Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Neurophysiol ; 127(1): 116-129, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34817286

RESUMEN

Diverse physiological phenotypes in a neuronal population can broaden the range of computational capabilities within a brain region. The avian cochlear nucleus angularis (NA) contains a heterogeneous population of neurons whose variation in intrinsic properties results in electrophysiological phenotypes with a range of sensitivities to temporally modulated input. The low-threshold potassium conductance (GKLT) is a key feature of neurons involved in fine temporal structure coding for sound localization, but a role for these channels in intensity or spectrotemporal coding has not been established. To determine whether GKLT affects the phenotypical variation and temporal properties of NA neurons, we applied dendrotoxin-I (DTX), a potent antagonist of Kv1-type potassium channels, to chick brain stem slices in vitro during whole cell patch-clamp recordings. We found a cell-type specific subset of NA neurons that was sensitive to DTX: single-spiking NA neurons were most profoundly affected, as well as a subset of tonic-firing neurons. Both tonic I (phasic onset bursting) and tonic II (delayed firing) neurons showed DTX sensitivity in their firing rate and phenotypical firing pattern. Tonic III neurons were unaffected. Spike time reliability and fluctuation sensitivity measured in DTX-sensitive NA neurons was also reduced with DTX. Finally, DTX reduced spike threshold adaptation in these neurons, suggesting that GKLT contributes to the temporal properties that allow coding of rapid changes in the inputs to NA neurons. These results suggest that variation in Kv1 channel expression may be a key factor in functional diversity in the avian cochlear nucleus.NEW & NOTEWORTHY The dendrotoxin-sensitive voltage-gated potassium conductance typically associated with neuronal coincidence detection in the timing pathway for sound localization is demonstrated to affect spiking patterns and temporal input sensitivity in the intensity pathway in the avian auditory brain stem. The Kv1-family channels appear to be present in a subset of cochlear nucleus angularis neurons, regulate spike threshold dynamics underlying high-pass membrane filtering, and contribute to intrinsic firing diversity.


Asunto(s)
Potenciales de Acción/fisiología , Núcleo Coclear/fisiología , Neuronas/fisiología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de la Superfamilia Shaker/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Pollos , Núcleo Coclear/efectos de los fármacos , Núcleo Coclear/metabolismo , Venenos Elapídicos/farmacología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Canales de Potasio de la Superfamilia Shaker/efectos de los fármacos
2.
J Neurosci ; 33(41): 16310-22, 2013 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-24107962

RESUMEN

The molecular targets and neural circuits that underlie general anesthesia are not fully elucidated. Here, we directly demonstrate that Kv1-family (Shaker-related) delayed rectifier K(+) channels in the central medial thalamic nucleus (CMT) are important targets for volatile anesthetics. The modulation of Kv1 channels by volatiles is network specific as microinfusion of ShK, a potent inhibitor of Kv1.1, Kv1.3, and Kv1.6 channels, into the CMT awakened sevoflurane-anesthetized rodents. In heterologous expression systems, sevoflurane, isoflurane, and desflurane at subsurgical concentrations potentiated delayed rectifier Kv1 channels at low depolarizing potentials. In mouse thalamic brain slices, sevoflurane inhibited firing frequency and delayed the onset of action potentials in CMT neurons, and ShK-186, a Kv1.3-selective inhibitor, prevented these effects. Our findings demonstrate the exquisite sensitivity of delayed rectifier Kv1 channels to modulation by volatile anesthetics and highlight an arousal suppressing role of Kv1 channels in CMT neurons during the process of anesthesia.


Asunto(s)
Anestésicos Generales/farmacología , Nivel de Alerta/efectos de los fármacos , Núcleos Talámicos Intralaminares/efectos de los fármacos , Canales de Potasio de la Superfamilia Shaker/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Desflurano , Núcleos Talámicos Intralaminares/metabolismo , Isoflurano/análogos & derivados , Isoflurano/farmacología , Espectroscopía de Resonancia Magnética , Masculino , Éteres Metílicos/farmacología , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Sevoflurano , Canales de Potasio de la Superfamilia Shaker/metabolismo , Compuestos Orgánicos Volátiles/farmacología
3.
Nat Chem Biol ; 4(11): 708-14, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18806782

RESUMEN

The Shaker family voltage-dependent potassium channels (Kv1) are expressed in a wide variety of cells and are essential for cellular excitability. In humans, loss-of-function mutations of Kv1 channels lead to hyperexcitability and are directly linked to episodic ataxia and atrial fibrillation. All Kv1 channels assemble with beta subunits (Kv betas), and certain Kv betas, for example Kv beta 1, have an N-terminal segment that closes the channel by the N-type inactivation mechanism. In principle, dissociation of Kv beta 1, although never reported, should eliminate inactivation and thus potentiate Kv1 current. We found that cortisone increases rat Kv1 channel activity by binding to Kv beta 1. A crystal structure of the Kv beta-cortisone complex was solved to 1.82-A resolution and revealed novel cortisone binding sites. Further studies demonstrated that cortisone promotes dissociation of Kv beta. The new mode of channel modulation may be explored by native or synthetic ligands to fine-tune cellular excitability.


Asunto(s)
Cortisona/farmacología , Canal de Potasio Kv.1.2/metabolismo , Canales de Potasio de la Superfamilia Shaker/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Unión Competitiva/efectos de los fármacos , Cortisona/química , Cristalografía por Rayos X , Humanos , Canal de Potasio Kv.1.2/química , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Unión Proteica/efectos de los fármacos , Ratas , Canales de Potasio de la Superfamilia Shaker/metabolismo , Xenopus
4.
J Neurosci ; 28(51): 13716-26, 2008 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-19091962

RESUMEN

Separation of the cortical sheet into functionally distinct regions is a hallmark of neocortical organization. Cortical circuit function emerges from afferent and efferent connectivity, local connectivity within the cortical microcircuit, and the intrinsic membrane properties of neurons that comprise the circuit. While localization of functions to particular cortical areas can be partially accounted for by regional differences in both long range and local connectivity, it is unknown whether the intrinsic membrane properties of cortical cell types differ between cortical regions. Here we report the first example of a region-specific firing type in layer 5 pyramidal neurons, and show that the intrinsic membrane and integrative properties of a discrete subtype of layer 5 pyramidal neurons differ between primary motor and somatosensory cortices due to region- and cell-type-specific Kv1 subunit expression.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Motora/fisiología , Células Piramidales/fisiología , Tractos Piramidales/fisiología , Canales de Potasio de la Superfamilia Shaker/metabolismo , Corteza Somatosensorial/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Venenos Elapídicos/farmacología , Estimulación Eléctrica , Genes Reporteros , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Memoria a Corto Plazo/fisiología , Ratones , Ratones Transgénicos , Corteza Motora/citología , Corteza Motora/efectos de los fármacos , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Subunidades de Proteína/efectos de los fármacos , Subunidades de Proteína/metabolismo , Células Piramidales/efectos de los fármacos , Tractos Piramidales/citología , Canales de Potasio de la Superfamilia Shaker/efectos de los fármacos , Corteza Somatosensorial/citología , Corteza Somatosensorial/efectos de los fármacos , Factores de Tiempo
5.
Eur J Pharmacol ; 581(1-2): 138-47, 2008 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-18155692

RESUMEN

The aim of this study was to assess the role of K(+) and Ca(2+) fluxes in the cerebroarterial vasoactive effects of the phosphodiesterase-5 inhibitor sildenafil. We used isolated rabbit basilar arteries to assess the effects of extracellular K(+) raising on sildenafil-induced vasodilatation, and studied the pharmacological interaction of sildenafil with selective modulators of membrane K(+) and Ca(2+) channels. Expression of Kv1 subunits of K(+) channels was assessed at messenger and protein levels. Parallel experiments were carried out with zaprinast for comparison. Sildenafil (10 nM-0.1 mM) induced concentration-dependent relaxation of endothelin-1 (10 nM)-precontracted arteries, which was partially inhibited by depolarization with KCl (50 mM), 3 mM tetraethylammonium (non-selective K(+) channel blocker) or 1 mM aminopyridine (inhibitor of K(v) channels), but not by 1 microM glibenclamide (inhibitor of K(ATP) channels) or 50 nM iberiotoxin (inhibitor of K(Ca) channels). Arterial smooth muscle expressed messengers for Kv1.2, Kv1.3, Kv1.4, Kv1.5 and Kv1.6, and proteins of Kv1.1, Kv1.2 and Kv1.4. CaCl(2) (10 microM- 10 mM) induced concentration-dependent contraction in Ca(2+)-free, depolarizing (50 mM KCl) medium. Sildenafil (0.1-100 microM) produced reversible concentration-dependent inhibition of the response to CaCl(2), which was completely abolished by the highest sildenafil concentration. By contrast, only 100 microM zaprinast inhibited the response to CaCl(2). The L-type Ca(2+) channel activator Bay K 8644 (0.1 nM-1 microM) induced concentration-dependent potentiation of the response to CaCl(2) inhibited by 100 microM sildenafil. Moreover, Bay K 8644 (0.1 nM-1 microM) induced concentration-dependent contraction in slightly depolarizing (15 mM) medium, which was inhibited to the same extent and in a concentration-dependent way by sildenafil (0.1-100 microM) and zaprinast (1 or 100 microM). These results show that sildenafil relaxes the rabbit basilar artery by increasing K(+) efflux through K(v) channels, which in turn may affect Ca(2+) signalling. Expression of Kv1 subunits involved in this pharmacological effect occurs at the messenger and, in some cases, at the protein level. In addition to this phosphodiesterase-5-related effect, sildenafil and zaprinast inhibit cerebroarterial vasoconstriction at least in part by directly blocking L-type Ca(2+) channels, although a decrease in the sensitivity of the contractile apparatus to Ca(2+) can not be discarded.


Asunto(s)
Arteria Basilar/efectos de los fármacos , Calcio/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Piperazinas/farmacología , Potasio/metabolismo , Sulfonas/farmacología , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Animales , Arteria Basilar/fisiología , Canales de Calcio Tipo L/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Técnicas In Vitro , Masculino , Purinas/farmacología , ARN Mensajero/análisis , Conejos , Canales de Potasio de la Superfamilia Shaker/análisis , Canales de Potasio de la Superfamilia Shaker/efectos de los fármacos , Canales de Potasio de la Superfamilia Shaker/genética , Citrato de Sildenafil
6.
J Gen Physiol ; 150(8): 1215-1230, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30002162

RESUMEN

Voltage-gated ion channels are key molecules for the generation of cellular electrical excitability. Many pharmaceutical drugs target these channels by blocking their ion-conducting pore, but in many cases, channel-opening compounds would be more beneficial. Here, to search for new channel-opening compounds, we screen 18,000 compounds with high-throughput patch-clamp technology and find several potassium-channel openers that share a distinct biaryl-sulfonamide motif. Our data suggest that the negatively charged variants of these compounds bind to the top of the voltage-sensor domain, between transmembrane segments 3 and 4, to open the channel. Although we show here that biaryl-sulfonamide compounds open a potassium channel, they have also been reported to block sodium and calcium channels. However, because they inactivate voltage-gated sodium channels by promoting activation of one voltage sensor, we suggest that, despite different effects on the channel gates, the biaryl-sulfonamide motif is a general ion-channel activator motif. Because these compounds block action potential-generating sodium and calcium channels and open an action potential-dampening potassium channel, they should have a high propensity to reduce excitability. This opens up the possibility to build new excitability-reducing pharmaceutical drugs from the biaryl-sulfonamide scaffold.


Asunto(s)
Canales de Potasio de la Superfamilia Shaker/efectos de los fármacos , Sulfonamidas/farmacología , Animales , Células CHO , Cricetulus , Ensayos Analíticos de Alto Rendimiento , Cinética , Bibliotecas de Moléculas Pequeñas
7.
FEBS Lett ; 581(13): 2478-84, 2007 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-17490656

RESUMEN

We have purified BoiTx1, the first toxin from the venom of the Israeli scorpion, Buthus occitanus israelis, and studied its activity and genomic organization. BoiTx1 is a 37 amino acid-long peptide contained six conserved cysteines, and is classified as an alpha-KTx3.10 toxin. The pharmacological effects of BoiTx1 were studied on various cloned K(+) channels expressed in Xenopus laevis oocytes. BoiTx1 inhibited currents through Drosophila Shaker channels with an IC(50) value of 3.5+/-0.5nM, yet had much lesser effect on its mammalian orthologs. Thus, BoiTx1 is the first member of the alpha-KTx3 family that preferentially affects insect potassium channels.


Asunto(s)
Venenos de Escorpión/química , Venenos de Escorpión/farmacología , Canales de Potasio de la Superfamilia Shaker/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Secuencia Conservada , ADN/genética , ADN/aislamiento & purificación , Electrofisiología , Datos de Secuencia Molecular , Venenos de Escorpión/genética , Venenos de Escorpión/aislamiento & purificación , Escorpiones/genética , Homología de Secuencia de Aminoácido , Canales de Potasio de la Superfamilia Shaker/efectos de los fármacos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
8.
J Gen Physiol ; 128(6): 687-99, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17101817

RESUMEN

In nerve and muscle cells, the voltage-gated opening and closing of cation-selective ion channels is accompanied by the translocation of 12-14 elementary charges across the membrane's electric field. Although most of these charges are carried by residues in the S4 helix of the gating module of these channels, the precise nature of their physical movement is currently the topic of spirited debate. Broadly speaking, two classes of models have emerged: those that suggest that small-scale motions can account for the extensive charge displacement, and those that invoke a much larger physical movement. In the most recent incarnation of the latter type of model, which is based on structural and functional data from the archaebacterial K(+) channel KvAP, a "voltage-sensor paddle" comprising a helix-turn-helix of S3-S4 translocates approximately 20 A through the bilayer during the gating cycle (Jiang, Y., A. Lee, J. Chen, V. Ruta, M. Cadene, B.T. Chait, and R. MacKinnon. 2003. Nature. 423:33-41; Jiang, Y., V. Ruta, J. Chen, A. Lee, and R. MacKinnon. 2003. Nature. 423:42-48.; Ruta, V., J. Chen, and R. MacKinnon. 2005. Cell. 123:463-475). We used two methods to test for analogous motions in the Shaker K(+) channel, each examining the aqueous exposure of residues near S3. In the first, we employed a pore-blocking maleimide reagent (Blaustein, R.O., P.A. Cole, C. Williams, and C. Miller. 2000. Nat. Struct. Biol. 7:309-311) to probe for state-dependent changes in the chemical reactivity of substituted cysteines; in the second, we tested the state-dependent accessibility of a tethered biotin to external streptavidin (Qiu, X.Q., K.S. Jakes, A. Finkelstein, and S.L. Slatin. 1994. J. Biol. Chem. 269:7483-7488; Slatin, S.L., X.Q. Qiu, K.S. Jakes, and A. Finkelstein. 1994. Nature. 371:158-161). In both types of experiments, residues predicted to lie near the top of S3 did not exhibit any change in aqueous exposure during the gating cycle. This lack of state dependence argues against large-scale movements, either axially or radially, of Shaker's S3-S4 voltage-sensor paddle.


Asunto(s)
Activación del Canal Iónico/fisiología , Canales de Potasio de la Superfamilia Shaker/fisiología , Secuencia de Aminoácidos , Animales , Biotinilación , Cisteína/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Datos de Secuencia Molecular , Movimiento , Oocitos , Canales de Potasio de la Superfamilia Shaker/efectos de los fármacos , Estreptavidina/farmacología , Xenopus
9.
J Gen Physiol ; 128(6): 649-57, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17130518

RESUMEN

Open-channel blockers such as tetraethylammonium (TEA) have a long history as probes of the permeation pathway of ion channels. High affinity blockade by extracellular TEA requires the presence of an aromatic amino acid at a position that sits at the external entrance of the permeation pathway (residue 449 in the eukaryotic voltage-gated potassium channel Shaker). We investigated whether a cation-pi interaction between TEA and such an aromatic residue contributes to TEA block using the in vivo nonsense suppression method to incorporate a series of increasingly fluorinated Phe side chains at position 449. Fluorination, which is known to decrease the cation-pi binding ability of an aromatic ring, progressively increased the inhibitory constant K(i) for the TEA block of Shaker. A larger increase in K(i) was observed when the benzene ring of Phe449 was substituted by nonaromatic cyclohexane. These results support a strong cation-pi component to the TEA block. The data provide an empirical basis for choosing between Shaker models that are based on two classes of reported crystal structures for the bacterial channel KcsA, showing residue Tyr82 in orientations either compatible or incompatible with a cation-pi mechanism. We propose that the aromatic residue at this position in Shaker is favorably oriented for a cation-pi interaction with the permeation pathway. This choice is supported by high level ab initio calculations of the predicted effects of Phe modifications on TEA binding energy.


Asunto(s)
Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de la Superfamilia Shaker/efectos de los fármacos , Tetraetilamonio/farmacología , Secuencia de Aminoácidos , Proteínas Bacterianas/efectos de los fármacos , Simulación por Computador , Electrofisiología , Fenilalanina/química , Canales de Potasio/efectos de los fármacos , Conformación Proteica , Termodinámica
10.
J Gen Physiol ; 127(5): 481-94, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16606688

RESUMEN

Cyclic nucleotide-gated (CNG) channels play important roles in the transduction of visual and olfactory information by sensing changes in the intracellular concentration of cyclic nucleotides. We have investigated the interactions between intracellularly applied quaternary ammonium (QA) ions and the alpha subunit of rod cyclic nucleotide-gated channels. We have used a family of alkyl-triethylammonium derivatives in which the length of one chain is altered. These QA derivatives blocked the permeation pathway of CNG channels in a concentration- and voltage-dependent manner. For QA compounds with tails longer than six methylene groups, increasing the length of the chain resulted in higher apparent affinities of approximately 1.2 RT per methylene group added, which is consistent with the presence of a hydrophobic pocket within the intracellular mouth of the channel that serves as part of the receptor binding site. At the single channel level, decyltriethyl ammonium (C10-TEA) ions did not change the unitary conductance but they did reduce the apparent mean open time, suggesting that the blocker binds to open channels. We provide four lines of evidence suggesting that QA ions can also bind to closed channels: (1) the extent of C10-TEA blockade at subsaturating [cGMP] was larger than at saturating agonist concentration, (2) under saturating concentrations of cGMP, cIMP, or cAMP, blockade levels were inversely correlated with the maximal probability of opening achieved by each agonist, (3) in the closed state, MTS reagents of comparable sizes to QA ions were able to modify V391C in the inner vestibule of the channel, and (4) in the closed state, C10-TEA was able to slow the Cd2+ inhibition observed in V391C channels. These results are in stark contrast to the well-established QA blockade mechanism in Kv channels, where these compounds can only access the inner vestibule in the open state because the gate that opens and closes the channel is located cytoplasmically with respect to the binding site of QA ions. Therefore, in the context of Kv channels, our observations suggest that the regions involved in opening and closing the permeation pathways in these two types of channels are different.


Asunto(s)
Canales Iónicos/química , Canales Iónicos/efectos de los fármacos , Compuestos de Amonio Cuaternario/farmacología , Animales , Sitios de Unión , GMP Cíclico/metabolismo , GMP Cíclico/farmacología , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Relación Dosis-Respuesta a Droga , Electrofisiología , Femenino , Canales Iónicos/metabolismo , Canales Iónicos/fisiología , Potenciales de la Membrana/fisiología , Oocitos , Permeabilidad/efectos de los fármacos , Compuestos de Amonio Cuaternario/metabolismo , Canales de Potasio de la Superfamilia Shaker/química , Canales de Potasio de la Superfamilia Shaker/efectos de los fármacos , Canales de Potasio de la Superfamilia Shaker/metabolismo , Canales de Potasio de la Superfamilia Shaker/fisiología , Xenopus
11.
Biochem Pharmacol ; 74(1): 74-85, 2007 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-17499219

RESUMEN

Non-steroidal anti-inflammatory drugs (NSAIDs) contribute to gastrointestinal ulcer formation by inhibiting epithelial cell migration and mucosal restitution; however, the drug-affected signaling pathways are poorly defined. We investigated whether NSAID inhibition of intestinal epithelial migration is associated with depletion of intracellular polyamines, depolarization of membrane potential (E(m)) and altered surface expression of K(+) channels. Epithelial cell migration in response to the wounding of confluent IEC-6 and IEC-Cdx2 monolayers was reduced by indomethacin (100 microM), phenylbutazone (100 microM) and NS-398 (100 microM) but not by SC-560 (1 microM). NSAID-inhibition of intestinal cell migration was not associated with depletion of intracellular polyamines. Treatment of IEC-6 and IEC-Cdx2 cells with indomethacin, phenylbutazone and NS-398 induced significant depolarization of E(m), whereas treatment with SC-560 had no effect on E(m). The E(m) of IEC-Cdx2 cells was: -38.5+/-1.8 mV under control conditions; -35.9+/-1.6 mV after treatment with SC-560; -18.8+/-1.2 mV after treatment with indomethacin; and -23.7+/-1.4 mV after treatment with NS-398. Whereas SC-560 had no significant effects on the total cellular expression of K(v)1.4 channel protein, indomethacin and NS-398 decreased not only the total cellular expression of K(v)1.4, but also the cell surface expression of both K(v)1.4 and K(v)1.6 channel subunits in IEC-Cdx2. Both K(v)1.4 and K(v)1.6 channel proteins were immunoprecipitated by K(v)1.4 antibody from IEC-Cdx2 lysates, indicating that these subunits co-assemble to form heteromeric K(v) channels. These results suggest that NSAID inhibition of epithelial cell migration is independent of polyamine-depletion, and is associated with depolarization of E(m) and decreased surface expression of heteromeric K(v)1 channels.


Asunto(s)
Antiinflamatorios no Esteroideos/toxicidad , Mucosa Intestinal/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Canales de Potasio de la Superfamilia Shaker/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Cromatografía Líquida de Alta Presión , Humanos , Indometacina/toxicidad , Mucosa Intestinal/metabolismo , Nitrobencenos/toxicidad , Técnicas de Placa-Clamp , Fenilbutazona/toxicidad , Poliaminas/análisis , Poliaminas/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Espectrometría de Masa por Ionización de Electrospray , Sulfonamidas/toxicidad , Cicatrización de Heridas/fisiología
12.
Circ Res ; 97(12): 1280-7, 2005 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-16269658

RESUMEN

Vascular smooth muscle cells (VSMCs) perform diverse functions that can be classified into contractile and synthetic (or proliferating). All of these functions can be fulfilled by the same cell because of its capacity of phenotypic modulation in response to environmental changes. The resting membrane potential is a key determinant for both contractile and proliferating functions. Here, we have explored the expression of voltage-dependent K+ (Kv) channels in contractile (freshly dissociated) and proliferating (cultured) VSMCs obtained from human uterine arteries to establish their contribution to the functional properties of the cells and their possible participation in the phenotypic switch. We have studied the expression pattern (both at the mRNA and at the protein level) of Kvalpha subunits in both preparations as well as their functional contribution to the K+ currents of VSMCs. Our results indicate that phenotypic remodeling associates with a change in the expression and distribution of Kv channels. Whereas Kv currents in contractile VSMCs are mainly performed by Kv1 channels, Kv3.4 is the principal contributor to K+ currents in cultured VSMCs. Furthermore, selective blockade of Kv3.4 channels resulted in a reduced proliferation rate, suggesting a link between Kv channels expression and phenotypic remodeling.


Asunto(s)
Proliferación Celular , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Canales de Potasio con Entrada de Voltaje/fisiología , Útero/irrigación sanguínea , Células Cultivadas , Femenino , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Fenotipo , Canales de Potasio con Entrada de Voltaje/análisis , Canales de Potasio con Entrada de Voltaje/genética , Subunidades de Proteína , ARN Mensajero/análisis , Canales de Potasio de la Superfamilia Shaker/efectos de los fármacos , Canales de Potasio de la Superfamilia Shaker/fisiología , Canales de Potasio Shal/análisis , Canales de Potasio Shal/genética , Canales de Potasio Shaw/efectos de los fármacos , Canales de Potasio Shaw/genética , Canales de Potasio Shaw/fisiología , Compuestos de Tetraetilamonio/farmacología , Triterpenos/farmacología
13.
Physiol Res ; 56(6): 807-813, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17087603

RESUMEN

To understand the contribution of potassium (K+) channels, particularly alpha-dendrotoxin (D-type)-sensitive K+ channels (Kv.1, Kv1.2 or Kv1.6 subunits), to the generation of neuronal spike output we must have detailed information of the functional role of these channels in the neuronal membrane. Conventional intracellular recording methods in current clamp mode were used to identify the role of alpha-dendrotoxin (alpha-DTX)-sensitive K+ channel currents in shaping the spike output and modulation of neuronal properties of cerebellar Purkinje neurons (PCs) in slices. Addition of alpha-DTX revealed that D-type K+ channels play an important role in the shaping of Purkinje neuronal firing behavior. Repetitive firing capability of PCs was increased following exposure to artificial cerebrospinal fluid (aCSF) containing alpha-DTX, so that in response to the injection of 0.6 nA depolarizing current pulse of 600 ms, the number of action potentials insignificantly increased from 15 in the presence of 4-AP to 29 action potentials per second after application of DTX following pretreatment with 4-AP. These results indicate that D-type K+ channels (Kv.1, Kv1.2 or Kv1.6 subunits) may contribute to the spike frequency adaptation in PCs. Our findings suggest that the activation of voltage-dependent K+ channels (D and A types) markedly affect the firing pattern of PCs.


Asunto(s)
Venenos Elapídicos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Células de Purkinje/fisiología , Canales de Potasio de la Superfamilia Shaker/fisiología , 4-Aminopiridina/farmacología , Potenciales de Acción/fisiología , Animales , Electrofisiología , Canal de Potasio Kv.1.2/efectos de los fármacos , Canal de Potasio Kv.1.2/fisiología , Canal de Potasio Kv1.6/efectos de los fármacos , Canal de Potasio Kv1.6/fisiología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratas , Ratas Sprague-Dawley , Canales de Potasio de la Superfamilia Shaker/efectos de los fármacos
14.
J Gen Physiol ; 126(5): 419-28, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16260836

RESUMEN

Voltage-dependent K+ channels like Shaker use an intracellular gate to control ion flow through the pore. When the membrane voltage becomes more positive, these channels traverse a series of closed conformations before the final opening transition. Does the intracellular gate undergo conformational changes before channel opening? To answer this question we introduced cysteines into the intracellular end of the pore and studied their chemical modification in conditions favoring each of three distinct states, the open state, the resting closed state, and the activated-not-open state (the closed state adjacent to the open state). We used two independent ways to isolate the channels in the activated-not-open state. First, we used mutations in S4 (ILT; Smith-Maxwell, C.J., J.L. Ledwell, and R.W. Aldrich. 1998. J. Gen. Physiol. 111:421-439; Ledwell, J.L., and R.W. Aldrich. 1999. J. Gen. Physiol. 113:389-414) that separate the final opening step from earlier charge-movement steps. Second, we used the open channel blocker 4-aminopyridine (4-AP), which has been proposed to promote closure of the intracellular gate and thus specifically to stabilize the activated-not-open state of the channels. Supporting this proposed mechanism, we found that 4-AP enters channels only after opening, remaining trapped in closed channels, and that in the open state it competes with tetraethylammonium for binding. Using these tools, we found that in the activated-not-open state, a cysteine located at a position considered to form part of the gate (Shaker 478) showed higher reactivity than in either the open or the resting closed states. Additionally, we have found that in this activated state the intracellular gate continued to prevent access to the pore by molecules as small as Cd2+ ions. Our results suggest that the intracellular opening to the pore undergoes some rearrangements in the transition from the resting closed state to the activated-not-open state, but throughout this process the intracellular gate remains an effective barrier to the movement of potassium ions through the pore.


Asunto(s)
Activación del Canal Iónico/fisiología , Canales de Potasio de la Superfamilia Shaker/fisiología , 4-Aminopiridina/metabolismo , 4-Aminopiridina/farmacología , Animales , Sitios de Unión , Cadmio/metabolismo , Cadmio/farmacología , Permeabilidad de la Membrana Celular , Cisteína/química , Cisteína/genética , Activación del Canal Iónico/efectos de los fármacos , Transporte Iónico/efectos de los fármacos , Transporte Iónico/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Mutagénesis , Oocitos , Bloqueadores de los Canales de Potasio/farmacología , Conformación Proteica , Canales de Potasio de la Superfamilia Shaker/química , Canales de Potasio de la Superfamilia Shaker/efectos de los fármacos , Tetraetilamonio/metabolismo , Tetraetilamonio/farmacología , Xenopus laevis/fisiología
17.
J Gen Physiol ; 141(2): 203-16, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23359283

RESUMEN

Voltage-activated ion channels open and close in response to changes in membrane voltage, a property that is fundamental to the roles of these channels in electrical signaling. Protein toxins from venomous organisms commonly target the S1-S4 voltage-sensing domains in these channels and modify their gating properties. Studies on the interaction of hanatoxin with the Kv2.1 channel show that this tarantula toxin interacts with the S1-S4 domain and inhibits opening by stabilizing a closed state. Here we investigated the interaction of hanatoxin with the Shaker Kv channel, a voltage-activated channel that has been extensively studied with biophysical approaches. In contrast to what is observed in the Kv2.1 channel, we find that hanatoxin shifts the conductance-voltage relation to negative voltages, making it easier to open the channel with membrane depolarization. Although these actions of the toxin are subtle in the wild-type channel, strengthening the toxin-channel interaction with mutations in the S3b helix of the S1-S4 domain enhances toxin affinity and causes large shifts in the conductance-voltage relationship. Using a range of previously characterized mutants of the Shaker Kv channel, we find that hanatoxin stabilizes an activated conformation of the voltage sensors, in addition to promoting opening through an effect on the final opening transition. Chimeras in which S3b-S4 paddle motifs are transferred between Kv2.1 and Shaker Kv channels, as well as experiments with the related tarantula toxin GxTx-1E, lead us to conclude that the actions of tarantula toxins are not simply a product of where they bind to the channel, but that fine structural details of the toxin-channel interface determine whether a toxin is an inhibitor or opener.


Asunto(s)
Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Oocitos/fisiología , Péptidos/farmacología , Canales de Potasio de la Superfamilia Shaker/fisiología , Animales , Células Cultivadas , Activación del Canal Iónico/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Oocitos/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de la Superfamilia Shaker/efectos de los fármacos , Xenopus laevis
18.
J Biol Chem ; 284(23): 15659-67, 2009 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-19269964

RESUMEN

Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels resemble Shaker K+ channels in structure and function. In both, changes in membrane voltage produce directionally similar movement of positively charged residues in the voltage sensor to alter the pore structure at the intracellular side and gate ion flow. However, HCNs open when hyperpolarized, whereas Shaker opens when depolarized. Thus, electromechanical coupling between the voltage sensor and gate is opposite. A key determinant of this coupling is the intrinsic stability of the pore. In Shaker, an alanine/valine scan of residues across the pore, by single point mutation, showed that most mutations made the channel easier to open and steepened the response of the channel to changes in voltage. Because most mutations likely destabilize protein packing, the Shaker pore is most stable when closed, and the voltage sensor works to open it. In HCN channels, the pore energetics and vector of work by the voltage sensor are unknown. Accordingly, we performed a 22-residue alanine/valine scan of the distal pore of the HCN2 isoform and show that the effects of mutations on channel opening and on the steepness of the response of the channel to voltage are mixed and smaller than those in Shaker. These data imply that the stabilities of the open and closed pore are similar, the voltage sensor must apply force to close the pore, and the interactions between the pore and voltage sensor are weak. Moreover, cAMP binding to the channel heightens the effects of the mutations, indicating stronger interactions between the pore and voltage sensor, and tips the energetic balance toward a more stable open state.


Asunto(s)
AMP Cíclico/fisiología , Canales Iónicos/genética , Canales Iónicos/fisiología , Alanina , Sustitución de Aminoácidos , Animales , Células CHO , Membrana Celular/efectos de los fármacos , Membrana Celular/fisiología , Cricetinae , Cricetulus , AMP Cíclico/farmacología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Canales Iónicos/química , Canales Iónicos/efectos de los fármacos , Ratones , Técnicas de Placa-Clamp , Canales de Potasio , Canales de Potasio de la Superfamilia Shaker/efectos de los fármacos , Canales de Potasio de la Superfamilia Shaker/fisiología , Termodinámica , Valina
19.
Pflugers Arch ; 456(2): 393-405, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18043943

RESUMEN

N-linked glycans, including sialic acids, are integral components of ion channel complexes. To determine if N-linked sugars can modulate a rapidly inactivating K+ channel, the glycosylated Drosophila melanogaster Shaker K+ channel (ShB) and the N-glycosylation-deficient mutant (ShNQ), were studied under conditions of full and reduced sialylation. Through an apparent electrostatic mechanism, full sialylation induced uniform and significant hyperpolarizing shifts in all measured voltage-dependent ShB gating parameters compared to those measured under conditions of reduced sialylation. Steady-state gating of ShNQ was unaffected by changes in sialylation and was nearly identical to that observed for ShB under conditions of reduced sialylation, indicating that N-linked sialic acids were wholly responsible for the observed effects of sialic acid on ShB gating. Interestingly, the rates of transition among channel states and the voltage-independent rates of activation and inactivation were significantly slower for ShNQ compared to ShB. Both effects were independent of sialylation, indicating that N-linked sugars other than sialic acids alter ShB gating kinetics but have little to no effect on the steady-state distribution of channels among states. The effect of sialic acids on channel gating, particularly inactivation gating, and the impact of other N-linked sugars on channel gating kinetics are unique to the ShB isoform. Thus, ShB gating is modulated by two complementary but distinct sugar-dependent mechanisms, (1) an N-linked sialic acid-dependent surface charge effect and (2) a sialic acid-independent effect that is consistent with N-linked sugars affecting the stability of ShB among its functional states.


Asunto(s)
Activación del Canal Iónico/efectos de los fármacos , Ácido N-Acetilneuramínico/farmacología , Canales de Potasio de la Superfamilia Shaker/fisiología , Animales , Células CHO , Línea Celular , Cricetinae , Cricetulus , Drosophila melanogaster , Electrofisiología , Femenino , Glicosilación , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Canales de Potasio de la Superfamilia Shaker/efectos de los fármacos , Canales de Potasio de la Superfamilia Shaker/genética , Electricidad Estática , Transfección
20.
J Pharmacol Exp Ther ; 320(1): 162-72, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17015639

RESUMEN

The effect of 4-aminopyridine (4-AP) on Kv channel activation has been extensively investigated, but its interaction with inactivation is less well understood. Voltage-clamp fluorimetry was used to directly monitor the action of 4-AP on conformational changes associated with slow inactivation of Shaker channels. Tetramethylrhodamine-5-maleimide was used to fluorescently label substituted cysteine residues in the S3-S4 linker (A359C) and pore (S424C). Activation- and inactivation-induced changes in fluorophore microenvironment produced fast and slow phases of fluorescence that were modified by 4-AP. In Shaker A359C, 4-AP block reduced the slow-phase contribution from 61 +/- 3 to 28 +/- 5%, suggesting that binding inhibits the conformational changes associated with slow inactivation and increased the fast phase that reports channel activation from 39 +/- 3 to 72 +/- 5%. In addition, 4-AP enhanced both fast and slow phases of fluorescence return upon repolarization (tau reduced from 87 +/- 15 to 40 +/- 1 ms and from 739 +/- 83 to 291 +/- 21 ms, respectively), suggesting that deactivation and recovery from inactivation were enhanced. In addition, the effect of 4-AP on the slow phase of fluorescence was dramatically reduced in channels with either reduced (T449V) or permanent P-type (W434F) inactivation. Interestingly, the slow phase of fluorescence return of W434F channels was enhanced by 4-AP, suggesting that 4-AP prevents the transition to C-type inactivation in these channels. These data directly demonstrate that 4-AP prevents slow inactivation of Kv channels and that 4-AP can bind to P-type-inactivated channels and selectively inhibit the onset of C-type inactivation.


Asunto(s)
4-Aminopiridina/farmacología , Canales de Potasio de la Superfamilia Shaker/efectos de los fármacos , Animales , Femenino , Fluorescencia , Rodaminas , Canales de Potasio de la Superfamilia Shaker/química , Canales de Potasio de la Superfamilia Shaker/clasificación , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA