Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Biol Pharm Bull ; 40(9): 1468-1474, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28867730

RESUMEN

Salt-sensitive hypertension induces renal injury via decreased blood flow in the renal artery (RA), and ion channel dysfunction in RA myocytes (RAMs) may be involved in the higher renal vascular resistance. We examined the effects of several voltage-gated K+ (KV) channel blockers on the resting tension in endothelium-denuded RA strips and delayed-rectifier K+ currents in RAMs of Dahl salt-sensitive hypertensive rats (Dahl-S) fed with low- (Dahl-LS) and high-salt diets (Dahl-HS). The tetraethylammonium (TEA)-induced contraction in RA strips were significantly larger in Dahl-HS than Dahl-LS. Correspondingly, TEA-sensitive KV currents were significantly larger in the RAMs of Dahl-HS than Dahl-LS. Among the TEA-sensitive KV channel subtypes, the expression levels of KV2.1 transcript and protein were significantly higher in the RA of Dahl-HS than Dahl-LS, while those of KV1.5, KV7.1, and KV7.4 transcripts was comparable in two groups. KV2.1 currents detected as the guangxitoxin-1E-sensitive component were larger in the RAMs of Dahl-HS than Dahl-LS. These suggest that the up-regulation of the KV2.1 channel in RAMs may be involved in the compensatory mechanisms against decreased renal blood flow in salt-sensitive hypertension.


Asunto(s)
Miocitos del Músculo Liso/metabolismo , Arteria Renal/metabolismo , Canales de Potasio Shab/biosíntesis , Animales , Presión Sanguínea/efectos de los fármacos , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Hipertrofia Ventricular Izquierda/patología , Masculino , Contracción Muscular/efectos de los fármacos , Tamaño de los Órganos , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Ratas Endogámicas Dahl , Arteria Renal/citología , Canales de Potasio Shab/antagonistas & inhibidores , Tetraetilamonio/farmacología , Regulación hacia Arriba/efectos de los fármacos
2.
J Am Heart Assoc ; 13(16): e035415, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39158577

RESUMEN

BACKGROUND: Cardiovascular disease remains one of the leading causes of death globally. Myocardial ischemia and infarction, in particular, frequently cause disturbances in cardiac electrical activity that can trigger ventricular arrhythmias. We aimed to investigate whether catestatin, an endogenous catecholamine-inhibiting peptide, ameliorates myocardial ischemia-induced ventricular arrhythmias in rats and the underlying ionic mechanisms. METHODS AND RESULTS: Adult male Sprague-Dawley rats were randomly divided into control and catestatin groups. Ventricular arrhythmias were induced by ligation of the left anterior descending coronary artery and electrical stimulation. Action potential, transient outward potassium current, delayed rectifier potassium current, inward rectifying potassium current, and L-type calcium current (ICa-L) of rat ventricular myocytes were recorded using a patch-clamp technique. Catestatin notably reduced ventricular arrhythmia caused by myocardial ischemia/reperfusion and electrical stimulation of rats. In ventricular myocytes, catestatin markedly shortened the action potential duration of ventricular myocytes, which was counteracted by potassium channel antagonists TEACl and 4-AP, and ICa-L current channel agonist Bay K8644. In addition, catestatin significantly increased transient outward potassium current, delayed rectifier potassium current, and inward rectifying potassium current density in a concentration-dependent manner. Catestatin accelerated the activation and decelerated the inactivation of the transient outward potassium current channel. Furthermore, catestatin decreased ICa-L current density in a concentration-dependent manner. Catestatin also accelerated the inactivation of the ICa-L channel and slowed down the recovery of ICa-L from inactivation. CONCLUSIONS: Catestatin enhances the activity of transient outward potassium current, delayed rectifier potassium current, and inward rectifying potassium current, while suppressing the ICa-L in ventricular myocytes, leading to shortened action potential duration and ultimately reducing the ventricular arrhythmia in rats.


Asunto(s)
Potenciales de Acción , Cromogranina A , Miocitos Cardíacos , Fragmentos de Péptidos , Ratas Sprague-Dawley , Animales , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Cromogranina A/farmacología , Cromogranina A/metabolismo , Potenciales de Acción/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/efectos de los fármacos , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/prevención & control , Arritmias Cardíacas/metabolismo , Antiarrítmicos/farmacología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Modelos Animales de Enfermedad , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Técnicas de Placa-Clamp , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Canales de Potasio/metabolismo , Canales de Potasio/efectos de los fármacos
3.
Pediatr Emerg Care ; 29(9): 998-1001, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24201980

RESUMEN

INTRODUCTION: Escitalopram is rarely associated with prolongation of the QTc interval; however, there are no reported cases of QRS complex widening associated with escitalopram overdose. We report a case of a patient who presented with both QRS complex widening and QTc interval prolongation after an escitalopram overdose. CASE: A 16-year-old girl presented to the emergency department after ingestion of escitalopram, tramadol/acetaminophen, and hydrocodone/acetaminophen. Laboratory results were significant for 4-hour acetaminophen 21.1 µg/mL. Serum electrolytes including potassium, magnesium, and calcium were all normal. Initial electrocardiogram (ECG) revealed a widened QRS with an incomplete right bundle branch pattern. After administration of 100-mEq sodium bicarbonate, a repeat ECG revealed narrowing of the QRS complex and a prolonged QTc interval. Magnesium sulfate 2 g intravenous and sodium bicarbonate drip were initiated. A repeat ECG, 1 hour after the second, revealed normalization of the QRS complex and QTc interval. DISCUSSION: Prolongation of the QTc interval is an expected effect of escitalopram. Both escitalopram and citalopram are metabolized to the cardiotoxic metabolite S-didesmethylcitalopram and didesmethylcitalopram, respectively, which have been implicated in numerous cardiac abnormalities including widening of the QRS complex. Although never previously described with escitalopram, this mechanism provides a reasonable explanation for the QRS complex widening and incomplete right bundle branch block that occurred in our patient. CONCLUSIONS: Both QRS complex widening and QTc interval prolongation should be monitored in cases of escitalopram and citalopram overdoses.


Asunto(s)
Bloqueo de Rama/inducido químicamente , Citalopram/envenenamiento , Electrocardiografía/efectos de los fármacos , Sistema de Conducción Cardíaco/efectos de los fármacos , Canales de Sodio/efectos de los fármacos , Acetaminofén/envenenamiento , Adolescente , Antídotos/administración & dosificación , Antídotos/uso terapéutico , Bradicardia/inducido químicamente , Bradicardia/tratamiento farmacológico , Bloqueo de Rama/sangre , Bloqueo de Rama/tratamiento farmacológico , Bloqueo de Rama/fisiopatología , Citalopram/análogos & derivados , Citalopram/sangre , Citalopram/farmacocinética , Citalopram/farmacología , Citalopram/toxicidad , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Quimioterapia Combinada , Urgencias Médicas , Femenino , Humanos , Hidrocodona/envenenamiento , Síndrome de QT Prolongado/inducido químicamente , Sulfato de Magnesio/administración & dosificación , Sulfato de Magnesio/uso terapéutico , Bicarbonato de Sodio/administración & dosificación , Bicarbonato de Sodio/uso terapéutico , Intento de Suicidio , Síncope Vasovagal/inducido químicamente , Tramadol/envenenamiento
4.
Yao Xue Xue Bao ; 48(1): 38-44, 2013 Jan.
Artículo en Zh | MEDLINE | ID: mdl-23600139

RESUMEN

To investigate the electrophysiology mechanisms of new anxiolytic and antidepressant drug: 4-butyl-alpha-agarofuran (AF-5), patch clamp-recording was used to test the effects of AF-5 on voltage-dependent sodium currents, voltage-dependent potassium currents, L-type voltage-dependent calcium currents and GABA dependent Cl(-) currents in primary cultured rat cortical neurons. Effects of AF-5 on Kv2.1 currents, expressed stably in HEK293 cells, were also tested. Our results showed that, delayed rectifier potassium currents (I(K(DR, L-type voltage-dependent calcium currents (I(LC-ca)) in primary cultured rat cortical neurons and Kv2.1 currents in HEK293 cells were significantly inhibited by AF-5, with IC50 as 6.17, 4.4 and 5.29 micromol x L(-1) respectively. However, voltage-dependent sodium currents (I(Na)), GABA dependent Cl(-) currents and transient outward potassium currents (I(K(A)) in primary cultured rat cortical neurons were not significantly blocked by AF-5. Our results concluded that, blocked I(K(DR)) and I(L-Ca) currents may be one of the mechanisms of anxiolytic and antidepression actions of AF-5.


Asunto(s)
Antidepresivos/farmacología , Canales de Calcio Tipo L/efectos de los fármacos , Corteza Cerebral/citología , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Sesquiterpenos/farmacología , Animales , Células Cultivadas , Canales de Cloruro/efectos de los fármacos , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Células HEK293 , Humanos , Neuronas/citología , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Canales de Potasio Shab/efectos de los fármacos , Canales de Sodio Activados por Voltaje/efectos de los fármacos
5.
Toxicol Appl Pharmacol ; 262(1): 60-9, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22676973

RESUMEN

Polychlorinated biphenyls (PCBs) have been known as serious persistent organic pollutants (POPs), causing developmental delays and motor dysfunction. We have investigated the effects of two PCB congeners, 3,3',4,4'-tetrachlorobiphenyl (PCB 77) and 3,3',4,4',5-pentachlorobiphenyl (PCB 126) on ECG, action potential, and the rapidly activating delayed rectifier K+ current (I(Kr)) of guinea pigs' hearts, and hERG K+ current expressed in Xenopus oocytes. PCB 126 shortened the corrected QT interval (QTc) of ECG and decreased the action potential duration at 90% (APD(90)), and 50% of repolarization (APD50) (P<0.05) without changing the action potential duration at 20% (APD20). PCB 77 decreased APD20 (P<0.05) without affecting QTc, APD90, and APD50. The PCB 126 increased the I(Kr) in guinea-pig ventricular myocytes held at 36°C and hERG K+ current amplitude at the end of the voltage steps in voltage-dependent mode (P<0.05); however, PCB 77 did not change the hERG K+ current amplitude. The PCB 77 increased the diastolic Ca²âº and decreased Ca²âº transient amplitude (P<0.05), however PCB 126 did not change. The results suggest that PCB 126 shortened the QTc and decreased the APD90 possibly by increasing I(Kr), while PCB 77 decreased the APD20 possibly by other modulation related with intracellular Ca²âº. The present data indicate that the environmental toxicants, PCBs, can acutely affect cardiac electrophysiology including ECG, action potential, intracellular Ca²âº, and channel activity, resulting in toxic effects on the cardiac function in view of the possible accumulation of the PCBs in human body.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Canales de Potasio Éter-A-Go-Go/efectos de los fármacos , Bifenilos Policlorados/toxicidad , Animales , Calcio/metabolismo , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Canal de Potasio ERG1 , Electrocardiografía , Contaminantes Ambientales/toxicidad , Canales de Potasio Éter-A-Go-Go/metabolismo , Cobayas , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Humanos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Oocitos , Xenopus laevis
6.
Am J Physiol Regul Integr Comp Physiol ; 301(1): R255-65, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21508292

RESUMEN

Ectothermic vertebrates experience acute and chronic temperature changes which affect cardiac excitability and may threaten electrical stability of the heart. Nevertheless, ectothermic hearts function over wide range of temperatures without cardiac arrhythmias, probably due to special molecular adaptations. We examine function and molecular basis of the slow delayed rectifier K(+) current (I(Ks)) in cardiac myocytes of a eurythermic fish (Carassius carassius L.). I(Ks) is an important repolarizing current that prevents excessive prolongation of cardiac action potential, but it is extremely slowly activating when expressed in typical molecular composition of the endothermic animals. Comparison of the I(Ks) of the crucian carp atrial myocytes with the currents produced by homomeric K(v)7.1 and heteromeric K(v)7.1/MinK channels in Chinese hamster ovary cells indicates that activation kinetics and pharmacological properties of the I(Ks) are similar to those of the homomeric K(v)7.1 channels. Consistently with electrophysiological properties and homomeric K(v)7.1 channel composition, atrial transcript expression of the MinK subunit is only 1.6-1.9% of the expression level of the K(v)7.1 subunit. Since activation kinetics of the homomeric K(v)7.1 channels is much faster than activation of the heteromeric K(v)7.1/MinK channels, the homomeric K(v)7.1 composition of the crucian carp cardiac I(Ks) is thermally adaptive: the slow delayed rectifier channels can open despite low body temperatures and curtail the duration of cardiac action potential in ectothermic crucian carp. We suggest that the homomeric K(v)7.1 channel assembly is an evolutionary thermal adaptation of ectothermic hearts and the heteromeric K(v)7.1/MinK channels evolved later to adapt I(Ks) to high body temperature of endotherms.


Asunto(s)
Adaptación Fisiológica/fisiología , Regulación de la Temperatura Corporal/fisiología , Carpas/fisiología , Canales de Potasio de Tipo Rectificador Tardío/fisiología , Corazón/fisiología , Canal de Potasio KCNQ1/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Potenciales de Acción/fisiología , Secuencia de Aminoácidos , Animales , Temperatura Corporal/fisiología , Colforsina/farmacología , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Datos de Secuencia Molecular , Filogenia
7.
Med Sci Monit ; 17(7): BR165-72, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21709626

RESUMEN

BACKGROUND: Early development of cardiac hypertrophy may be beneficial but sustained hypertrophic activation leads to myocardial dysfunction. Regulation of the repolarizing currents can be modulated by the activation of humoral factors, such as angiotensin II (ANG II) through protein kinases. The aim of this work is to assess the regulation of IK and IK1 by ANG II through the PI3-K pathway in hypertrophied ventricular myocytes. MATERIAL/METHODS: Cardiac eccentric hypertrophy was induced through volume-overload in adult male rats by aorto-caval shunt (3 weeks). After one week half of the rats were given captopril (2 weeks; 0.5 g/l/day) and the other half served as control. The voltage-clamp and western blot techniques were used to measure the delayed outward rectifier potassium current (IK) and the instantaneous inward rectifier potassium current (IK1) and Akt activity, respectively. RESULTS: Hypertrophied cardiomyocytes showed reduction in IK and IK1. Treatment with captopril alleviated this difference seen between sham and shunt cardiomyocytes. Acute administration of ANG II (10-6M) to cardiocytes treated with captopril reduced IK and IK1 in shunts, but not in sham. Captopril treatment reversed ANG II effects on IK and IK1 in a PI3-K-independent manner. However in the absence of angiotensin converting enzyme inhibition, ANG II increased both IK and IK1 in a PI3-K-dependent manner in hypertrophied cardiomyocytes. CONCLUSIONS: Thus, captopril treatment reveals a negative effect of ANG II on IK and IK1, which is PI3-K independent, whereas in the absence of angiotensin converting enzyme inhibition IK and IK1 regulation is dependent upon PI3-K.


Asunto(s)
Angiotensina II/farmacología , Captopril/farmacología , Cardiomegalia/fisiopatología , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Miocitos Cardíacos/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Angiotensina II/metabolismo , Animales , Western Blotting , Captopril/metabolismo , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Masculino , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Ratas
8.
J Pharmacol Exp Ther ; 332(2): 437-45, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19915071

RESUMEN

Ion channels are known to be modulated by antidepressant drugs, but the molecular mechanisms are not known. We have shown that the antidepressant drug amoxapine suppresses rectifier outward K(+) (I(K)) currents in mouse cortical neurons. At a concentration of 10 to 500 muM, amoxapine reversibly inhibited I(K) in a dose-dependent manner and modulated both steady-state activation and inactivation properties. The application of forskolin or dibutyryl cAMP mimicked the inhibitory effect of amoxapine on I(K) and abolished further inhibition by amoxapine. N-[2-(p-Bromocinnamylamino)ethyl]-5-iso-quinolinesulphonamide (H-89), a protein kinase A (PKA) inhibitor, augmented I(K) amplitudes and completely eliminated amoxapine inhibition of I(K). Amoxapine was also found to significantly increase intracellular cAMP levels. The effects of amoxapine on I(K) were abolished by preincubation with 5-hydroxytryptamine (5-HT) and the antagonists of 5-HT(2) receptor. Moreover, intracellular application of guanosine 5'-[gammathio]-triphosphate increased I(K) amplitudes and prevented amoxapine-induced inhibition. The selective Kv2.1 subunit blocker Jingzhaotoxin-III reduced I(K) amplitudes by 30% and also significantly abolished the inhibitory effect of amoxapine. Together these results suggest that amoxapine inhibits I(K) in mouse cortical neurons by cAMP/PKA-dependent pathway associated with the 5-HT receptor, and suggest that the Kv2.1 alpha-subunit may be the target for this inhibition.


Asunto(s)
Amoxapina/farmacología , Antidepresivos de Segunda Generación/farmacología , Corteza Cerebral/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/efectos de los fármacos , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Técnicas de Cultivo de Célula , AMP Cíclico/metabolismo , Canales de Potasio de Tipo Rectificador Tardío/fisiología , Interacciones Farmacológicas , Potenciales de la Membrana/efectos de los fármacos , Ratones , Neuronas/metabolismo , Neuronas/fisiología , Antagonistas del Receptor de Serotonina 5-HT2 , Canales de Potasio Shab/efectos de los fármacos
9.
Cardiovasc Toxicol ; 20(4): 339-350, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31898152

RESUMEN

Since deuterium replacement has a potential to modulate pharmacodynamics, pharmacokinetics and toxicity, we developed deuterated dronedarone; poyendarone, and assessed its cardiovascular effects. Poyendarone hydrochloride in doses of 0.3 and 3 mg/kg over 30 s was intravenously administered to the halothane-anesthetized dogs (n = 4), which provided peak plasma concentrations of 108 ± 10 and 1120 ± 285 ng/mL, respectively. The 0.3 mg/kg shortened the ventricular repolarization period. The 3 mg/kg transiently increased the heart rate at 5 min but decreased at 45 min, and elevated the total peripheral vascular resistance and left ventricular preload, whereas it reduced the mean blood pressure at 5 min, left ventricular contractility and cardiac output. The transient tachycardic action is considered to be induced by the hypotension-induced, reflex-mediated increase of sympathetic tone. The 3 mg/kg delayed both intra-atrial and intra-ventricular conductions, indicating Na+ channel inhibitory action. Moreover, the 3 mg/kg transiently shortened the ventricular repolarization period at 5 min. No significant change was detected in the late repolarization by poyendarone, indicating it might not hardly significantly alter rapidly activating delayed-rectifier K+ current (IKr). Poyendarone prolonged the atrial effective refractory period greater than the ventricular parameter. When compared with dronedarone, poyendarone showed similar pharmacokinetics of dronedarone, but reduced ß-adrenoceptor blocking activity as well as the cardio-suppressive effect. Poyendarone failed to inhibit IKr and showed higher atrial selectivity in prolonging the effective refractory period of atrium versus ventricle. Thus, the deuteration may be an effective way to improve the cardiovascular profile of dronedarone. Poyendarone is a promising anti-atrial fibrillatory drug candidate.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Antiarrítmicos/administración & dosificación , Deuterio , Dronedarona/administración & dosificación , Sistema de Conducción Cardíaco/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Administración Intravenosa , Animales , Antiarrítmicos/farmacocinética , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Perros , Dronedarona/análogos & derivados , Dronedarona/farmacocinética , Femenino , Sistema de Conducción Cardíaco/metabolismo , Periodo Refractario Electrofisiológico/efectos de los fármacos
10.
Circ Arrhythm Electrophysiol ; 13(4): e008130, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32202931

RESUMEN

BACKGROUND: Rapid delayed rectifier K+ current (IKr) and late Na+ current (INaL) significantly shape the cardiac action potential (AP). Changes in their magnitudes can cause either long or short QT syndromes associated with malignant ventricular arrhythmias and sudden cardiac death. METHODS: Physiological self AP-clamp was used to measure INaL and IKr during the AP in rabbit and porcine ventricular cardiomyocytes to test our hypothesis that the balance between IKr and INaL affects repolarization stability in health and disease conditions. RESULTS: We found comparable amount of net charge carried by IKr and INaL during the physiological AP, suggesting that outward K+ current via IKr and inward Na+ current via INaL are in balance during physiological repolarization. Remarkably, IKr and INaL integrals in each control myocyte were highly correlated in both healthy rabbit and pig myocytes, despite high overall cell-to-cell variability. This close correlation was lost in heart failure myocytes from both species. Pretreatment with E-4031 to block IKr (mimicking long QT syndrome 2) or with sea anemone toxin II to impair Na+ channel inactivation (mimicking long QT syndrome 3) prolonged AP duration (APD); however, using GS-967 to inhibit INaL sufficiently restored APD to control in both cases. Importantly, INaL inhibition significantly reduced the beat-to-beat and short-term variabilities of APD. Moreover, INaL inhibition also restored APD and repolarization stability in heart failure. Conversely, pretreatment with GS-967 shortened APD (mimicking short QT syndrome), and E-4031 reverted APD shortening. Furthermore, the amplitude of AP alternans occurring at high pacing frequency was decreased by INaL inhibition, increased by IKr inhibition, and restored by combined INaL and IKr inhibitions. CONCLUSIONS: Our data demonstrate that IKr and INaL are counterbalancing currents during the physiological ventricular AP and their integrals covary in individual myocytes. Targeting these ionic currents to normalize their balance may have significant therapeutic potential in heart diseases with repolarization abnormalities. Visual Overview: A visual overview is available for this article.


Asunto(s)
Potenciales de Acción , Arritmias Cardíacas/metabolismo , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Frecuencia Cardíaca , Miocitos Cardíacos/metabolismo , Potasio/metabolismo , Canales de Sodio/metabolismo , Sodio/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Antiarrítmicos/farmacología , Arritmias Cardíacas/etiología , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/prevención & control , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Cinética , Masculino , Miocitos Cardíacos/efectos de los fármacos , Conejos , Canales de Sodio/efectos de los fármacos , Porcinos , Porcinos Enanos
11.
J Physiol ; 587(2): 363-77, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19047199

RESUMEN

Caffeine, a prototypic bitter stimulus, produces several physiological actions on taste receptor cells that include inhibition of KIR and KV potassium currents and elevations of intracellular calcium. These responses display adaptation, i.e. their magnitude diminishes in the sustained presence of the stimulus. Levels of the membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP2) are well known to modulate many potassium channels, activating the channel by stabilizing its open state. Here we investigate a putative relationship of KIR and KV with PIP2 levels hypothesizing that inhibition of these currents by caffeine might be allayed by PIP2 resynthesis. Using standard patch-clamp techniques, recordings of either potassium current from rat posterior taste receptor cells produced essentially parallel results when PIP2 levels were manipulated pharmacologically. Increasing PIP2 levels by blocking phosphoinositide-3 kinase with wortmannin or LY294002, or by blocking phospholipase C with U73122 all significantly increased the incidence of adaptation for both KIR and KV. Conversely, lowering PIP2 synthesis by blocking PI4K or using the PIP2 scavengers polylysine or bovine serum albumin reduced the incidence of adaptation. Adaptation could be modulated by activation of protein kinase C but not calcium calmodulin kinase. Collectively, these data support two highly novel conclusions: potassium currents in taste receptor cells are significantly modulated by PIP2 levels and PIP2 resynthesis may play a central role in the gustatory adaptation process at the primary receptor cell level.


Asunto(s)
Cafeína/farmacología , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Papilas Gustativas/fisiología , Gusto/fisiología , Androstadienos/farmacología , Animales , Bencilaminas/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Cromonas/farmacología , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Canales de Potasio de Tipo Rectificador Tardío/fisiología , Inhibidores Enzimáticos/farmacología , Estrenos/farmacología , Masculino , Morfolinas/farmacología , Técnicas de Placa-Clamp , Fosfatidilinositol 4,5-Difosfato/antagonistas & inhibidores , Fosfatidilinositol 4,5-Difosfato/farmacología , Fosfatos de Fosfatidilinositol/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosfolipasa C beta/antagonistas & inhibidores , Polilisina/farmacología , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio de Rectificación Interna/fisiología , Proteína Quinasa C/metabolismo , Pirrolidinonas/farmacología , Ratas , Ratas Sprague-Dawley , Albúmina Sérica Bovina/farmacología , Sulfonamidas/farmacología , Gusto/efectos de los fármacos , Papilas Gustativas/citología , Papilas Gustativas/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología , Wortmanina
12.
J Cardiovasc Pharmacol ; 54(2): 169-77, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19568177

RESUMEN

The ionic current responsible for terminating the action potential (AP), and thereby in part determining the AP duration (APD), is the potassium current (IK), consisting of primarily two components: a rapidly (IKr) and a slowly (IKs) activating delayed rectifier potassium current. The aim of this study was to evaluate potential antiarrhythmic effects of compound induced IKs activation using the benzodiazepine L-364,373 (R-L3). Ventricular myocytes from guinea pigs were isolated and whole-cell current clamping was performed at 35 degrees C. It was found that 1 microM R-L3 significantly reduced the APD90 at pacing frequencies of 1, 2, and 4 Hz when compared to control (40 +/- 6%, 22 +/- 2%, and 32 +/- 2%, respectively). The reduction of APD90 was accompanied by a reduced triangulation (given as APD30-90) when compared to control at all pacing frequencies (62 +/- 7 ms vs. 41 +/- 3 ms, 55 +/- 5 ms vs. 35 +/- 6 ms, and 45 +/- 4 ms vs. 32 +/- 2 ms, at 1 Hz, 2 Hz, and 4 Hz, respectively). The abbreviated APDs also resulted in a reduction in the relative refractory period, and no direct protection against pacing induced early after-depolarizations (EAD) could be observed. However, an increase in repolarizing capacity was seen with 1 microM R-L3, as more complete repolarization of the AP was achieved before EADs could be elicited. Finally, a functional demonstration of the repolarization reserve revealed that increased IKs can counteract a pharmacologically reduced IKr. In conclusion, pharmacological activation of IKs possesses both pro- and antiarrhythmic characters. The most prominent antiarrhythmic propensity is the ability for IKs activation to rescue a cellular model of long QT type 2.


Asunto(s)
Antiarrítmicos/farmacología , Benzodiazepinas/farmacología , Síndrome de QT Prolongado/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Animales , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Modelos Animales de Enfermedad , Electrocardiografía , Electrofisiología , Femenino , Cobayas , Ventrículos Cardíacos/metabolismo , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/fisiopatología , Miocitos Cardíacos/metabolismo
13.
Br J Anaesth ; 103(2): 244-54, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19542547

RESUMEN

BACKGROUND: Dexmedetomidine (DEX), a selective agonist of alpha2-adrenergic receptors, is recognized to facilitate analgesia and anaesthesia in humans. Despite the potential for wide use, its effects on ion currents and membrane potential in neurones remain largely unclear. METHODS: We investigated the effects of DEX on ion channels in NG108-15 neuronal cells differentiated with dibutyryl cyclic AMP and in cultured cerebellar neurones. RESULTS: DEX suppressed the amplitude of delayed rectifier K+ current [I(K(DR))] in a concentration-dependent manner with an IC50 value of 4.6 microM in NG108-15 cells. No change in the steady-state inactivation of I(K(DR)) was evident in the presence of DEX. A minimal binding scheme was also used to evaluate DEX-induced block of I(K(DR)). Inhibition of I(K(DR)) by DEX was still observed in cells preincubated with yohimbine (10 microM) or efaroxan (10 microM). DEX depressed the peak amplitude of Na+ current (I(Na)), whereas it had minimal effect on L-type Ca2+ current. Under current-clamp configuration, DEX increased the duration of action potentials (APs). I(K(DR)) and I(Na) in response to AP waveforms were more sensitive to block by DEX than those elicited during rectangular pulses. In isolated cerebellar granule cells, DEX also effectively suppressed I(K(DR)). CONCLUSIONS: The effects of DEX are not limited to its interactions with alpha2-adrenergic receptors. Inhibitory effects on I(K(DR)) and I(Na) constitute one of the underlying mechanisms through which DEX and its structurally related compounds might affect neuronal activity in vivo.


Asunto(s)
Agonistas alfa-Adrenérgicos/farmacología , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Dexmedetomidina/farmacología , Neuronas/efectos de los fármacos , Canales de Sodio/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Diferenciación Celular , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Relación Dosis-Respuesta a Droga , Activación del Canal Iónico/efectos de los fármacos , Ratones , Neuronas/metabolismo , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Células Tumorales Cultivadas
14.
Ecotoxicol Environ Saf ; 72(1): 236-241, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18206237

RESUMEN

Recent studies implicate the possible neurotoxicity of SO(2), however, its mechanisms remain unclear. In the present study, we investigated SO(2) derivative-induced effect on delayed rectifier potassium channels (I(K)) and cellular death/apoptosis in primary cultured hippocampal neurons. The results demonstrate that SO(2) derivatives (NaHSO(3) and Na(2)SO(3), 3:1M/M) effectively augmented I(K) and promoted the activation of delayed rectifier potassium channels. Also, SO(2) derivatives increased neuronal death percentage and contributed to the formation of DNA ladder in concentration-dependent manners. Interestingly, the neuronal death and DNA ladder formation, caused by SO(2) derivatives, could be attenuated by the delayed rectifier potassium channel blocker (tetraethylammonium, TEA), but not by the transient outward potassium channel blocker (4-aminopyridine, 4-AP). It implies that stimulating delayed rectifier potassium channels were involved in SO(2) derivative-caused hippocampal neuronal insults, and blocking these channels might be one of the possibly clinical treatment for SO(2)-caused neuronal dysfunction.


Asunto(s)
Canales de Potasio de Tipo Rectificador Tardío/fisiología , Hipocampo/patología , Neuronas/patología , Neurotoxinas/toxicidad , Dióxido de Azufre/toxicidad , Animales , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Ratas Wistar , Sulfatos/farmacología , Heridas y Lesiones/tratamiento farmacológico
15.
Neuropharmacology ; 54(6): 912-23, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18336846

RESUMEN

The effects of aconitine (ACO), a highly toxic alkaloid, on ion currents in differentiated NG108-15 neuronal cells were investigated in this study. ACO (0.3-30 microM) suppressed the amplitude of delayed rectifier K+ current (I K(DR)) in a concentration-dependent manner with an IC50 value of 3.1 microM. The presence of ACO enhanced the rate and extent of I K(DR) inactivation, although it had no effect on the initial activation phase of I K(DR). It could shift the inactivation curve of I K(DR) to a hyperpolarized potential with no change in the slope factor. Cumulative inactivation for I K(DR) was also enhanced by ACO. Orphenadrine (30 microM) or methyllycaconitine (30 microM) slightly suppressed I K(DR) without modifying current decay. ACO (10 microM) had an inhibitory effect on voltage-dependent Na+ current (I Na). Under current-clamp recordings, ACO increased the firing and widening of action potentials in these cells. With the aid of the minimal binding scheme, the ACO actions on I K(DR) was quantitatively provided with a dissociation constant of 0.6 microM. A modeled cell was designed to duplicate its inhibitory effect on spontaneous pacemaking. ACO also blocked I K(DR) in neuroblastoma SH-SY5Y cells. Taken together, the experimental data and simulations show that ACO can block delayed rectifier K+ channels of neurons in a concentration- and state-dependent manner. Changes in action potentials induced by ACO in neurons in vivo can be explained mainly by its blocking actions on I K(DR) and I Na.


Asunto(s)
Aconitina/farmacología , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Neuronas/metabolismo , Bloqueadores de los Canales de Potasio , Potenciales de Acción/efectos de los fármacos , Algoritmos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Simulación por Computador , Interpretación Estadística de Datos , Electrofisiología , Humanos , Cinética , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp
16.
Assay Drug Dev Technol ; 6(2): 243-53, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18471078

RESUMEN

The presence of serum in biological samples often negatively impacts the quality of in vitro assays. However, assays tolerant of serum are useful for assessing the in vivo availability of a small molecule for its target. Electrophysiology assays of ion channels are notoriously sensitive to serum because of their reliance on the interaction of the plasma membrane with a recording electrode. Here we investigate the tolerance of an automated electrophysiology assay for a voltage-gated potassium (K(V)) channel to serum and purified plasma proteins. The delayed rectifier channel, K(V)2.1, stably expressed in Chinese hamster ovary cells produces large, stable currents on the IonWorks Quattro platform (MDS Analytical Technologies, Sunnyvale, CA), making it an ideal test case. K(V)2.1 currents recorded on this platform are highly resistant to serum, allowing recordings in as high as 33% serum. Using a set of compounds related to the K(V) channel blocker, 4-phenyl-4-[3-(2-methoxyphenyl)-3-oxo-2-azaprop-1-yl]cyclohexanone, we show that shifts in compound potency with whole serum or isolated serum proteins can be reliably measured with this assay. Importantly, this assay is also relatively insensitive to plasma, allowing the creation of a bioassay for inhibitors of K(V)2.1 channel activity. Here we show that such a bioassay can quantify the levels of the gating modifier, guangxitoxin-1E, in plasma samples from mice dosed with the peptide. This study demonstrates the utility of using an automated electrophysiology platform for measuring serum shifts and for bioassays of ion channel modulators.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Bloqueadores de los Canales de Potasio/farmacología , Animales , Autoanálisis , Células CHO , Cricetinae , Cricetulus , Interpretación Estadística de Datos , Diálisis , Electrofisiología , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Unión Proteica
17.
Drug Saf ; 31(3): 249-60, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18302449

RESUMEN

BACKGROUND: QT prolongation is an incomplete measure of drug-induced changes in repolarization. In this study, we investigated a novel, automatic ECG technique for describing ventricular repolarization morphology and we compared these results to corrected QT (QTc) prolongation for identifying ECGs of healthy individuals on moxifloxacin. METHODS: We analysed data from the US FDA ECG Warehouse involving 160 standard ECGs from 40 healthy subjects enrolled in a randomized, parallel, placebo-controlled, 'thorough QT' study. Computerized ECG analysis included a series of scalar and vectorial parameters describing duration of repolarization segments and T-wave/loop morphology including its symmetry, amplitude and shape. Binary logistic models for the identification of moxifloxacin-induced abnormalities of the repolarization were developed. RESULTS: Moxifloxacin induced significant changes in several ECG parameters including QT and QT apex and early repolarization duration (ERD)(30)(%), T-wave amplitude and slopes of the ascending and descending arm of the T-wave. The logistic model based only on T-wave morphology parameters outperformed the model based on QTc interval for identifying the presence of moxifloxacin. Combining information about repolarization interval duration with T-wave morphology significantly improved the detection of presence of moxifloxacin (p < 0.01). The increased sensitivity of our novel ECG method contributes to a >40% reduction in the sample size required to detect significant QTc prolongation induced by moxifloxacin. CONCLUSIONS: Repolarization morphology is significantly altered by moxifloxacin. The computerized ECG technique provides a novel method for quantifying morphological changes of repolarization segment. Our new parameters reflecting the morphology of the T-wave outperformed QTc measurements when identifying moxifloxacin-induced blockade of the outward rapid components of the delayed rectifier repolarizing potassium current (I(Kr)). These data indicate that the analysis of T-wave morphology could play a role in the assessment of drug toxicity.


Asunto(s)
Antiinfecciosos/efectos adversos , Compuestos Aza/efectos adversos , Electrocardiografía/métodos , Síndrome de QT Prolongado/diagnóstico , Quinolinas/efectos adversos , Adolescente , Adulto , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Diagnóstico por Computador/métodos , Femenino , Fluoroquinolonas , Humanos , Modelos Logísticos , Síndrome de QT Prolongado/inducido químicamente , Masculino , Moxifloxacino , Estudios Retrospectivos
18.
J Theor Biol ; 252(4): 711-21, 2008 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-18387636

RESUMEN

The properties of slowly inactivating delayed-rectifier K+ current (I(K)(dr)) were investigated in NG108-15 neuronal cells differentiated with long-term exposure to dibutyryl cyclic AMP. Slowly inactivating I(K)(dr) could be elicited by prolonged depolarizations from -50 to +50 mV. These outward K+ currents were found to decay at potentials above -20 mV, and the decay became faster with greater depolarization. Cell exposure to aconitine resulted in the reduction of I(K)(dr) amplitude along with an accelerated decay of current inactivation. Under current-clamp recordings, a delay in the initiation of action potentials (APs) in response to prolonged current stimuli was observed in these cells. Application of aconitine shortened the AP initiation in combination with an increase in both width of spike discharge and firing frequency. The computer model, in which state-dependent inactivation of I(K)(dr) was incorporated, was also implemented to predict the firing behavior present in NG108-15 cells. As the inactivation rate constant of I(K)(dr) was elevated, the firing frequency was progressively increased along with a shortening of the latency for AP appearance. Our theoretical work and the experimental results led us to propose a pivotal role of slowly inactivating I(K)(dr) in delayed firing of APs in NG108-15 cells. The results also suggest that aconitine modulation of I(K)(dr) gating is an important molecular mechanism through which it can contribute to neuronal firing.


Asunto(s)
Potenciales de Acción/fisiología , Canales de Potasio de Tipo Rectificador Tardío/fisiología , Neuronas/fisiología , Aconitina/farmacología , Animales , Diferenciación Celular , Simulación por Computador , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Ratones , Modelos Biológicos , Neuronas/efectos de los fármacos , Ratas , Canales de Sodio/efectos de los fármacos , Células Tumorales Cultivadas
19.
Eur J Pharmacol ; 580(1-2): 122-9, 2008 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-18031731

RESUMEN

The authors previously demonstrated that isoflurane, a widely used volatile anesthetic, induced depolarization and increased the frequency of spontaneous action potentials in principal dopamine neurons in rat substantia nigra pars compacta. We studied the effects of isoflurane on voltage-dependent K channels to clarify the mechanisms of the increase in excitability in these neurons. Voltage-clamp whole-cell recordings were made in rat midbrain slices. We recorded the outward membrane currents in response to depolarizing voltage steps from -120 mV and -25 mV and isolated the transient outward current mediated through A-type K channels by subtraction. Isoflurane at clinically relevant concentrations accelerated the decay of the A-type K current and delayed the recovery from inactivation without changing the steady-state inactivation curves. Isoflurane did not affect the non-inactivating outward current. Addition of 4-aminopyridine partially occluded the excitatory effects of isoflurane in current-clamp recordings. These results demonstrate that isoflurane accelerated the inactivation and delayed the recovery from inactivation of A-type K channels in principal neurons in rat substantia nigra pars compacta without affecting delayed rectifier K channels. These effects may contribute in part to excitation of these neurons and the isoflurane-induced increases in dopamine release reported in vitro and in vivo.


Asunto(s)
Anestésicos por Inhalación/farmacología , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Isoflurano/farmacología , Canales de Potasio Shal/efectos de los fármacos , 4-Aminopiridina/farmacología , Anestésicos por Inhalación/administración & dosificación , Animales , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Dopamina/metabolismo , Electrofisiología , Isoflurano/administración & dosificación , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Canales de Potasio Shal/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo
20.
Naunyn Schmiedebergs Arch Pharmacol ; 377(3): 245-53, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18385985

RESUMEN

The effects of cadmium (Cd(2+)) on the transient outward potassium current (I(A)) and delayed rectifier potassium current (I(K)) were investigated in acutely dissociated rat hippocampal CA1 neurons using the whole-cell patch-clamp technique. The results showed that Cd(2+) inhibited the amplitudes of I(A) and I (K) in a reversible and concentration-dependent manner, with half-maximal inhibitive concentration (IC(50)) values of 546+/-59 and 749+/-53 microM, and the inhibitory effect of Cd(2+) was voltage dependent. Cd(2+) significantly shifted the steady-state activation and inactivation curve of I(A) to more positive potentials. In contrast, Cd(2+) caused a relatively less but still significant positive shift in the activation of I(K) without effect on the inactivation curve. Cd(2+) significantly slowed the recovery from inactivation of I(K) but had no effect on the recovery time course of I(A). The results suggest that the modulation of I(A) and I(K) was most likely mediated by the interaction of Cd(2+) with a specific site on the potassium-channel protein rather than by screening of bulk surface-negative charge. The effects of Cd(2+) on the voltage-gated potassium currents may be a possible contributing mechanism for the Cd(2+)-induced neurotoxic damage. In addition, the effects of Cd(2+) on the potassium currents at concentrations that overlap with its effects on calcium currents raise concerns about its use in pharmacological or physiological studies.


Asunto(s)
Cadmio/toxicidad , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Animales , Cadmio/administración & dosificación , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Contaminantes Ambientales/toxicidad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Concentración 50 Inhibidora , Potenciales de la Membrana/efectos de los fármacos , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/metabolismo , Células Piramidales/metabolismo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA