Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Cell ; 165(5): 1147-1159, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27114035

RESUMEN

The heart either hypertrophies or dilates in response to familial mutations in genes encoding sarcomeric proteins, which are responsible for contraction and pumping. These mutations typically alter calcium-dependent tension generation within the sarcomeres, but how this translates into the spectrum of hypertrophic versus dilated cardiomyopathy is unknown. By generating a series of cardiac-specific mouse models that permit the systematic tuning of sarcomeric tension generation and calcium fluxing, we identify a significant relationship between the magnitude of tension developed over time and heart growth. When formulated into a computational model, the integral of myofilament tension development predicts hypertrophic and dilated cardiomyopathies in mice associated with essentially any sarcomeric gene mutations, but also accurately predicts human cardiac phenotypes from data generated in induced-pluripotent-stem-cell-derived myocytes from familial cardiomyopathy patients. This tension-based model also has the potential to inform pharmacologic treatment options in cardiomyopathy patients.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Cardiomiopatía Hipertrófica Familiar/metabolismo , Cardiomiopatía Hipertrófica Familiar/patología , Animales , Aorta/patología , Calcineurina/metabolismo , Calcio/metabolismo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Hipertrófica Familiar/genética , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Ratones , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutación , Miofibrillas/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(37): 9276-9281, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30150400

RESUMEN

This study demonstrates that significantly shortened telomeres are a hallmark of cardiomyocytes (CMs) from individuals with end-stage hypertrophic cardiomyopathy (HCM) or dilated cardiomyopathy (DCM) as a result of heritable defects in cardiac proteins critical to contractile function. Positioned at the ends of chromosomes, telomeres are DNA repeats that serve as protective caps that shorten with each cell division, a marker of aging. CMs are a known exception in which telomeres remain relatively stable throughout life in healthy individuals. We found that, relative to healthy controls, telomeres are significantly shorter in CMs of genetic HCM and DCM patient tissues harboring pathogenic mutations: TNNI3, MYBPC3, MYH7, DMD, TNNT2, and TTN Quantitative FISH (Q-FISH) of single cells revealed that telomeres were significantly reduced by 26% in HCM and 40% in DCM patient CMs in fixed tissue sections compared with CMs from age- and sex-matched healthy controls. In the cardiac tissues of the same patients, telomere shortening was not evident in vascular smooth muscle cells that do not express or require the contractile proteins, an important control. Telomere shortening was recapitulated in DCM and HCM CMs differentiated from patient-derived human-induced pluripotent stem cells (hiPSCs) measured by two independent assays. This study reveals telomere shortening as a hallmark of genetic HCM and DCM and demonstrates that this shortening can be modeled in vitro by using the hiPSC platform, enabling drug discovery.


Asunto(s)
Cardiomiopatía Dilatada , Cardiomiopatía Hipertrófica Familiar , División Celular , Células Madre Pluripotentes Inducidas , Proteínas Musculares , Mutación , Acortamiento del Telómero , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/metabolismo , Cardiomiopatía Hipertrófica Familiar/patología , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Masculino , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
3.
J Hum Genet ; 65(7): 619-625, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32246049

RESUMEN

The Fabry disease-causing mutation, the GLA IVS4+919G>A (designated GLA IVS4), is very prevalent in patients with hypertrophic cardiomyopathy in Taiwan. This X-linked mutation has also been found in patients in Kyushu, Japan and Southeast Asia. To investigate the age and the possible ancestral origin of this mutation, a total of 33 male patients with the GLA IVS4+919G>A mutation, born in Taiwan, Japan, Singapore, Malaysia, Vietnam, and the Fujian and Guangdong provinces of China, were studied. Peripheral bloods were collected, and the Ilumina Infinium CoreExome-24 microarray was used for dense genotyping. A mutation-carrying haplotype was discovered which was shared by all 33 patients. This haplotype does not exist in 15 healthy persons without the mutation. Rather, a wide diversity of haplotypes was found in the vicinity of the mutation site, supporting the existence of a single founder of the GLA IVS4 mutation. The age of the founder mutation was estimated by the lengths of the mutation-carrying haplotypes based on the linkage-disequilibrium decay theory. The first, second, and third quartile of the age estimates are 800.7, 922.6, and 1068.4 years, respectively. We concluded that the GLA IVS4+919G>A mutation originated from a single mutational event that occurred in a Chinese chromosome more than 800 years ago.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar/genética , Enfermedad de Fabry/genética , alfa-Galactosidasa/genética , Adulto , Cardiomiopatía Hipertrófica Familiar/epidemiología , Cardiomiopatía Hipertrófica Familiar/patología , China/epidemiología , Enfermedad de Fabry/epidemiología , Enfermedad de Fabry/patología , Genes Ligados a X/genética , Genotipo , Haplotipos/genética , Humanos , Japón/epidemiología , Malasia/epidemiología , Masculino , Persona de Mediana Edad , Mutación/genética , Taiwán/epidemiología
4.
Proc Natl Acad Sci U S A ; 114(43): E9096-E9104, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29073106

RESUMEN

Comparative analyses of transcriptional profiles from humans and mice with cardiovascular pathologies revealed consistently elevated expression of MICU2, a regulatory subunit of the mitochondrial calcium uniporter complex. To determine if MICU2 expression was cardioprotective, we produced and characterized Micu2-/- mice. Mutant mice had left atrial enlargement and Micu2-/- cardiomyocytes had delayed sarcomere relaxation and cytosolic calcium reuptake kinetics, indicating diastolic dysfunction. RNA sequencing (RNA-seq) of Micu2-/- ventricular tissues revealed markedly reduced transcripts encoding the apelin receptor (Micu2-/- vs. wild type, P = 7.8 × 10-40), which suppresses angiotensin II receptor signaling via allosteric transinhibition. We found that Micu2-/- and wild-type mice had comparable basal blood pressures and elevated responses to angiotensin II infusion, but that Micu2-/- mice exhibited systolic dysfunction and 30% lethality from abdominal aortic rupture. Aneurysms and rupture did not occur with norepinephrine-induced hypertension. Aortic tissue from Micu2-/- mice had increased expression of extracellular matrix remodeling genes, while single-cell RNA-seq analyses showed increased expression of genes related to reactive oxygen species, inflammation, and proliferation in fibroblast and smooth muscle cells. We concluded that Micu2-/- mice recapitulate features of diastolic heart disease and define previously unappreciated roles for Micu2 in regulating angiotensin II-mediated hypertensive responses that are critical in protecting the abdominal aorta from injury.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Cardiomiopatía Hipertrófica Familiar/genética , Angiotensina Amida/genética , Angiotensina II/farmacología , Animales , Aorta Abdominal/patología , Canales de Calcio/genética , Proteínas de Unión al Calcio/genética , Cardiomiopatía Hipertrófica Familiar/patología , Electrocardiografía , Regulación de la Expresión Génica , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Humanos , Ratones Endogámicos C57BL , Ratones Mutantes , Mitocondrias Hepáticas/fisiología , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología
5.
Proc Natl Acad Sci U S A ; 112(9): E973-81, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25691752

RESUMEN

Desmosomes are anchoring junctions that exist in cells that endure physical stress such as cardiac myocytes. The importance of desmosomes in maintaining the homeostasis of the myocardium is underscored by frequent mutations of desmosome components found in human patients and animal models. Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a phenotype caused by mutations in desmosomal components in ∼ 50% of patients, however, the causes in the remaining 50% of patients still remain unknown. A deficiency of inhibitor of apoptosis-stimulating protein of p53 (iASPP), an evolutionarily conserved inhibitor of p53, caused by spontaneous mutation recently has been associated with a lethal autosomal recessive cardiomyopathy in Poll Hereford calves and Wa3 mice. However, the molecular mechanisms that mediate this putative function of iASPP are completely unknown. Here, we show that iASPP is expressed at intercalated discs in human and mouse postmitotic cardiomyocytes. iASPP interacts with desmoplakin and desmin in cardiomyocytes to maintain the integrity of desmosomes and intermediate filament networks in vitro and in vivo. iASPP deficiency specifically induces right ventricular dilatation in mouse embryos at embryonic day 16.5. iASPP-deficient mice with exon 8 deletion (Ppp1r13l(Δ8/Δ8)) die of sudden cardiac death, displaying features of ARVC. Intercalated discs in cardiomyocytes from four of six human ARVC cases show reduced or loss of iASPP. ARVC-derived desmoplakin mutants DSP-1-V30M and DSP-1-S299R exhibit weaker binding to iASPP. These data demonstrate that by interacting with desmoplakin and desmin, iASPP is an important regulator of desmosomal function both in vitro and in vivo. This newly identified property of iASPP may provide new molecular insight into the pathogenesis of ARVC.


Asunto(s)
Arritmias Cardíacas , Cardiomiopatía Hipertrófica Familiar , Muerte Súbita , Desmosomas , Péptidos y Proteínas de Señalización Intracelular , Proteínas Represoras , Sustitución de Aminoácidos , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Secuencia de Bases , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/metabolismo , Cardiomiopatía Hipertrófica Familiar/patología , Bovinos , Línea Celular Transformada , Desmina/genética , Desmina/metabolismo , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Desmosomas/genética , Desmosomas/metabolismo , Desmosomas/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Filamentos Intermedios , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Mutación Missense , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Eliminación de Secuencia
6.
Am J Physiol Heart Circ Physiol ; 311(1): H125-36, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27199124

RESUMEN

Familial hypertrophic cardiomyopathy (HCM) is a disease of the sarcomere and may lead to hypertrophic, dilated, restrictive, and/or arrhythmogenic cardiomyopathy, congestive heart failure, or sudden cardiac death. We hypothesized that hearts from transgenic HCM mice harboring a mutant myosin heavy chain increase the energetic cost of contraction in a sex-specific manner. To do this, we assessed Ca(2+) sensitivity of tension and crossbridge kinetics in demembranated cardiac trabeculas from male and female wild-type (WT) and HCM hearts at an early time point (2 mo of age). We found a significant effect of sex on Ca(2+) sensitivity such that male, but not female, HCM mice displayed a decrease in Ca(2+) sensitivity compared with WT counterparts. The HCM transgene and sex significantly impacted the rate of force redevelopment by a rapid release-restretch protocol and tension cost by the ATPase-tension relationship. In each of these measures, HCM male trabeculas displayed a gain-of-function when compared with WT counterparts. In addition, cardiac remodeling measured by echocardiography, histology, morphometry, and posttranslational modifications demonstrated sex- and HCM-specific effects. In conclusion, female and male HCM mice display sex dimorphic crossbridge kinetics accompanied by sex- and HCM-dependent cardiac remodeling at the morphometric, histological, and cellular level.


Asunto(s)
Señalización del Calcio , Cardiomiopatía Hipertrófica Familiar/enzimología , Contracción Miocárdica , Miocardio/enzimología , Cadenas Pesadas de Miosina/metabolismo , Sarcómeros/enzimología , Adenosina Trifosfato/metabolismo , Animales , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/patología , Cardiomiopatía Hipertrófica Familiar/fisiopatología , Modelos Animales de Enfermedad , Metabolismo Energético , Femenino , Predisposición Genética a la Enfermedad , Hidrólisis , Cinética , Masculino , Ratones Transgénicos , Mutación , Miocardio/patología , Cadenas Pesadas de Miosina/genética , Fenotipo , Fosforilación , Caracteres Sexuales , Factores Sexuales , Remodelación Ventricular
7.
Circ Res ; 115(2): 227-37, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24829265

RESUMEN

RATIONALE: Approximately 40% of hypertrophic cardiomyopathy (HCM) is caused by heterozygous missense mutations in ß-cardiac myosin heavy chain (ß-MHC). Associating disease phenotype with mutation is confounded by extensive background genetic and lifestyle/environmental differences between subjects even from the same family. OBJECTIVE: To characterize disease caused by ß-cardiac myosin heavy chain Val606Met substitution (VM) that has been identified in several HCM families with wide variation of clinical outcomes, in mice. METHODS AND RESULTS: Unlike 2 mouse lines bearing the malignant myosin mutations Arg453Cys (RC/+) or Arg719Trp (RW/+), VM/+ mice with an identical inbred genetic background lacked hallmarks of HCM such as left ventricular hypertrophy, disarray of myofibers, and interstitial fibrosis. Even homozygous VM/VM mice were indistinguishable from wild-type animals, whereas RC/RC- and RW/RW-mutant mice died within 9 days after birth. However, hypertrophic effects of the VM mutation were observed both in mice treated with cyclosporine, a known stimulator of the HCM response, and compound VM/RC heterozygous mice, which developed a severe HCM phenotype. In contrast to all heterozygous mutants, both systolic and diastolic function of VM/RC hearts was severely impaired already before the onset of cardiac remodeling. CONCLUSIONS: The VM mutation per se causes mild HCM-related phenotypes; however, in combination with other HCM activators it exacerbates the HCM phenotype. Double-mutant mice are suitable for assessing the severity of benign mutations.


Asunto(s)
Sustitución de Aminoácidos , Cardiomiopatía Hipertrófica Familiar/genética , Mutación Missense , Cadenas Pesadas de Miosina/genética , Mutación Puntual , Animales , Miosinas Cardíacas , Cardiomiopatía Hipertrófica Familiar/diagnóstico por imagen , Cardiomiopatía Hipertrófica Familiar/patología , Ciclosporina/toxicidad , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Genotipo , Humanos , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , Ratones , Modelos Moleculares , Contracción Miocárdica , Cadenas Pesadas de Miosina/fisiología , Fenotipo , Conformación Proteica , Transcripción Genética , Ultrasonografía , Miosinas Ventriculares/genética , Miosinas Ventriculares/fisiología , Remodelación Ventricular/genética , Remodelación Ventricular/fisiología
8.
J Mol Cell Cardiol ; 87: 257-69, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26341255

RESUMEN

Familial hypertrophic cardiomyopathy (FHC) is characterized by severe abnormal cardiac muscle growth. The traditional view of disease progression in FHC is that an increase in the Ca(2+)-sensitivity of cardiac muscle contraction ultimately leads to pathogenic myocardial remodeling, though recent studies suggest this may be an oversimplification. For example, FHC may be developed through altered signaling that prevents downstream regulation of contraction. The mutation L29Q, found in the Ca(2+)-binding regulatory protein in heart muscle, cardiac troponin C (cTnC), has been linked to cardiac hypertrophy. However, reports on the functional effects of this mutation are conflicting, and our goal was to combine in vitro and in situ structural and functional data to elucidate its mechanism of action. We used nuclear magnetic resonance and circular dichroism to solve the structure and characterize the backbone dynamics and stability of the regulatory domain of cTnC with the L29Q mutation. The overall structure and dynamics of cTnC were unperturbed, although a slight rearrangement of site 1, an increase in backbone flexibility, and a small decrease in protein stability were observed. The structure and function of cTnC was also assessed in demembranated ventricular trabeculae using fluorescence for in situ structure. L29Q reduced the cooperativity of the Ca(2+)-dependent structural change in cTnC in trabeculae under basal conditions and abolished the effect of force-generating myosin cross-bridges on this structural change. These effects could contribute to the pathogenesis of this mutation.


Asunto(s)
Calcio/metabolismo , Cardiomiopatía Hipertrófica Familiar/genética , Miocardio/metabolismo , Troponina C/química , Troponina C/genética , Animales , Cardiomiopatía Hipertrófica Familiar/metabolismo , Cardiomiopatía Hipertrófica Familiar/patología , Dicroismo Circular , Humanos , Espectroscopía de Resonancia Magnética , Mutación , Contracción Miocárdica/genética , Miocardio/patología , Miosinas/genética , Miosinas/metabolismo , Fosforilación , Conformación Proteica , Transducción de Señal , Relación Estructura-Actividad , Troponina C/metabolismo
9.
J Muscle Res Cell Motil ; 36(6): 433-45, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26385864

RESUMEN

We discuss here the potential mechanisms of action associated with hypertrophic (HCM) or dilated (DCM) cardiomyopathy causing mutations in the myosin regulatory (RLC) and essential (ELC) light chains. Specifically, we focus on four HCM mutations: RLC-A13T, RLC-K104E, ELC-A57G and ELC-M173V, and one DCM RLC-D94A mutation shown by population studies to cause different cardiomyopathy phenotypes in humans. Our studies indicate that RLC and ELC mutations lead to heart disease through different mechanisms with RLC mutations triggering alterations of the secondary structure of the RLC which further affect the structure and function of the lever arm domain and impose changes in the cross bridge cycling rates and myosin force generation ability. The ELC mutations exert their detrimental effects through changes in the interaction of the N-terminus of ELC with actin altering the cross talk between the thick and thin filaments and ultimately resulting in an altered force-pCa relationship. We also discuss the effect of mutations on myosin light chain phosphorylation. Exogenous myosin light chain phosphorylation and/or pseudo-phosphorylation were explored as potential rescue tools to treat hypertrophy-related cardiac phenotypes.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/patología , Mutación/genética , Cadenas Ligeras de Miosina/genética , Animales , Humanos , Fenotipo , Fosforilación/genética
10.
Klin Lab Diagn ; 60(2): 26-8, 2015 Feb.
Artículo en Ruso | MEDLINE | ID: mdl-26027255

RESUMEN

The children with inherited cardiopathy including hypersensitive (n = 85) and dilatation (n=10) cardiopathy as well as cardiopathy under Ehlers-Danlos Syndrome (n = 70) combined with different inherited heart disease were examined to establish signs of hematic and tissue hypoxia. The most typical signs turned out periodic decrease of blood pCO2 with increasing of content of lactate and pyruvate in blood and saliva, multiple caries of teeth and high rate of systemic hypoplasia of enamel of both temporary and permanent teeth. The study established decrease in blood of level of macro-ergic compounds (ATP, ADF AMP) with increasing of excretion calcium and phosphates with urine. The increase of rate of mutations of hypoxanthine guanine phosphoribosyltransferase in lymphocytes with increasing of content of uric acid in blood and/or in urine was detected. The study revealed increasing of processes of peroxide oxidation, alterations of morphology of cells of skeletal muscles (RRF) and accumulation ofcalcium, lipids and alteration of structure of mitochondria.


Asunto(s)
Cardiomiopatía Dilatada/sangre , Cardiomiopatía Hipertrófica Familiar/sangre , Síndrome de Ehlers-Danlos/sangre , Adolescente , Calcio/sangre , Dióxido de Carbono/sangre , Cardiomiopatía Dilatada/patología , Cardiomiopatía Hipertrófica Familiar/patología , Niño , Síndrome de Ehlers-Danlos/patología , Femenino , Humanos , Hipoxia/patología , Masculino , Saliva/metabolismo , Ácido Úrico/sangre
11.
J Biol Chem ; 288(40): 28925-35, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23960072

RESUMEN

Studies indicate that tropomyosin (Tm) phosphorylation status varies in different mouse models of cardiac disease. Investigation of basal and acute cardiac function utilizing a mouse model expressing an α-Tm protein that cannot be phosphorylated (S283A) shows a compensated hypertrophic phenotype with significant increases in SERCA2a expression and phosphorylation of phospholamban Ser-16 (Schulz, E. M., Correll, R. N., Sheikh, H. N., Lofrano-Alves, M. S., Engel, P. L., Newman, G., Schultz Jel, J., Molkentin, J. D., Wolska, B. M., Solaro, R. J., and Wieczorek, D. F. (2012) J. Biol. Chem. 287, 44478-44489). With these results, we hypothesized that decreasing α-Tm phosphorylation may be beneficial in the context of a chronic, intrinsic stressor. To test this hypothesis, we utilized the familial hypertrophic cardiomyopathy (FHC) α-Tm E180G model (Prabhakar, R., Boivin, G. P., Grupp, I. L., Hoit, B., Arteaga, G., Solaro, R. J., and Wieczorek, D. F. (2001) J. Mol. Cell. Cardiol. 33, 1815-1828). These FHC hearts are characterized by increased heart:body weight ratios, fibrosis, increased myofilament Ca(2+) sensitivity, and contractile defects. The FHC mice die by 6-8 months of age. We generated mice expressing both the E180G and S283A mutations and found that the hypertrophic phenotype was rescued in the α-Tm E180G/S283A double mutant transgenic animals; these mice exhibited no signs of cardiac hypertrophy and displayed improved cardiac function. These double mutant transgenic hearts showed increased phosphorylation of phospholamban Ser-16 and Thr-17 compared with the α-Tm E180G mice. This is the first study to demonstrate that decreasing phosphorylation of tropomyosin can rescue a hypertrophic cardiomyopathic phenotype.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar/metabolismo , Tropomiosina/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Cardiomiopatía Hipertrófica Familiar/diagnóstico por imagen , Cardiomiopatía Hipertrófica Familiar/patología , Cardiomiopatía Hipertrófica Familiar/fisiopatología , Regulación de la Expresión Génica , Pruebas de Función Cardíaca , Immunoblotting , Ratones , Ratones Transgénicos , Proteínas Mutantes/metabolismo , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miofibrillas/metabolismo , Fosforilación , Ultrasonografía
12.
Circulation ; 127(16): 1677-91, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23519760

RESUMEN

BACKGROUND: Cardiotoxicity is a leading cause for drug attrition during pharmaceutical development and has resulted in numerous preventable patient deaths. Incidents of adverse cardiac drug reactions are more common in patients with preexisting heart disease than the general population. Here we generated a library of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from patients with various hereditary cardiac disorders to model differences in cardiac drug toxicity susceptibility for patients of different genetic backgrounds. METHODS AND RESULTS: Action potential duration and drug-induced arrhythmia were measured at the single cell level in hiPSC-CMs derived from healthy subjects and patients with hereditary long QT syndrome, familial hypertrophic cardiomyopathy, and familial dilated cardiomyopathy. Disease phenotypes were verified in long QT syndrome, hypertrophic cardiomyopathy, and dilated cardiomyopathy hiPSC-CMs by immunostaining and single cell patch clamp. Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and the human ether-a-go-go-related gene expressing human embryonic kidney cells were used as controls. Single cell PCR confirmed expression of all cardiac ion channels in patient-specific hiPSC-CMs as well as hESC-CMs, but not in human embryonic kidney cells. Disease-specific hiPSC-CMs demonstrated increased susceptibility to known cardiotoxic drugs as measured by action potential duration and quantification of drug-induced arrhythmias such as early afterdepolarizations and delayed afterdepolarizations. CONCLUSIONS: We have recapitulated drug-induced cardiotoxicity profiles for healthy subjects, long QT syndrome, hypertrophic cardiomyopathy, and dilated cardiomyopathy patients at the single cell level for the first time. Our data indicate that healthy and diseased individuals exhibit different susceptibilities to cardiotoxic drugs and that use of disease-specific hiPSC-CMs may predict adverse drug responses more accurately than the standard human ether-a-go-go-related gene test or healthy control hiPSC-CM/hESC-CM screening assays.


Asunto(s)
Cardiomiopatía Dilatada/genética , Cardiomiopatía Hipertrófica Familiar/genética , Evaluación Preclínica de Medicamentos/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Predisposición Genética a la Enfermedad , Células Madre Pluripotentes Inducidas/citología , Síndrome de QT Prolongado/genética , Miocitos Cardíacos/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Cardiomiopatía Dilatada/patología , Cardiomiopatía Hipertrófica Familiar/patología , Diferenciación Celular , Línea Celular/efectos de los fármacos , Línea Celular/fisiología , Tamaño de la Célula , Cisaprida/toxicidad , Cuerpos Embrioides/efectos de los fármacos , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Perfilación de la Expresión Génica , Células HEK293/efectos de los fármacos , Células HEK293/fisiología , Humanos , Técnicas In Vitro , Canales Iónicos/biosíntesis , Canales Iónicos/genética , Riñón/citología , Riñón/embriología , Síndrome de QT Prolongado/patología , Miocitos Cardíacos/fisiología , Miofibrillas/ultraestructura , Nicorandil/toxicidad , Técnicas de Placa-Clamp , Quinazolinas/toxicidad , Verapamilo/toxicidad
13.
Hum Mol Genet ; 21(9): 2039-53, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22286171

RESUMEN

Abnormalities in Z-disc proteins cause hypertrophic (HCM), dilated (DCM) and/or restrictive cardiomyopathy (RCM), but disease-causing mechanisms are not fully understood. Myopalladin (MYPN) is a Z-disc protein expressed in striated muscle and functions as a structural, signaling and gene expression regulating molecule in response to muscle stress. MYPN was genetically screened in 900 patients with HCM, DCM and RCM, and disease-causing mechanisms were investigated using comparative immunohistochemical analysis of the patient myocardium and neonatal rat cardiomyocytes expressing mutant MYPN. Cardiac-restricted transgenic (Tg) mice were generated and protein-protein interactions were evaluated. Two nonsense and 13 missense MYPN variants were identified in subjects with DCM, HCM and RCM with the average cardiomyopathy prevalence of 1.66%. Functional studies were performed on two variants (Q529X and Y20C) associated with variable clinical phenotypes. Humans carrying the Y20C-MYPN variant developed HCM or DCM, whereas Q529X-MYPN was found in familial RCM. Disturbed myofibrillogenesis with disruption of α-actinin2, desmin and cardiac ankyrin repeat protein (CARP) was evident in rat cardiomyocytes expressing MYPN(Q529X). Cardiac-restricted MYPN(Y20C) Tg mice developed HCM and disrupted intercalated discs, with disturbed expression of desmin, desmoplakin, connexin43 and vinculin being evident. Failed nuclear translocation and reduced binding of Y20C-MYPN to CARP were demonstrated using in vitro and in vivo systems. MYPN mutations cause various forms of cardiomyopathy via different protein-protein interactions. Q529X-MYPN causes RCM via disturbed myofibrillogenesis, whereas Y20C-MYPN perturbs MYPN nuclear shuttling and leads to abnormal assembly of terminal Z-disc within the cardiac transitional junction and intercalated disc.


Asunto(s)
Cardiomiopatía Dilatada/genética , Cardiomiopatía Hipertrófica Familiar/genética , Proteínas Musculares/genética , Mutación , Animales , Animales Recién Nacidos , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/fisiopatología , Cardiomiopatía Hipertrófica Familiar/patología , Cardiomiopatía Hipertrófica Familiar/fisiopatología , Estudios de Casos y Controles , Codón sin Sentido , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Proteínas Musculares/fisiología , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/fisiología , Mutación Missense , Miocardio/patología , Miocitos Cardíacos/ultraestructura , Proteínas Nucleares/metabolismo , Linaje , Fenotipo , Unión Proteica , Ratas , Ratas Mutantes , Ratas Sprague-Dawley , Proteínas Represoras/metabolismo
14.
Curr Opin Cardiol ; 29(3): 214-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24576884

RESUMEN

PURPOSE OF REVIEW: This article provides an overview of the latest advances in in-vitro modeling of inherited cardiomyopathies using human-induced pluripotent stem cells (iPSCs). RECENT FINDINGS: Inherited cardiomyopathies have been recently modeled by generating iPSCs from patients harboring mutations in genes associated with the pathogenesis of hypertrophic cardiomyopathy, dilated cardiomyopathy, and arrhythmogenic right ventricular cardiomyopathy/dysplasia. SUMMARY: Patient-specific iPSCs and their differentiated cardiomyocytes (induced pluripotent stem cell-derived cardiomyocytes) now provide a novel model to study the underlying molecular mechanism of the pathogenesis of familial cardiomyopathies as well as for in-vitro drug screening and drug discovery.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Cardiomiopatía Dilatada , Cardiomiopatía Hipertrófica Familiar , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Displasia Ventricular Derecha Arritmogénica/tratamiento farmacológico , Displasia Ventricular Derecha Arritmogénica/etiología , Displasia Ventricular Derecha Arritmogénica/patología , Cardiomiopatía Dilatada/congénito , Cardiomiopatía Dilatada/tratamiento farmacológico , Cardiomiopatía Dilatada/patología , Cardiomiopatía Hipertrófica Familiar/tratamiento farmacológico , Cardiomiopatía Hipertrófica Familiar/etiología , Cardiomiopatía Hipertrófica Familiar/patología , Descubrimiento de Drogas/métodos , Descubrimiento de Drogas/tendencias , Estudio de Asociación del Genoma Completo , Humanos , Técnicas In Vitro/métodos , Técnicas In Vitro/tendencias , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/patología , Modelos Cardiovasculares , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología
15.
J Mol Cell Cardiol ; 57: 13-22, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23318932

RESUMEN

Familial Hypertrophic Cardiomyopathy (FHC) is frequently caused by mutations in the ß-cardiac myosin heavy chain (ß-MyHC). To identify changes in sarcomeric function triggered by such mutations, distinguishing mutation effects from other functional alterations of the myocardium is essential. We previously identified a direct effect of mutation R723G (MyHC723) on myosin function in slow Musculus soleus fibers. Here we investigate contractile features of left ventricular cardiomyocytes of FHC-patients with the same MyHC723-mutation and compare these to the soleus data. In mechanically isolated, triton-permeabilized MyHC723-cardiomyocytes, maximum force was significantly lower but calcium-sensitivity was unchanged compared to donor. Conversely, MyHC723-soleus fibers showed significantly higher maximum force and reduced calcium-sensitivity compared to controls. Protein phosphorylation, a potential myocardium specific modifying mechanism, might account for differences compared to soleus fibers. Analysis revealed reduced phosphorylation of troponin I and T, myosin-binding-protein C, and myosin-light-chain 2 in MyHC723-myocardium compared to donor. Saturation of protein-kinaseA phospho-sites led to comparable, i.e., reduced MyHC723-calcium-sensitivity in cardiomyocytes as in M. soleus fibers, while maximum force remained reduced. Myofibrillar disarray and lower density of myofibrils, however, largely account for reduced maximum force in MyHC723-cardiomyocytes. The changes seen when phosphorylation of sarcomeric proteins in myocardium of affected patients is matched to control tissue suggest that the R723G mutation causes reduced Ca(++)-sensitivity in both cardiomyocytes and M. soleus fibers. In MyHC723-myocardium, however, hypophosphorylation can compensate for the reduced calcium-sensitivity, while maximum force generation, lowered by myofibrillar deficiency and disarray, remains impaired, and may only be compensated by hypertrophy.


Asunto(s)
Miosinas Cardíacas/genética , Cardiomiopatía Hipertrófica Familiar/genética , Mutación Missense , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/genética , Adulto , Calcio/fisiología , Miosinas Cardíacas/metabolismo , Cardiomiopatía Hipertrófica Familiar/patología , Cardiomiopatía Hipertrófica Familiar/fisiopatología , Femenino , Expresión Génica , Ventrículos Cardíacos/patología , Humanos , Contracción Isométrica , Masculino , Persona de Mediana Edad , Proteínas Musculares/metabolismo , Contracción Miocárdica , Miocardio/metabolismo , Miocitos Cardíacos/fisiología , Cadenas Pesadas de Miosina/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sarcómeros/metabolismo , Troponina/metabolismo , Adulto Joven
16.
J Biol Chem ; 287(3): 2156-67, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22086914

RESUMEN

The R21C substitution in cardiac troponin I (cTnI) is the only identified mutation within its unique N-terminal extension that is associated with hypertrophic cardiomyopathy (HCM) in man. Particularly, this mutation is located in the consensus sequence for ß-adrenergic-activated protein kinase A (PKA)-mediated phosphorylation. The mechanisms by which this mutation leads to heart disease are still unclear. Therefore, we generated cTnI knock-in mouse models carrying an R21C mutation to evaluate the resultant functional consequences. Measuring the in vivo levels of incorporated mutant and WT cTnI, and their basal phosphorylation levels by top-down mass spectrometry demonstrated: 1) a dominant-negative effect such that, the R21C+/- hearts incorporated 24.9% of the mutant cTnI within the myofilament; and 2) the R21C mutation abolished the in vivo phosphorylation of Ser(23)/Ser(24) in the mutant cTnI. Adult heterozygous (R21C+/-) and homozygous (R21C+/+) mutant mice activated the fetal gene program and developed a remarkable degree of cardiac hypertrophy and fibrosis. Investigation of cardiac skinned fibers isolated from WT and heterozygous mice revealed that the WT cTnI was completely phosphorylated at Ser(23)/Ser(24) unless the mice were pre-treated with propranolol. After propranolol treatment (-PKA), the pCa-tension relationships of all three mice (i.e. WT, R21C+/-, and R21C+/+) were essentially the same. However, after treatment with propranolol and PKA, the R21C cTnI mutation reduced (R21C+/-) or abolished (R21C+/+) the well known decrease in the Ca(2+) sensitivity of tension that accompanies Ser(23)/Ser(24) cTnI phosphorylation. Altogether, the combined effects of the R21C mutation appear to contribute toward the development of HCM and suggest that another physiological role for the phosphorylation of Ser(23)/Ser(24) in cTnI is to prevent cardiac hypertrophy.


Asunto(s)
Sustitución de Aminoácidos , Cardiomiopatía Hipertrófica Familiar/metabolismo , Mutación Missense , Miocardio/metabolismo , Miofibrillas/metabolismo , Troponina I/metabolismo , Animales , Antiarrítmicos/farmacología , Calcio/metabolismo , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/patología , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fibrosis Endomiocárdica/genética , Fibrosis Endomiocárdica/metabolismo , Técnicas de Sustitución del Gen , Humanos , Ratones , Ratones Mutantes , Miocardio/patología , Miofibrillas/genética , Miofibrillas/patología , Fosforilación/genética , Propranolol/farmacología , Troponina I/genética
17.
Gerontology ; 59(3): 199-205, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23363806

RESUMEN

BACKGROUND: Hypertrophic cardiomyopathy (HCM), which is characterized by unexplained and asymmetric left ventricular hypertrophy in the absence of other cardiac or systemic diseases, is an inherited cardiovascular disease and presents rising penetrance with aging. OBJECTIVE: The purpose of this review is to offer an outline of recent progress in the molecular genetics of HCM and to discuss characteristics of elderly HCM patients. METHODS: Studies were analyzed which included disease genes related to HCM, relationships between genotype and phenotype, potential pathogenesis of HCM, and the features of elderly patients with HCM. RESULTS: HCM is caused by mutations in genes encoding myofilament proteins of the sarcomere, Z-disc proteins, Ca2+ -handling proteins, and other proteins related to the sarcomere. Phenotypic manifestations of HCM are not just determined by these genes; modifying genes and epigenetic factors also contribute to the complexity of the HCM phenotype. The potential pathogenesis of HCM involves dominant negative function, an imbalance of myocardial energetic metabolism, and haploinsufficiency. Late-onset HCM presents its own features in the distribution of causal genes. Mutations in MYBPC3 may be the most common cause of delayed expression of HCM, and the sarcomere gene screen is most likely to be negative in elderly HCM patients. CONCLUSIONS: Despite progress in the identification of genetic causes and pathogenesis of HCM, there are still some questions that need to be better understood. It remains a great challenge to identify the cause of 50% of HCM cases in patients without an identified mutation. The application of a new genetic study technology may completely uncover the genetic background of these cases. In addition, the influences of causal mutations on the function and signaling of cardiocytes are expected to be elucidated further.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar/genética , Anciano , Cardiomiopatía Hipertrófica Familiar/patología , Cardiomiopatía Hipertrófica Familiar/fisiopatología , Metabolismo Energético/genética , Estudios de Asociación Genética , Haploinsuficiencia , Humanos , Biología Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/fisiología , Mutación , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Miofibrillas/genética , Miofibrillas/fisiología
18.
Biochem J ; 442(1): 95-103, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22091967

RESUMEN

FHC (familial hypertrophic cardiomyopathy) is a heritable form of cardiac hypertrophy caused by mutations in genes encoding sarcomeric proteins. The present study focuses on the A13T mutation in the human ventricular myosin RLC (regulatory light chain) that is associated with a rare FHC variant defined by mid-ventricular obstruction and septal hypertrophy. We generated heart-specific Tg (transgenic) mice with ~10% of human A13T-RLC mutant replacing the endogenous mouse cardiac RLC. Histopathological examinations of longitudinal heart sections from Tg-A13T mice showed enlarged interventricular septa and profound fibrotic lesions compared with Tg-WT (wild-type), expressing the human ventricular RLC, or non-Tg mice. Functional studies revealed an abnormal A13T mutation-induced increase in isometric force production, no change in the force-pCa relationship and a decreased Vmax of the acto-myosin ATPase. In addition, a fluorescence-based assay showed a 3-fold lower binding affinity of the recombinant A13T mutant for the RLC-depleted porcine myosin compared with WT-RLC. These results suggest that the A13T mutation triggers a hypertrophic response through changes in cardiac sarcomere organization and myosin cross-bridge function leading to abnormal remodelling of the heart. The significant functional changes observed, despite a low level of A13T mutant incorporation into myofilaments, suggest a 'poison-peptide' mechanism of disease.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar/genética , Contracción Miocárdica/fisiología , Cadenas Ligeras de Miosina/genética , Animales , Cardiomiopatía Hipertrófica Familiar/patología , Cardiomiopatía Hipertrófica Familiar/fisiopatología , Humanos , Masculino , Ratones , Ratones Transgénicos , Mutación , Contracción Miocárdica/genética , Miocardio/patología , Miofibrillas/genética , Cadenas Ligeras de Miosina/fisiología , Músculos Papilares/patología , Conejos , Sarcómeros/ultraestructura , Porcinos
19.
J Cell Physiol ; 227(10): 3471-6, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22213221

RESUMEN

Several mutations in distinct genes, all coding for sarcomeric proteins, have been reported in unrelated kindreds with familial hypertrophic cardiomyopathy (FHC). We have identified nine individuals from three families harboring two distinct mutations in one copy of the ß-myosin heavy chain (ß-MHC) gene. In this study, the expression of the mutant ß-myosin protein isoform, isolated from slow-twitch fibers of skeletal muscle, was demonstrated by Northern and Western blot analysis; this myosin showed a decreased in vitro motility activity and produced a lower actin-activated ATPase activity. Isometric tension, measured in single slow-twitch fibers isolated from the affected individuals, also showed a significant decrease. The degree of impairment of ß-myosin function, as well as the loss in isometric tension development, were strictly dependent on the amount of the isoform transcribed from the mutated allele. Interestingly, a strong correlation was also demonstrated between mutant ß-myosin content and clinical features of FHC. On the other hand, we were unable to detect any correlation between mutant ß-myosin expression and degree of cardiac hypertrophy, thereby strengthening the hypothesis that hypertrophy, one of the hallmarks of FHC, might not necessarily be related to the clinical evolution of this disease. These findings lend support to the notion that additional factors rather than the mutated gene may play a pathogenetic role in cardiac wall thickening, whereas the prognosis appears to be strongly related to the amount of mutant protein.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar/genética , Músculo Esquelético/metabolismo , Mutación , Miocardio/metabolismo , Cadenas Pesadas de Miosina/genética , Miosinas Ventriculares/genética , Actinas/genética , Actinas/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adolescente , Adulto , Cardiomiopatía Hipertrófica Familiar/metabolismo , Cardiomiopatía Hipertrófica Familiar/patología , Femenino , Expresión Génica/genética , Humanos , Masculino , Persona de Mediana Edad , Cadenas Pesadas de Miosina/biosíntesis , Cadenas Pesadas de Miosina/metabolismo , Isoformas de Proteínas , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Miosinas Ventriculares/biosíntesis , Miosinas Ventriculares/metabolismo , Adulto Joven
20.
J Muscle Res Cell Motil ; 33(1): 43-52, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22127559

RESUMEN

Perturbations in sarcomeric function may in part underlie systolic and diastolic dysfunction of the failing heart. Sarcomeric dysfunction has been ascribed to changes in phosphorylation status of sarcomeric proteins caused by an altered balance between intracellular kinases and phosphatases during the development of cardiac disease. In the present review we discuss changes in phosphorylation of the thick filament protein myosin binding protein C (cMyBP-C) reported in failing myocardium, with emphasis on phosphorylation changes observed in familial hypertrophic cardiomyopathy caused by mutations in MYBPC3. Moreover, we will discuss assays which allow to distinguish between functional consequences of mutant sarcomeric proteins and (mal)adaptive changes in sarcomeric protein phosphorylation.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar/patología , Proteínas Portadoras/metabolismo , Miocardio/patología , Animales , Calcio/metabolismo , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/metabolismo , Proteínas Portadoras/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Insuficiencia Cardíaca Sistólica/metabolismo , Insuficiencia Cardíaca Sistólica/patología , Humanos , Ratones , Ratones Transgénicos , Mutación , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Sarcómeros/metabolismo , Sarcómeros/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA