariantes Asociadas a Mucosa , Síndrome del Ovario Poliquístico , Femenino , Humanos , Células T Invariantes Asociadas a Mucosa/patología , Células T Invariantes Asociadas a Mucosa/fisiología , Interleucina-17 , Citocinas
17.
Mol Immunol ; 130: 55-63, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33360377

RESUMEN

The field of mucosal-associated invariant T cell (MAIT) biology has grown rapidly since the identification of the vitamin-B-based antigens recognised by these specialised T cells. Over the past few years, our understanding of the complexities of MAIT cell function has developed, as they find their place among the other better known cells of the immune system. Key questions relate to understanding when MAIT cells help, when they hinder or cause harm, and when they do not matter. Exploiting mouse strains that differ in MAIT cell numbers, leveraged by specific detection of MAIT cells using MR1-tetramers, it has now been shown that MAIT cells play important immune roles in settings that include bacterial and viral infections, autoimmune diseases and cancer. We have also learnt much about their development, modes of activation and response to commensal microbiota, and begun to try ways to manipulate MAIT cells to improve disease outcomes. Here we review recent studies that have assessed MAIT cells in models of disease.


Asunto(s)
Ratones , Modelos Animales , Células T Invariantes Asociadas a Mucosa/fisiología , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Humanos , Infecciones/inmunología , Activación de Linfocitos/fisiología , Neoplasias/inmunología , Neoplasias/patología
18.
Mol Immunol ; 130: 142-147, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33358570

RESUMEN

MAIT cells are innate-like T cells that are enriched in mucosal sites and tissues including adipose tissue and liver. They play an important role in immunity against microbial pathogens. Recently, it has been reported that MAIT cells could also be important in metabolic diseases and can be involved in setting up and maintaining chronic inflammation. In this review, we give an overview of recent advances in understanding MAIT cells role in the ethology of this diseases.


Asunto(s)
Enfermedades Metabólicas/etiología , Células T Invariantes Asociadas a Mucosa/fisiología , Tejido Adiposo/inmunología , Tejido Adiposo/fisiología , Animales , Humanos , Inmunidad Mucosa/fisiología , Hígado/inmunología , Hígado/fisiología , Enfermedades Metabólicas/inmunología , Enfermedades Metabólicas/patología
19.
Science ; 374(6573): eabf0095, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34882451

RESUMEN

Unconventional T cells­including invariant natural killer T (iNKT) cells, mucosal-associated invariant T (MAIT) cells, and defined subsets of γδ T cells­are restricted by monomorphic major histocompatibility complex class Ib (MHC-Ib) molecules and seed tissues during development. Early-life instructive signals, including those derived from the microbiota, establish homeostatic set points for unconventional T cells, a phenomenon that has lifelong consequences for the regulation of tissue immunity, inflammation, and repair. Unconventional T cells compete for niches within tissues, and recent evidence supports the idea that the fundamental role of these cells in tissue physiology may result from their action as a network with overlapping and potentially synergistic functions, rather than as individual subsets.


Asunto(s)
Homeostasis , Microbiota , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/fisiología , Animales , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Inmunidad Innata , Inflamación , Microbiota/inmunología , Microbiota/fisiología , Células T Invariantes Asociadas a Mucosa/inmunología , Células T Invariantes Asociadas a Mucosa/fisiología , Células T Asesinas Naturales/inmunología , Células T Asesinas Naturales/fisiología
20.
Sci Rep ; 11(1): 14090, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34238985

RESUMEN

MAIT cells have been shown to be activated upon several viral infections in a TCR-independent manner by responding to inflammatory cytokines secreted by antigen-presenting cells. Recently, a few studies have shown a similar activation of MAIT cells in response to severe acute respiratory coronavirus 2 (SARS-CoV-2) infection. In this study, we investigate the effect of SARS-CoV-2 infection on the frequency and phenotype of MAIT cells by flow cytometry, and we test in vitro stimulation conditions on the capacity to enhance or rescue the antiviral function of MAIT cells from patients with coronavirus disease 2019 (COVID-19). Our study, in agreement with recently published studies, confirmed the decline in MAIT cell frequency of hospitalized donors in comparison to healthy donors. MAIT cells of COVID-19 patients also had lower expression levels of TNF-alpha, perforin and granzyme B upon stimulation with IL-12 + IL-18. 24 h' incubation with IL-7 successfully restored perforin expression levels in COVID-19 patients. Combined, our findings support the growing evidence that SARS-CoV-2 is dysregulating MAIT cells and that IL-7 treatment might improve their function, rendering them more effective in protecting the body against the virus.


Asunto(s)
COVID-19/prevención & control , COVID-19/virología , Interleucina-7/farmacología , Células T Invariantes Asociadas a Mucosa/fisiología , Células T Invariantes Asociadas a Mucosa/virología , SARS-CoV-2/patogenicidad , Células Cultivadas , Femenino , Granzimas/metabolismo , Humanos , Masculino , Células T Invariantes Asociadas a Mucosa/metabolismo , Perforina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA