Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.039
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 86: 585-608, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28125290

RESUMEN

Many critical biological processes take place at hydrophobic:hydrophilic interfaces, and a wide range of organisms produce surface-active proteins and peptides that reduce surface and interfacial tension and mediate growth and development at these boundaries. Microorganisms produce both small lipid-associated peptides and amphipathic proteins that allow growth across water:air boundaries, attachment to surfaces, predation, and improved bioavailability of hydrophobic substrates. Higher-order organisms produce surface-active proteins with a wide variety of functions, including the provision of protective foam environments for vulnerable reproductive stages, evaporative cooling, and gas exchange across airway membranes. In general, the biological functions supported by these diverse polypeptides require them to have an amphipathic nature, and this is achieved by a diverse range of molecular structures, with some proteins undergoing significant conformational change or intermolecular association to generate the structures that are surface active.


Asunto(s)
Caseínas/química , Glicoproteínas/química , Proteínas de la Membrana/química , Proteínas de Neoplasias/química , Fosfoproteínas/química , Surfactantes Pulmonares/química , Tensoactivos/química , Animales , Bacterias/química , Bacterias/genética , Bacterias/metabolismo , Caseínas/genética , Caseínas/metabolismo , Hongos/química , Hongos/genética , Hongos/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Mamíferos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Conformación Proteica , Surfactantes Pulmonares/metabolismo , Propiedades de Superficie , Tensoactivos/metabolismo , Agua/química , Agua/metabolismo
2.
Annu Rev Biochem ; 83: 553-84, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24606139

RESUMEN

Intrinsically disordered proteins (IDPs) and IDP regions fail to form a stable structure, yet they exhibit biological activities. Their mobile flexibility and structural instability are encoded by their amino acid sequences. They recognize proteins, nucleic acids, and other types of partners; they accelerate interactions and chemical reactions between bound partners; and they help accommodate posttranslational modifications, alternative splicing, protein fusions, and insertions or deletions. Overall, IDP-associated biological activities complement those of structured proteins. Recently, there has been an explosion of studies on IDP regions and their functions, yet the discovery and investigation of these proteins have a long, mostly ignored history. Along with recent discoveries, we present several early examples and the mechanisms by which IDPs contribute to function, which we hope will encourage comprehensive discussion of IDPs and IDP regions in biochemistry textbooks. Finally, we propose future directions for IDP research.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Animales , Calcineurina/química , Caseínas/química , Biología Computacional , Espectroscopía de Resonancia por Spin del Electrón , Fibrina/química , Fibrinógeno/química , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Fosvitina/química , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Dispersión de Radiación , Solubilidad , Tripsina/química , Tripsinógeno/química , Difracción de Rayos X
3.
Biopolymers ; 115(3): e23579, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38578129

RESUMEN

In this study, a new biomaterial with polyvinyl alcohol (PVA)/sodium caseinate (SodCa)/reduced graphene oxide (rGO) structure was developed. Antibacterial effective nanofibers were successfully produced by electrospinning method from 1%, 3%, 5%, and 7% rGO added PVA/SodCa (60:40, w:w) solution mixtures prepared for use as modern wound dressings. To create a usage area, especially in exuding wounds, hydrophilic PVA/SodCa/rGO electrospun mats were cross-linked by dipping them in a glutaraldehyde (GLA) bath. The surface micrographs of all nanofibers were homogeneous and smooth. rGO-doped biomaterials were obtained as thin nanofibers in the range of 301-348 nm. Nanofibers, which were completely soluble in water, after cross-linking preserved their existence in the range of 87%-81% at the end of the 24th hour in distilled water. It was reported that these biomaterials that persist in an aqueous environment show swelling behavior in the range of 275%-608%. The porosity of uncross-linked pure PVA/SodCa nanofibers increased by 46.75% after cross-linking. Moreover, the tensile strength of cross-linked PVA/SodCa electrospun mats increased in the presence of rGO. Provided that wound dressing is done every 24 h with 3% rGO-doped PVA/SodCa nanofiber and provided that wound dressing is done every 48 h with 5% rGO-doped PVA/SodCa nanofiber showed antibacterial activity against S. aureus as 99.38% and 99.55%, respectively.


Asunto(s)
Antibacterianos , Vendajes , Caseínas , Grafito , Nanofibras , Alcohol Polivinílico , Alcohol Polivinílico/química , Grafito/química , Antibacterianos/farmacología , Antibacterianos/química , Nanofibras/química , Caseínas/química , Resistencia a la Tracción , Staphylococcus aureus/efectos de los fármacos , Reactivos de Enlaces Cruzados/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
4.
Langmuir ; 40(22): 11516-11525, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38778622

RESUMEN

Using the surface characterization techniques of quartz crystal microbalance with dissipation, atomic force microscopy, and scanning electron microscopy, the structure of the salivary pellicle was investigated before and after it was exposed to dairy proteins, including micellar casein, skim milk, whey protein isolate (WPI), and a mixture of skim milk and WPI. We have shown that the hydration, viscoelasticity, and adsorbed proteinaceous mass of a preadsorbed salivary pellicle on a PDMS surface are greatly affected by the type of dairy protein. After interaction with whey protein, the preadsorbed saliva pellicle becomes softer. However, exposure of the saliva pellicle to micellar casein causes the pellicle to partially collapse, which results in a thinner and more rigid surface layer. This structure change correlates with the measured lubrication behavior when the saliva pellicle is exposed to dairy proteins. While previous studies suggest that whey protein is the main component in milk to interact with salivary proteins, our study indicates interactions with casein are more important. The knowledge gained here provides insights into the mechanisms by which different components of dairy foods and beverages contribute to mouthfeel and texture perception, as well as influence oral hygiene.


Asunto(s)
Película Dental , Proteínas y Péptidos Salivales , Película Dental/química , Película Dental/metabolismo , Proteínas y Péptidos Salivales/química , Proteínas y Péptidos Salivales/metabolismo , Adsorción , Caseínas/química , Caseínas/metabolismo , Propiedades de Superficie , Proteína de Suero de Leche/química , Humanos , Animales , Microscopía de Fuerza Atómica , Saliva/química , Saliva/metabolismo , Tecnicas de Microbalanza del Cristal de Cuarzo
5.
J Dairy Sci ; 107(2): 695-710, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37709031

RESUMEN

Our objective was to determine the effects of dipotassium phosphate (DKP) addition, heat treatments (no heat, high temperature, short time [HTST]: 72°C for 15 s, and direct steam injection UHT: 142°C for 2.3 s), and storage time on the soluble protein composition and mineral (P, Ca, K) concentration of the aqueous phase around casein micelles in 7.5% milk protein-based beverages made with liquid skim milk protein concentrate (MPC) and micellar casein concentrate (MCC). Milk protein concentrate was produced using a spiral wound polymeric membrane, and MCC was produced using a 0.1-µm ceramic membrane by filtration at 50°C. Two DKP concentrations were used (0% and 0.15% wt/wt) within each of the 3 heat treatments. All beverages had no other additives and ran through heat treatment without coagulation. Ultracentrifugation (2-h run at 4°C) supernatants of the beverages were collected at 1, 5, 8, 12, and 15-d storage at 4°C. Phosphorus, Ca, and K concentrations in the beverages and supernatants were measured using inductively coupled plasma spectrometry. Protein composition of supernatants was measured using Kjeldahl and sodium dodecyl sulfate-PAGE. Micellar casein concentrate and MPC beverages with 0.15% DKP had higher concentrations of supernatant protein, Ca, and P than beverages without DKP. Protein, Ca, and P concentrations were higher in MCC supernatant than in MPC supernatant when DKP was added, and these concentrations increased over storage time, especially when lower heat treatments (HTST or no heat treatment) had been applied. Dipotassium phosphate addition caused the dissociation of αS-, ß-, and κ-casein, and casein proteolysis products out of the casein micelles, and DKP addition explained over 70% of the increase in supernatant protein, P, and Ca concentrations. Dipotassium phosphate could be removed from 7.5% of protein beverages made with fresh liquid MCC and MPC (containing a residual lactose concentration of 0.6% to 0.7% and the proportional amount of soluble milk minerals), as these beverages maintain heat-processing stability without DKP addition.


Asunto(s)
Caseínas , Proteínas de la Leche , Compuestos de Potasio , Animales , Proteínas de la Leche/análisis , Caseínas/química , Micelas , Calor , Minerales , Bebidas/análisis , Fosfatos
6.
J Dairy Sci ; 107(1): 141-154, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37690728

RESUMEN

Milk proteins can be used as encapsulation walls to increase the bioavailability of active compounds because they can bind hydrophobic, hydrophilic, and charged compounds. The objective of this study was to investigate the effects of astaxanthin (ASTA) encapsulation and the functional properties of milk protein and ASTA nanocomposites by an ultrasound-assisted pH-shifting treatment of different milk proteins, including milk protein concentrate (MPC), micellar casein (MCC), and whey protein isolate (WPI). The ultrasound-assisted pH-shifting treatment of milk protein helped to improve the encapsulation rate of ASTA. Therein, MCC showed great improvement of encapsulating ASTA after co-treatment with the raised encapsulated rate of 5.11%, followed by WPI and MPC. Furthermore, the nanocomposites of ASTA with milk protein exhibit improved bioavailability, antioxidant capacity, and storage stability. By comparison, MCC-encapsulated ASTA has the best storage stability, followed by MPC, and WPI-encapsulated ASTA has the least stability over a 28-d storage period. The results of intrinsic fluorescence and surface hydrophobicity showed that milk protein underwent fluorescence quenching after binding to ASTA, which was due to the hydrophobic sites of the protein being occupied by ASTA. In general, the nanocomposites of milk protein and ASTA fabricated by using an ultrasound-assisted pH-shifting treatment have the potential to be better nano-delivery systems for ASTA in functional foods, especially MCC, which showed excellent performance in encapsulation after treatment technique.


Asunto(s)
Caseínas , Micelas , Animales , Caseínas/química , Proteína de Suero de Leche/química , Proteínas de la Leche/metabolismo , Concentración de Iones de Hidrógeno , Xantófilas
7.
J Dairy Sci ; 107(1): 74-90, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37709025

RESUMEN

Due to its versatility and shelf stability, process cheese is gaining interest in many developing countries. The main structural component (base) of most processed cheese formulations is young Cheddar cheese that has high levels of intact casein. Exporting natural Cheddar cheese base from the United States to distant overseas markets would require the aging process to be slowed or reduced. As Cheddar cheese ripens, the original structure is broken down by proteolysis and solubilization of insoluble calcium phosphate. We explored the effect of varying rennet levels (we also used a less proteolytic rennet) and application of high-pressure processing (HPP) to Cheddar cheese, as we hoped these treatments might limit proteolysis and concomitant loss of intact casein. To try to retain high levels of insoluble Ca, all experimental cheeses were made with a high-draining pH and from concentrated milk. To compare our intact casein results with current practices, we manufactured a Cheddar cheese that was prepared according to typical industry methods (i.e., use of unconcentrated milk, calf chymosin [higher levels], and low draining pH value [∼6.2]). All experimental cheeses were made from ultrafiltered milk with protein and casein contents of ∼5.15% and 4.30%, respectively. Three (low) rennet levels were used: control (38 international milk clotting units/mL of rennet per 250 kg of milk), and 25% and 50% reduced from this level. All experimental cheeses had similar moisture contents (∼37%) and total Ca levels. Four days after cheese was made, half of the experimental samples from each vat underwent HPP at 600 MPa for 3 min. Cheddar cheese functionality was monitored during aging for 240 d at 4°C. Cheddar cheese base was used to prepare process cheese after aging for 14, 60, 120, 180, and 240 d. Loss tangent (LT) values of cheese during heating were measured by small strain oscillatory rheology. Intact casein levels were measured using the Kjeldahl method. Acid or base titrations were used to determine the buffering capacity and insoluble Ca levels as a percentage of total Ca. The LTmax values (an index of meltability) in process cheese increased with aging for all the cheese bases; the HPP treatment significantly decreased LTmax values of both base (natural) and process cheeses. All experimental cheeses had much higher levels of intact casein compared with typical industry-make samples. Process cheese made from the experimental treatments had visually higher stretching properties than process cheese made from Cheddar with the typical industry-make procedure. Residual rennet activity was not affected by rennet level, but the rate of proteolysis was slightly slower with lower rennet levels. The HPP treatment of Cheddar cheese reduced residual rennet activity and decreased the reduction of intact casein levels. The HPP treatment of Cheddar cheese resulted in process cheeses that had slightly higher hardness values, lower LTmax values, and retained higher storage modulus values at 70°C. We also observed that the other make procedures we used in all experimental treatments (i.e., using a less proteolytic chymosin, using a concentrated cheese milk, and maintaining a high draining pH value) had a major effect on retaining high levels of intact casein.


Asunto(s)
Queso , Quimosina , Animales , Quimosina/química , Caseínas/química , Concentración de Iones de Hidrógeno , Queso/análisis , Péptido Hidrolasas/metabolismo , Leche/química , Manipulación de Alimentos/métodos , Reología
8.
J Dairy Sci ; 107(5): 2721-2732, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38101742

RESUMEN

Processing temperature has a significant influence on the composition and functionality of the resulting streams following microfiltration (MF) of skim milk. In this study, MF and diafiltration (DF) were performed at 4 or 50°C to produce ß-casein (ß-CN)-depleted and nondepleted (i.e., native casein profile) micellar casein isolate retentates, respectively. Microfiltration combined with extensive DF resulted in a 40% depletion of ß-CN at 4°C, whereas no ß-CN depletion occurred at 50°C. Microfiltration at 4°C led to higher transmission of calcium into permeates, with retentate generated at 4°C containing less total calcium compared with retentate generated at 50°C, based on the volume of retentate remaining. Higher heat stability at 120°C was measured for retentates generated at 4°C compared with those at 50°C, across all pH values measured. Retentates generated at 4°C also had significantly lower ionic calcium values at each pH compared with those generated at 50°C. Higher apparent viscosities at 4°C were measured for retentates generated at 4°C compared with retentates generated at 50°C, likely due to increased voluminosity of ß-CN-depleted casein micelles. The results of this study provide new information on how changing the composition of MF retentate, by appropriate control of processing temperature and DF, can alter physicochemical properties of casein micelles, with potential implications for ingredient functionality.


Asunto(s)
Caseínas , Micelas , Animales , Caseínas/química , Temperatura , Calcio/análisis , Manipulación de Alimentos/métodos , Filtración/métodos , Filtración/veterinaria , Leche/química , Proteínas de la Leche/análisis
9.
Int J Food Sci Nutr ; 75(1): 70-80, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37933669

RESUMEN

To identify the potential anabolic properties of a dairy-plant protein blend as compared to single plant-based and single dairy protein, the postprandial amino acid (AA) response of pea protein, milk protein, micellar casein, and a casein-pea protein blend was investigated in healthy older adults (age 72.3 ± 3.4 years, BMI 25.3 ± 2.9 kg/m2). Plasma AA levels were measured, before and up to 5 h after ingestion of each 20 g protein. Blending casein-pea in a 60/40 mixture resulted in improved plasma AA availability, i.e. area under the curve (AUC) and peak height, of total (essential) AA and of key AAs methionine and leucine compared to pea only, while preserving the higher availability of arginine. The casein/pea blend clearly showed an AA response that was in between that of its single constituents, indicating that blending could be a solution to improve a lower quality (plant) protein, which could be of relevance for older adults.


Asunto(s)
Aminoácidos , Proteínas de Guisantes , Caseínas/química , Proteínas de la Leche , Pisum sativum , Proteínas de Plantas , Ingestión de Alimentos , Periodo Posprandial
10.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339021

RESUMEN

Breast-milk αS1-casein is a Toll-like receptor 4 (TLR4) agonist, whereas phosphorylated αS1-casein does not bind TLR4. The objective of this study was to analyse the structural requirements for these effects. In silico analysis of αS1-casein indicated high α-helical content with coiled-coil characteristics. This was confirmed by CD-spectroscopy, showing the α-helical conformation to be stable between pH 2 and 7.4. After in vitro phosphorylation, the α-helical content was significantly reduced, similar to what it was after incubation at 80 °C. This conformation showed no in vitro induction of IL-8 secretion via TLR4. A synthetic peptide corresponding to V77-E92 of αS1-casein induced an IL-8 secretion of 0.95 ng/mL via TLR4. Our results indicate that αS1-casein appears in two distinct conformations, an α-helical TLR4-agonistic and a less α-helical TLR4 non-agonistic conformation induced by phosphorylation. This is to indicate that the immunomodulatory role of αS1-casein, as described before, could be regulated by conformational changes induced by phosphorylation.


Asunto(s)
Caseínas , Leche Humana , Humanos , Caseínas/química , Caseínas/clasificación , Interleucina-8 , Dominios Proteicos , Receptor Toll-Like 4/análisis , Filogenia , Estructura Secundaria de Proteína , Células HEK293
11.
Molecules ; 29(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38731652

RESUMEN

Bovine milk is an essential supplement due to its rich energy- and nutrient-rich qualities. Caseins constitute the vast majority of the proteins in milk. Among these, ß-casein comprises around 37% of all caseins, and it is an important type of casein with several different variants. The A1 and A2 variants of ß-casein are the most researched genotypes due to the changes in their composition. It is accepted that the A2 variant is ancestral, while a point mutation in the 67th amino acid created the A1 variant. The digestion derived of both A1 and A2 milk is BCM-7. Digestion of A2 milk in the human intestine also forms BCM-9 peptide molecule. The opioid-like characteristics of BCM-7 are highlighted for their potential triggering effect on several diseases. Most research has been focused on gastrointestinal-related diseases; however other metabolic and nervous system-based diseases are also potentially triggered. By manipulating the mechanisms of these diseases, BCM-7 can induce certain situations, such as conformational changes, reduction in protein activity, and the creation of undesired activity in the biological system. Furthermore, the genotype of casein can also play a role in bone health, such as altering fracture rates, and calcium contents can change the characteristics of dietary products. The context between opioid molecules and BCM-7 points to a potential triggering mechanism for the central nervous system and other metabolic diseases discussed.


Asunto(s)
Caseínas , Endorfinas , Humanos , Animales , Caseínas/química , Caseínas/metabolismo , Caseínas/genética , Endorfinas/química , Endorfinas/metabolismo , Leche/química , Leche/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/genética , Péptidos Opioides/química , Péptidos Opioides/metabolismo , Bovinos
12.
Molecules ; 29(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38893466

RESUMEN

Epigallocatechin gallate (EGCG), the principal catechin in green tea, exhibits diverse therapeutic properties. However, its clinical efficacy is hindered by poor stability and low bioavailability. This study investigated solid particle-in-oil-in-water (S/O/W) emulsions stabilized by whey protein isolate (WPI) and sodium caseinate (NaCas) as carriers to enhance the bioavailability and intestinal absorption of EGCG. Molecular docking revealed binding interactions between EGCG and these macromolecules. The WPI- and NaCas-stabilized emulsions exhibited high encapsulation efficiencies (>80%) and significantly enhanced the bioaccessibility of EGCG by 64% compared to free EGCG after simulated gastrointestinal digestion. Notably, the NaCas emulsion facilitated higher intestinal permeability of EGCG across Caco-2 monolayers, attributed to the strong intermolecular interactions between caseins and EGCG. Furthermore, the emulsions protected Caco-2 cells against oxidative stress by suppressing intracellular reactive oxygen species generation. These findings demonstrate the potential of WPI- and NaCas-stabilized emulsions as effective delivery systems to improve the bioavailability, stability, and bioactivity of polyphenols like EGCG, enabling their applications in functional foods and nutraceuticals.


Asunto(s)
Disponibilidad Biológica , Caseínas , Catequina , Emulsiones , Proteína de Suero de Leche , Catequina/análogos & derivados , Catequina/química , Humanos , Proteína de Suero de Leche/química , Caseínas/química , Células CACO-2 , Emulsiones/química , Simulación del Acoplamiento Molecular , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Portadores de Fármacos/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/farmacocinética , Absorción Intestinal/efectos de los fármacos
13.
J Sci Food Agric ; 104(2): 788-796, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37669105

RESUMEN

BACKGROUND: Calcium is important in the formation of bones and teeth, cell metabolism, and other physiological activities. In this work, casein phosphopeptide-calcium chelate (CPP-Ca) was synthesized and the optimal process parameters for the chelation reaction were obtained. The bioavailability of calcium in CPP-Ca was investigated by in vitro gastrointestinal simulated digestion. The existence of phytic acid and oxalic acid in the digestion system was evaluated to clarify the calcium holding ability of casein phosphopeptide (CPP). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify oligopeptides from CPP-Ca. RESULTS: The optimal process parameters for the chelation reaction were: peptide concentration 7.76 mgmL-1 , pH 8.54, and reaction temperature 43.3 °C. The digestion in vitro results indicated that the calcium release rate of CPP-Ca in the stomach for 2 h reached 85%, and about 50% of the ionized calcium was re-chelated with CPP in the intestine. Phytic acid and oxalic acid could lead to a sharp decrease in soluble calcium but around 50% of the calcium was still retained in the form of chelates in the presence of CPP. The LC-MS/MS identified 19 casein-derived oligopeptides after digestion, and calcium modifications were found on eight peptides derived from ß-casein and αs2 -casein. CONCLUSIONS: This study clarified the excellent calcium holding capacity of CPP in the presence of phytic acid and oxalic acid. Liquid chromatography-tandem mass spectrometry also revealed peptide changes, and identified peptides that chelate with calcium. These findings provided significant insights that could be relevant to the further utilization and product development of peptide-calcium chelate in the food industry. © 2023 Society of Chemical Industry.


Asunto(s)
Calcio , Fragmentos de Péptidos , Calcio/metabolismo , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Caseínas/química , Cromatografía Liquida , Ácido Fítico , Espectrometría de Masas en Tándem , Calcio de la Dieta , Digestión , Oligopéptidos , Ácido Oxálico
14.
J Sci Food Agric ; 104(5): 2947-2958, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38041433

RESUMEN

BACKGROUND: Casein hydrolysates have attracted much interest as anti-diabetic food, but their hypoglycemic mechanism and biopeptides are not well understood. This study aimed to explore the anti-diabetic mechanism and potential biopeptides of casein hydrolysates in streptozotocin/high-fat-diet-induced diabetic rats and HepG2 cells. RESULTS: Oral administration of casein hydrolysate prepared with papain-Flavourzyme combination (P-FCH) decreased fasting blood glucose, improved oral glucose tolerance, and reduced HbA1c values in diabetic rats. P-FCH was ineffective in alleviating insulin resistance (homeostasis model assessment and insulin sensitivity index) and enhancing hepatic insulin signaling transduction (phosphorylated Akt, hexokinase activity, and pyruvate kinase activity) in diabetic rats. However, P-FCH significantly upregulated adenosine monophosphate-activated protein kinase phosphorylation and glucose transporter-2 expression, inhibited phosphoenolpyruvate carboxylase kinase activity, and elevated glycogen content in liver tissue of diabetic rats. Furthermore, P-FCH increased glucose consumption independently in normal and insulin-resistant HepG2 cells without the presence of insulin. The peptide composition of P-FCH was characterized. The potential biopeptides in P-FCH showed the sequence characteristic of a Val at the N-terminal or a Pro at the P2 position, and the hypoglycemic activity of Val-Pro-Leu-Gly (the most potential biopeptide in P-FCH) was verified by oral glucose tolerance test in mice. CONCLUSION: These results suggested that activation of the non-insulin-mediated AMPK pathway might be the determinant mechanism of P-FCH on the hypoglycemic effect. The novel peptide Val-Pro-Leu-Gly in P-FCH was effective in reducing blood glucose levels when orally administered to mice. © 2023 Society of Chemical Industry.


Asunto(s)
Diabetes Mellitus Experimental , Resistencia a la Insulina , Ratas , Ratones , Animales , Caseínas/química , Glucemia/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Estreptozocina , Hipoglucemiantes , Péptidos/química , Insulina , Hígado/metabolismo
15.
Compr Rev Food Sci Food Saf ; 23(3): e13370, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38783570

RESUMEN

Glycomacropeptide (GMP) is a bioactive peptide derived from whey protein, consisting of 64 amino acids. It is a phenylalanine-free peptide, making it a beneficial dietary option for individuals dealing with phenylketonuria (PKU). PKU is an inherited metabolic disorder characterized by high levels of phenylalanine in the bloodstream, resulting from a deficiency of phenylalanine dehydrogenase in affected individuals. Consequently, patients with PKU require lifelong adherence to a low-phenylalanine diet, wherein a significant portion of their protein intake is typically sourced from a phenylalanine-free amino acid formula. GMP has several nutritional values, numerous bioactivity properties, and therapeutic effects in various inflammatory disorders. Despite all these features, the purification of GMP is an imperative requirement; however, there are no unique methods for achieving this goal. Traditionally, several methods have been used for GMP purification, such as thermal or acid treatment, alcoholic precipitation, ultrafiltration (UF), gel filtration, and membrane separation techniques. However, these methods have poor specificity, and the presence of large amounts of impurities can interfere with the analysis of GMP. More efficient and highly specific GMP purification methods need to be developed. In this review, we have highlighted and summarized the current research progress on the major biological features and purification methodologies associated with GMP, as well as providing an extensive overview of the recent developments in using charged UF membranes for GMP purification and the influential factors.


Asunto(s)
Caseínas , Caseínas/química , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/química , Humanos , Fenilcetonurias
16.
Compr Rev Food Sci Food Saf ; 23(2): e13306, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38369928

RESUMEN

Biobased natural polymers, including polymers of natural origin such as casein, are growing rapidly in the light of the environmental pollution caused by many mass-produced commercial synthetic polymers. Although casein has interesting intrinsic properties, especially for the food industry, numerous chemical reactions have been carried out to broaden the range of its properties, most of them preserving casein's nontoxicity and biodegradability. New conjugates and graft copolymers have been developed especially by Maillard reaction of the amine functions of the casein backbone with the aldehyde functions of sugars, polysaccharides, or other molecules. Carried out with dialdehydes, these reactions lead to the cross-linking of casein giving three-dimensional polymers. Acylation and polymerization of various monomers initiated by amine functions are also described. Other reactions, far less numerous, involve alcohol and carboxylic acid functions in casein. This review provides an overview of casein-based conjugates and graft copolymers, their properties, and potential applications.


Asunto(s)
Caseínas , Polímeros , Caseínas/química , Polímeros/química , Polisacáridos/química , Aminas
17.
Arch Biochem Biophys ; 733: 109482, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36457258

RESUMEN

Proteins are modified during milk processing and storage, with sidechain oxidation and crosslinking being major consequences. Despite the prevalence and importance of proteins in milk, and particularly caseins (∼80% of total content), the nature of the cross-links formed by oxidation, and their mechanisms of formation, are poorly characterized. In this study, we investigated the formation and stability of cross-links generated by the nucleophilic addition of Cys residues to quinones generated on oxidation of Tyr residues. The mechanisms and stability of these adducts was explored using ubiquitin as a model protein, and ß-casein. Ubiquitin and ß-casein were oxidized using a rose Bengal/visible light/O2 system, or by the enzyme tyrosinase. The oxidized proteins were incubated with glutathione or ß-lactoglobulin (non-oxidized, but unfolded by treatment at 70 °C), before analysis by SDS-PAGE, immunoblotting and LC-MS. Our data indicate that Cys-quinone adducts are readily-formed, and are stable for >48 h. Thus, oxidized ß-casein reacts efficiently with the thermally unfolded ß-lactoglobulin, likely via Michael addition of the exposed Cys to a Tyr-derived quinone. These data provide a novel, and possibly general, mechanism of protein cross-link formation, and provides information of the stability of these species that have potential as markers of protein quality.


Asunto(s)
Caseínas , Lactoglobulinas , Lactoglobulinas/química , Caseínas/química , Caseínas/metabolismo , Tirosina/química , Cisteína , Ubiquitinas
18.
Amino Acids ; 55(10): 1261-1278, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35306573

RESUMEN

This study assessed the bioactive peptides content of milk from different species, including humans, camel, bovine, buffalo, donkey, sheep, goat, and horse. The highest and lowest concentrations of total digestion-resistant peptides were estimated in sheep and human milk. Donkey milk casein contains a higher angiotensin-converting enzyme (ACE) inhibitory, dipeptidyl peptidase III (DPP-III) inhibitory, DPP-IV inhibitory, and antioxidant peptides. On the other hand, camel whey protein contains the highest ACE-inhibitory peptides. To discover BPs with immunomodulatory and cholesterol-lowering functions, goat milk casein and sheep milk whey protein can be considered, respectively.


Asunto(s)
Caseínas , Leche , Animales , Bovinos , Humanos , Caballos , Ovinos , Leche/química , Caseínas/química , Proteína de Suero de Leche/metabolismo , Camelus/metabolismo , Péptidos/química , Cabras/metabolismo , Equidae/metabolismo
19.
Langmuir ; 39(17): 6102-6112, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37074870

RESUMEN

Sodium caseinates (NaCas), derived from milk proteins called caseins, are often added to food formulations as emulsifiers, foaming agents, and ingredients for producing dairy products. In this contribution, we contrast the drainage behavior of single foam films made with micellar NaCas solutions with well-established features of stratification observed for the micellar sodium dodecyl sulfate (SDS) foam films. In reflected light microscopy, the stratified SDS foam films display regions with distinct gray colors due to differences in interference intensity from coexisting thick-thin regions. Using IDIOM (interferometry digital imaging optical microscopy) protocols we pioneered for mapping nanotopography of foam films, we showed that drainage via stratification in SDS films proceeds by the expansion of flat domains that are thinner than surrounding by a concentration-dependent step-size, and nonflat features (nanoridges and mesas) form at the moving front. Furthermore, stratifying SDS foam films show stepwise thinning, such that the step-size and terminal film thickness decrease with concentration. Here we visualize the nanotopography in protein films with high spatiotemporal resolution using IDIOM protocols to address two long-standing questions. Do protein foam films formulated with NaCas undergo drainage via stratification? Are thickness transitions and variations in protein foam films determined by intermicellar interactions and supramolecular oscillatory disjoining pressure? In contrast with foam films containing micellar SDS, we find that micellar NaCas foam films display just one step, nonflat and noncircular domains that expand without forming nanoridges and a terminal thickness that increases with NaCas concentration. We infer that the differences in adsorbing and self-assembling unimers triumph over any similarities in the structure and interactions of their micelles.


Asunto(s)
Caseínas , Micelas , Caseínas/química , Tensoactivos/química , Dodecil Sulfato de Sodio/química
20.
Crit Rev Food Sci Nutr ; 63(20): 4261-4273, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34802348

RESUMEN

Bioactive peptides derived from bovine milk proteins have gained much attention due to their health promoting functions. All over the world, cheese industry generates high volumes of sweet whey that could be used as an alternative source of bioactive peptide in nutraceuticals and food industry. Caseinomacropeptide (CMP) is a bioactive peptide derived from κ-casein by the action of chymosin during cheese manufacturing. CMP consist of two forms which are glycosylated (gCMP) and non-glycosylated (aCMP). The predominant carbohydrate in gCMP is N-acetylneuraminic (sialic acid) which gives functional and biological properties to gCMP. Due to its unique composition and technological characteristics such as wide pH range solubility, emulsifying, gelling, and foaming ability, CMP has received special attention. Therefore, there is an increased interest in researches for isolation and concentration of CMP. However, the isolation and purification methods are not cost-effective. It would be easier to optimize the conditions for isolation, purification, and utilization of CMP in nutraceuticals and food industry through deeper understanding of the effective factors. In this review, the structure of CMP, biological activities, isolation, and purification methods, the factors affecting functional properties and application areas of CMP in food industry are discussed.


Asunto(s)
Caseínas , Suero Lácteo , Suero Lácteo/química , Proteína de Suero de Leche/química , Caseínas/análisis , Caseínas/química , Caseínas/metabolismo , Fragmentos de Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA