Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Arch Toxicol ; 96(2): 571-583, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34962578

RESUMEN

The biologically stable and highly toxic organophosphorus nerve agent (OP) VX poses a major health threat. Standard medical therapy, consisting of reactivators and competitive muscarinic receptor antagonists, is insufficient. Recently, two engineered mutants of the Brevundimonas diminuta phosphotriesterase (PTE) with enhanced catalytic efficiency (kcat/KM = 21 to 38 × 106 M-1 min-1) towards VX and a preferential hydrolysis of the more toxic P(-) enantiomer were described: PTE-C23(R152E)-PAS(100)-10-2-C3(I106A/C59V/C227V/E71K)-PAS(200) (PTE-2), a single-chain bispecific enzyme with a PAS linker and tag having enlarged substrate spectrum, and 10-2-C3(C59V/C227V)-PAS(200) (PTE-3), a stabilized homodimeric enzyme with a double PASylation tag (PAS-tag) to reduce plasma clearance. To assess in vivo efficacy, these engineered enzymes were tested in an anesthetized rat model post-VX exposure (~ 2LD50) in comparison with the recombinant wild-type PTE (PTE-1), dosed at 1.0 mg kg-1 i.v.: PTE-2 dosed at 1.3 mg kg-1 i.v. (PTE-2.1) and 2.6 mg kg-1 i.v. (PTE-2.2) and PTE-3 at 1.4 mg kg-1 i.v. Injection of the mutants PTE-2.2 and PTE-3, 5 min after s.c. VX exposure, ensured survival and prevented severe signs of a cholinergic crisis. Inhibition of erythrocyte acetylcholinesterase (AChE) could not be prevented. However, medulla oblongata and diaphragm AChE activity was partially preserved. All animals treated with the wild-type enzyme, PTE-1, showed severe cholinergic signs and died during the observation period of 180 min. PTE-2.1 resulted in the survival of all animals, yet accompanied by severe signs of OP poisoning. This study demonstrates for the first time efficient detoxification in vivo achieved with low doses of heterodimeric PTE-2 as well as PTE-3 and indicates the suitability of these engineered enzymes for the development of highly effective catalytic scavengers directed against VX.


Asunto(s)
Sustancias para la Guerra Química/toxicidad , Compuestos Organotiofosforados/toxicidad , Hidrolasas de Triéster Fosfórico/farmacología , Animales , Caulobacteraceae/enzimología , Inhibidores de la Colinesterasa/toxicidad , Masculino , Hidrolasas de Triéster Fosfórico/química , Hidrolasas de Triéster Fosfórico/genética , Ingeniería de Proteínas , Ratas , Ratas Wistar , Estereoisomerismo
2.
Arch Toxicol ; 95(8): 2815-2823, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34160649

RESUMEN

Highly toxic organophosphorus nerve agents, especially the extremely stable and persistent V-type agents such as VX, still pose a threat to the human population and require effective medical countermeasures. Engineered mutants of the Brevundimonas diminuta phosphotriesterase (BdPTE) exhibit enhanced catalytic activities and have demonstrated detoxification in animal models, however, substrate specificity and fast plasma clearance limit their medical applicability. To allow better assessment of their substrate profiles, we have thoroughly investigated the catalytic efficacies of five BdPTE mutants with 17 different nerve agents using an AChE inhibition assay. In addition, we studied one BdPTE version that was fused with structurally disordered PAS polypeptides to enable delayed plasma clearance and one bispecific BdPTE with broadened substrate spectrum composed of two functionally distinct subunits connected by a PAS linker. Measured kcat/KM values were as high as 6.5 and 1.5 × 108 M-1 min-1 with G- and V-agents, respectively. Furthermore, the stereoselective degradation of VX enantiomers by the PASylated BdPTE-4 and the bispecific BdPTE-7 were investigated by chiral LC-MS/MS, resulting in a several fold faster hydrolysis of the more toxic P(-) VX stereoisomer compared to P(+) VX. In conclusion, the newly developed enzymes BdPTE-4 and BdPTE-7 have shown high catalytic efficacy towards structurally different nerve agents and stereoselectivity towards the toxic P(-) VX enantiomer in vitro and offer promise for use as bioscavengers in vivo.


Asunto(s)
Caulobacteraceae/enzimología , Agentes Nerviosos/metabolismo , Hidrolasas de Triéster Fosfórico/metabolismo , Catálisis , Cromatografía Liquida , Hidrólisis , Mutación , Agentes Nerviosos/química , Agentes Nerviosos/toxicidad , Hidrolasas de Triéster Fosfórico/genética , Estereoisomerismo , Especificidad por Sustrato , Espectrometría de Masas en Tándem
3.
Biochemistry ; 59(33): 3038-3043, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32786401

RESUMEN

The COVID-19 pandemic threatens to overwhelm healthcare systems around the world. The only current FDA-approved treatment, which directly targets the virus, is the ProTide prodrug remdesivir. In its activated form, remdesivir prevents viral replication by inhibiting the essential RNA-dependent RNA polymerase. Like other ProTide prodrugs, remdesivir contains a chiral phosphorus center. The initial selection of the (SP)-diastereomer for remdesivir was reportedly due to the difficulty in producing the pure (RP)-diastereomer of the required precursor. However, the two currently known enzymes responsible for the initial activation step of remdesivir are each stereoselective and show differential tissue distribution. Given the ability of the COVID-19 virus to infect a wide array of tissue types, inclusion of the (RP)-diastereomer may be of clinical significance. To help overcome the challenge of obtaining the pure (RP)-diastereomer of remdesivir, we have developed a novel chemoenzymatic strategy that utilizes a stereoselective variant of the phosphotriesterase from Pseudomonas diminuta to enable the facile isolation of the pure (RP)-diastereomer of the chiral precursor for the chemical synthesis of the (RP)-diastereomer of remdesivir.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/síntesis química , Adenosina Monofosfato/síntesis química , Alanina/síntesis química , Betacoronavirus , COVID-19 , Caulobacteraceae/enzimología , Infecciones por Coronavirus , Humanos , Estructura Molecular , Pandemias , Hidrolasas de Triéster Fosfórico/química , Neumonía Viral , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , SARS-CoV-2 , Replicación Viral/efectos de los fármacos
4.
Protein Expr Purif ; 166: 105502, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31546007

RESUMEN

Cellouronate is a (1,4)-ß-D-glucuronan prepared by TEMPO-mediated oxidation from regenerated cellulose. We have previously isolated a cellouronate-degrading bacterial strain, Brevundimonas sp. SH203, that produces a cellouronate lyase (ß-1,4-glucuronan lyase, CUL-I). In this study, the gene encoding CUL-I was cloned, and the recombinant enzyme was heterologously expressed in Escherichia coli. The predicted CUL-I protein is composed of 426 amino acid residues and includes a putative 21-amino acid signal peptide. The recombinant CUL-I specifically depolymerized ß-1,4-glycoside linkages of cellouronate, and its mode of action was endo-type, like the native CUL-I. Sequence analysis showed CUL-I has no similarity to previously known polysaccharide lyases (PLs), indicating that CUL-I should be classified into a novel PL family.


Asunto(s)
Caulobacteraceae/genética , Polisacárido Liasas/genética , Proteínas Recombinantes/genética , Secuencia de Aminoácidos , Secuencia de Bases , Caulobacteraceae/enzimología , Clonación Molecular , Escherichia coli/genética , Expresión Génica , Glicósidos/química , Glicósidos/metabolismo , Oxidación-Reducción , Polisacárido Liasas/química , Polisacárido Liasas/clasificación , Señales de Clasificación de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/clasificación
5.
Molecules ; 25(6)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192230

RESUMEN

Enzyme-catalyzed hydrolysis of echothiophate, a P-S bonded organophosphorus (OP) model, was spectrofluorimetrically monitored, using Calbiochem Probe IV as the thiol reagent. OP hydrolases were: the G117H mutant of human butyrylcholinesterase capable of hydrolyzing OPs, and a multiple mutant of Brevundimonas diminuta phosphotriesterase, GG1, designed to hydrolyze a large spectrum of OPs at high rate, including V agents. Molecular modeling of interaction between Probe IV and OP hydrolases (G117H butyrylcholinesterase, GG1, wild types of Brevundimonas diminuta and Sulfolobus solfataricus phosphotriesterases, and human paraoxonase-1) was performed. The high sensitivity of the method allowed steady-state kinetic analysis of echothiophate hydrolysis by highly purified G117H butyrylcholinesterase concentration as low as 0.85 nM. Hydrolysis was michaelian with Km = 0.20 ± 0.03 mM and kcat = 5.4 ± 1.6 min-1. The GG1 phosphotriesterase hydrolyzed echothiophate with a high efficiency (Km = 2.6 ± 0.2 mM; kcat = 53400 min-1). With a kcat/Km = (2.6 ± 1.6) × 107 M-1min-1, GG1 fulfills the required condition of potential catalytic bioscavengers. quantum mechanics/molecular mechanics (QM/MM) and molecular docking indicate that Probe IV does not interact significantly with the selected phosphotriesterases. Moreover, results on G117H mutant show that Probe IV does not inhibit butyrylcholinesterase. Therefore, Probe IV can be recommended for monitoring hydrolysis of P-S bonded OPs by thiol-free OP hydrolases.


Asunto(s)
Biocatálisis , Yoduro de Ecotiofato/metabolismo , Enzimas/metabolismo , Compuestos Organofosforados/metabolismo , Espectrometría de Fluorescencia , Butirilcolinesterasa/metabolismo , Caulobacteraceae/enzimología , Yoduro de Ecotiofato/química , Humanos , Hidrólisis , Cinética , Simulación del Acoplamiento Molecular , Proteínas Mutantes/metabolismo , Hidrolasas de Triéster Fosfórico/metabolismo , Sulfolobus/enzimología
6.
Plant Biotechnol J ; 17(8): 1501-1513, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30623551

RESUMEN

Tomato fruit are an important nutritional component of the human diet and offer potential to act as a cell factory for speciality chemicals, which are often produced by chemical synthesis. In the present study our goal was to produce competitive levels of the high value ketocarotenoid, astaxanthin, in tomato fruit. The initial stage in this process was achieved by expressing the 4, 4' carotenoid oxygenase (crtW) and 3, 3' hydroxylase (crtZ) from marine bacteria in tomato under constitutive control. Characterization of this genotype showed a surprising low level production of ketocarotenoids in ripe fruit but over production of lycopene (~3.5 mg/g DW), accompanied by delayed ripening. In order to accumulate these non-endogenous carotenoids, metabolite induced plastid differentiation was evident as well as esterification. Metabolomic and pathway based transcription studies corroborated the delayed onset of ripening. The data also revealed the importance of determining pheno/chemotype inheritance, with ketocarotenoid producing progeny displaying loss of vigour in the homozygous state but stability and robustness in the hemizygous state. To iteratively build on these data and optimize ketocarotenoid production in this genotype, a lycopene ß-cyclase was incorporated to avoid precursor limitations and a more efficient hydroxylase was introduced. These combinations resulted in the production of astaxanthin (and ketocarotenoid esters) in ripe fruit at ~3 mg/g DW. Based on previous studies, this level of product formation represents an economic competitive value in a Generally Regarded As Safe (GRAS) matrix that requires minimal downstream processing.


Asunto(s)
Frutas/metabolismo , Licopeno/análisis , Solanum lycopersicum/metabolismo , Carotenoides/metabolismo , Caulobacteraceae/enzimología , Caulobacteraceae/genética , Regulación de la Expresión Génica de las Plantas , Genotipo , Solanum lycopersicum/genética , Oxigenasas de Función Mixta/genética , Oxigenasas/genética , Proteínas de Plantas , Plantas Modificadas Genéticamente/metabolismo , Plastidios , Xantófilas/metabolismo
7.
Plant Physiol ; 173(3): 1617-1635, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28153925

RESUMEN

Ketolated and hydroxylated carotenoids are high-value compounds with industrial, food, and feed applications. Chemical synthesis is currently the production method of choice for these compounds, with no amenable plant sources readily available. In this study, the 4,4' ß-oxygenase (crtW) and 3,3' ß-hydroxylase (crtZ) genes from Brevundimonas sp. SD-212 were expressed under constitutive transcriptional control in Nicotiana glauca, which has an emerging potential as a biofuel and biorefining feedstock. The transgenic lines produced significant levels of nonendogenous carotenoids in all tissues. In leaf and flower, the carotenoids (∼0.5% dry weight) included 0.3% and 0.48%, respectively, of nonendogenous ketolated and hydroxylated carotenoids. These were 4-ketolutein, echinenone (and its 3-hydroxy derivatives), canthaxanthin, phoenicoxanthin, 4-ketozeaxanthin, and astaxanthin. Stable, homozygous genotypes expressing both transgenes inherited the chemotype. Subcellular fractionation of vegetative tissues and microscopic analysis revealed the presence of ketocarotenoids in thylakoid membranes, not predominantly in the photosynthetic complexes but in plastoglobules. Despite ketocarotenoid production and changes in cellular ultrastructure, intermediary metabolite levels were not dramatically affected. The study illustrates the utility of Brevundimonas sp. SD-212 CRTZ and CRTW to produce ketocarotenoids in a plant species that is being evaluated as a biorefining feedstock, the adaptation of the plastid to sequester nonendogenous carotenoids, and the robustness of plant metabolism to these changes.


Asunto(s)
Carotenoides/metabolismo , Nicotiana/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas/genética , Carotenoides/química , Caulobacteraceae/enzimología , Caulobacteraceae/genética , Flores/química , Flores/genética , Flores/metabolismo , Expresión Génica , Microscopía Electrónica de Transmisión , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Estructura Molecular , Oxigenasas/genética , Oxigenasas/metabolismo , Hojas de la Planta/química , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plastidios/genética , Plastidios/metabolismo , Plastidios/ultraestructura , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tilacoides/química , Tilacoides/genética , Tilacoides/metabolismo , Nicotiana/química , Nicotiana/genética , Xantófilas/química , Xantófilas/metabolismo , beta Caroteno/química , beta Caroteno/metabolismo
8.
Microb Cell Fact ; 16(1): 112, 2017 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-28629408

RESUMEN

BACKGROUND: Lactofen, a member of the diphenylether herbicides, has high activity and is commonly used to control broadleaf weeds. As a post-emergent herbicide, it is directly released to the environment, and easily caused the pollution. This herbicide is degraded in soil mainly by microbial activity, but the functional enzyme involved in the biodegradation of lactofen is still not clear now. RESULTS: A novel esterase gene lacH, involved in the degradation of lactofen, was cloned from the strain Brevundimonas sp. LY-2. The gene contained an open reading frame of 921 bp, and a putative signal peptide at the N-terminal was identified with the most likely cleavage site between Ala 28 and Ala 29. The encoded protein, LacH, could catalyze the hydrolysis of lactofen to form acifluorfen. Phylogenetic analysis showed that LacH belong to family V of bacterial lipolytic enzymes. Biochemical characterization analysis showed that LacH was a neutral esterase with an optimal pH of 7.0 and an optimal temperature of 40 °C toward lactofen. Besides, the activity of LacH was strongly inhibited by Hg2+ and Zn2+. LacH preferred short chain p-nitrophenyl esters (C2-C6), exhibited maximum activity toward p-nitrophenyl acetate. Furthermore, the enantioselectivity of LacH during lactofen hydrolysis was also studied, and the results show that R-(-)-lactofen was degraded faster than S-(+)-lactofen, indicating the occurrence of enantioselectivity in the enzymatic reaction. CONCLUSIONS: Our studies characterized a novel esterase involved in the biodegradation of diphenylether herbicide lactofen. The esterase showed enantioselectivity during lactofen degradation, which revealed the occurrence of enzyme-mediated enantioselective degradation of chiral herbicides.


Asunto(s)
Caulobacteraceae/enzimología , Esterasas/metabolismo , Éteres Difenilos Halogenados/metabolismo , Biodegradación Ambiental , Caulobacteraceae/efectos de los fármacos , Caulobacteraceae/metabolismo , Esterasas/química , Esterasas/genética , Herbicidas/metabolismo , Concentración de Iones de Hidrógeno , Iones/farmacología , Mercurio , Sistemas de Lectura Abierta , Filogenia , Señales de Clasificación de Proteína , Especificidad por Sustrato , Zinc/farmacología
9.
Proc Natl Acad Sci U S A ; 110(48): 19396-401, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24235137

RESUMEN

A method was developed to monitor dynamic changes in protein structure and interfacial behavior on surfaces by single-molecule Förster resonance energy transfer. This method entails the incorporation of unnatural amino acids to site-specifically label proteins with single-molecule Förster resonance energy transfer probes for high-throughput dynamic fluorescence tracking microscopy on surfaces. Structural changes in the enzyme organophosphorus hydrolase (OPH) were monitored upon adsorption to fused silica (FS) surfaces in the presence of BSA on a molecule-by-molecule basis. Analysis of >30,000 individual trajectories enabled the observation of heterogeneities in the kinetics of surface-induced OPH unfolding with unprecedented resolution. In particular, two distinct pathways were observed: a majority population (∼ 85%) unfolded with a characteristic time scale of 0.10 s, and the remainder unfolded more slowly with a time scale of 0.7 s. Importantly, even after unfolding, OPH readily desorbed from FS surfaces, challenging the common notion that surface-induced unfolding leads to irreversible protein binding. This suggests that protein fouling of surfaces is a highly dynamic process because of subtle differences in the adsorption/desorption rates of folded and unfolded species. Moreover, such observations imply that surfaces may act as a source of unfolded (i.e., aggregation-prone) protein back into solution. Continuing study of other proteins and surfaces will examine whether these conclusions are general or specific to OPH in contact with FS. Ultimately, this method, which is widely applicable to virtually any protein, provides the framework to develop surfaces and surface modifications with improved biocompatibility.


Asunto(s)
Arildialquilfosfatasa/química , Materiales Biocompatibles/química , Caulobacteraceae/enzimología , Microscopía Fluorescente/métodos , Modelos Moleculares , Conformación Proteica , Adsorción , Arildialquilfosfatasa/metabolismo , Materiales Biocompatibles/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Cinética , Dióxido de Silicio/química , Dióxido de Silicio/metabolismo
10.
J Am Chem Soc ; 135(32): 12038-47, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23862624

RESUMEN

Lasso peptides are a class of ribosomally derived natural products with diverse bioactivities. The characteristic threaded lasso structure in these peptides derives from an isopeptide bond attaching the N-terminus of the peptide to an acidic side chain. Here we describe the heterologous expression of a lasso peptide gene cluster encoding two lasso peptides, astexin-2 and astexin-3, and solve the solution structure of astexin-3. This cluster also encodes an enzyme annotated as a protease. We show that this enzyme, AtxE2, is a lasso peptide isopeptidase that specifically hydrolyzes astexins-2 and -3, converting them to linear peptides. Astexin-3 is highly thermostable and resists unthreading after extensive heat treatment. In contrast, astexin-2 unthreads upon heat treatment. AtxE2 has no activity toward unthreaded astexin-2, demonstrating that this isopeptidase must recognize a knotted structure in order to function. We also use this isopeptidase as a tool to study evolutionary relationships between lasso peptide gene clusters.


Asunto(s)
Liasas de Carbono-Nitrógeno/metabolismo , Caulobacteraceae/enzimología , Péptidos/metabolismo , Secuencia de Aminoácidos , Liasas de Carbono-Nitrógeno/genética , Caulobacteraceae/genética , Caulobacteraceae/metabolismo , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Familia de Multigenes , Péptidos/química , Péptidos/genética , Filogenia
11.
Lett Appl Microbiol ; 57(1): 63-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23574004

RESUMEN

UNLABELLED: Organophosphate hydrolase (OPH), the product of an organophosphate-degrading (opd) gene cloned from Brevundimonas diminuta, hydrolyses the triester linkage found in neurotoxic organophosphate (OP) insecticides and nerve agents. Despite the fact that OPHs have a broad substrate range, OP compounds with a P-S linkage, such as insecticides like acephate, are poor substrates for the enzyme. Expression of OPH in acephate-utilizing Pseudomonas sp. Ind01 generated a live biocatalyst capable of degrading a wide range of OP insecticides. The heterologously expressed OPH, which is a substrate of twin arginine transport (Tat) pathway, successfully targeted to the membrane of Pseudomonas sp. Ind01. The membrane-associated OPH had a size that coincided with the mature form of OPH (mOPH), suggesting successful processing and targeting of the expressed OPH to the membrane. Pseudomonas sp. Ind01 expressing OPH degraded a variety of OP insecticides besides using acephate as sole carbon source. SIGNIFICANCE AND IMPACT OF THE STUDY: A biocatalyst capable of degrading a wide range of organophosphate (OP) insecticides was generated by expressing an organophosphate degradation gene in Pseudomonas sp. Ind01 involved in mineralization of acephate. The biocatalyst can be used to eliminate a wide range of OP insecticide residues from the environment.


Asunto(s)
Insecticidas/metabolismo , Compuestos Organofosforados/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Pseudomonas/metabolismo , Biodegradación Ambiental , Caulobacteraceae/enzimología , Caulobacteraceae/genética , Hidrólisis , Compuestos Organotiofosforados/metabolismo , Residuos de Plaguicidas , Fosforamidas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Pseudomonas/clasificación , Pseudomonas/enzimología , Pseudomonas/genética
12.
Prikl Biokhim Mikrobiol ; 49(6): 554-60, 2013.
Artículo en Ruso | MEDLINE | ID: mdl-25434179

RESUMEN

The physicochemical and enzymatic properties of hybrid analogues of the Brevundimonas diminuta Gl7ACA-acylase (BrdGIA), containing the N-terminal chitin-binding domain of the bacterial chitinase (BrdG1A/NmChBD) or the C-terminal oligohistidine sequence (BrdGIA/H), were studied. An enhanced thermostability level of BrdG1A/NmChBD could suggest the stabilizing effect of the chitin-binding domain. An analysis of pH profiles of the enzymatic activity of recombinat BrdGIA analogues did not reveal significant differences: the catalytic activity of both variants changed slightly in the.interval ofpH values from 6.0 to 9.0 but drastically decreased at lower pH values. Both analogues demonstrated similar sensitivity towards denaturing agents: addition of 2.0 M ofguanidine chloride resulted in the complete inactivation of both enzymes. A scheme was developed for obtaining isolated recombinant alpha- and beta-subunits of BrdGLA. In vitro enzyme reconstructions indicated that the alpha-subunit was necessary for the formation of a correct spatial structure of the beta-subunit and for the formation of a functionally active enzyme.


Asunto(s)
Amidohidrolasas/química , Proteínas Bacterianas/química , Caulobacteraceae/enzimología , Amidohidrolasas/genética , Proteínas Bacterianas/genética , Caulobacteraceae/genética , Estabilidad de Enzimas , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
14.
J Gen Appl Microbiol ; 66(2): 116-120, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32213752

RESUMEN

Heterologous production of a useful carotenoid astaxanthin was achieved in a cyanobacterium Synechocystis sp. PCC 6803 with the aid of marine bacterial genes. Astaxanthin and its intermediates emerged at high levels, whereas ß-carotene and zeaxanthin disappeared in the strain. Total carotenoid accumulation was nearly two fold compared with wild type. The astaxanthin-producing strain was capable of only growing heterotrophically, which was likely due to the absence of ß-carotene. Further enhanced accumulation was pursued by gene overexpression for possible rate-limiting steps in the biosynthesis pathway.


Asunto(s)
Caulobacteraceae/enzimología , Oxigenasas de Función Mixta/metabolismo , Oxigenasas/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Vías Biosintéticas , Caulobacteraceae/genética , Cromatografía Líquida de Alta Presión , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Ingeniería Metabólica , Microorganismos Modificados Genéticamente , Oxigenasas de Función Mixta/genética , Oxigenasas/genética , Transformación Bacteriana , Xantófilas/metabolismo
15.
Toxicol Lett ; 321: 138-145, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31891759

RESUMEN

Organophosphorus (OP)1 nerve agents pose a severe toxicological threat, both after dissemination in military conflicts and by terrorists. Hydrolytic enzymes, which may be administered into the blood stream of victims by injection and can decompose the circulating nerve agent into non-toxic metabolites in vivo, could offer a treatment. Indeed, for the phosphotriesterase found in the bacterium Brevundimonas diminuta (BdPTE),2 engineered versions with improved catalytic efficiencies have been described; yet, their biochemical stabilities are insufficient for therapeutic use. Here, we describe the application of rational protein design to develop novel mutants of BdPTE that are less susceptible to oxidative damage. In particular, the replacement of two unpaired cysteine residues by more inert amino acids led to higher stability while maintaining high catalytic activity towards a broad spectrum of substrates, including OP pesticides and V-type nerve agents. The mutant BdPTE enzymes were produced in Escherichia coli, purified to homogeneity, and their biochemical and enzymological properties were assessed. Several candidates both revealed enhanced thermal stability and were less susceptible to oxidative stress, as demonstrated by mass spectrometry. These mutants of BdPTE may show promise for the treatment of acute intoxications by nerve agents as well as OP pesticides.


Asunto(s)
Antídotos/farmacología , Proteínas Bacterianas/farmacología , Caulobacteraceae/enzimología , Agentes Nerviosos/envenenamiento , Intoxicación por Organofosfatos/tratamiento farmacológico , Compuestos Organofosforados/toxicidad , Hidrolasas de Triéster Fosfórico/farmacología , Antídotos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Caulobacteraceae/genética , Estabilidad de Medicamentos , Estabilidad de Enzimas , Calor , Mutación , Intoxicación por Organofosfatos/enzimología , Compuestos Organotiofosforados/envenenamiento , Oxidación-Reducción , Hidrolasas de Triéster Fosfórico/genética , Hidrolasas de Triéster Fosfórico/metabolismo , Desnaturalización Proteica , Proteínas Recombinantes/farmacología , Sarín/envenenamiento , Soman/envenenamiento
16.
J Bacteriol ; 191(20): 6292-9, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19700527

RESUMEN

A twin arginine translocation (Tat) motif, involved in transport of folded proteins across the inner membrane, was identified in the signal peptide of the membrane-associated organophosphate hydrolase (OPH) of Brevundimonas diminuta. Expression of the precursor form of OPH carrying a C-terminal His tag in an opd-negative background and subsequent immunoblotting with anti-His antibodies showed that only the mature form of OPH associated with the membrane and that the precursor form of OPH was entirely found in the cytoplasm. When OPH was expressed without the signal peptide, most of it remained in the cytoplasm, where it was apparently correctly folded and showed activity comparable to that of the membrane-associated OPH encoded by the wild-type opd gene. Amino acid substitutions in the invariant arginine residues of the Tat signal peptide affected both the processing and localization of OPH, confirming a critical role for the Tat system in membrane targeting of OPH in B. diminuta. The localization of OPH to the periplasmic face of the inner membrane in B. diminuta was demonstrated by proteinase K treatment of spheroplasts and also by fluorescence-activated cell sorting analysis of cells expressing OPH-green fluorescent protein fusions with and without an SsrA tag that targets cytoplasmic proteins to the ClpXP protease.


Asunto(s)
Caulobacteraceae/enzimología , Membranas Intracelulares/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Periplasma/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/fisiología , Datos de Secuencia Molecular , Transporte de Proteínas
17.
J Agric Food Chem ; 66(46): 12217-12226, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30375865

RESUMEN

The metabolism of widely used aryloxyphenoxypropionate herbicides has been extensively studied in microbes. However, the information on the degradation of diclofop-methyl (DCM) is limited, with no genetic and biochemical investigation reported. The consortium L1 of Rhodococcus sp. JT-3 and Brevundimonas sp. JT-9 was able to degrade DCM through a synergistic metabolism. To elaborate the molecular mechanism of DCM degradation, the metabolic pathway for DCM was first investigated. DCM was initially transformed by strain JT-3 to diclofop acid and then by strain JT-9 to 2-(4-hydroxyphenoxy) propionic acid as well as 2,4-dichlorophenol. Subsequently, the two dcm gene clusters, dcmAE and dcmB1B2CD, involved in further degradation of 2,4-dichlorophenol, were successfully cloned from strain JT-3, and the functions of each gene product were identified. DcmA, a glutathione-dependent dehalogenase, was responsible for catalyzing the reductive dehalogenation of 2,4-dichlorophenol to 4-chlorophenol, which was then converted by the two-component monooxygenase DcmB1B2 to 4-chlorocatechol as the ring cleavage substrate of the dioxygenase DcmC. In this study, the overall DCM degradation pathway of the consortium L1 was proposed and, particularly, the lower part on the DCP degradation was characterized at the genetic and biochemical levels.


Asunto(s)
Proteínas Bacterianas/metabolismo , Caulobacteraceae/metabolismo , Éteres Difenilos Halogenados/metabolismo , Herbicidas/metabolismo , Consorcios Microbianos , Familia de Multigenes , Rhodococcus/metabolismo , Proteínas Bacterianas/genética , Biodegradación Ambiental , Caulobacteraceae/enzimología , Caulobacteraceae/genética , Dioxigenasas/genética , Dioxigenasas/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Rhodococcus/enzimología , Rhodococcus/genética
18.
Prikl Biokhim Mikrobiol ; 43(4): 462-70, 2007.
Artículo en Ruso | MEDLINE | ID: mdl-17929575

RESUMEN

The gene coding for glutaryl-7-aminocephalosporic acid acylase (Gl7ACA acylase) of the bacterium Brevundimonas diminuta (BrdGl7ACA), a commercial enzyme widely used in modem biocatalytic technologies for manufacture of b-lactam antibiotics, was cloned. Efficient expression systems for producing a "native" recombinant BrdGl7ACA and its analogs modified by attaching affinity groups--the chitin-binding domain of chitinases A1 and hexahistidine sequence--were designed. It was demonstrated that both the recombinant hybrid proteins and the native Gl7ACA acylase produced in E. coli cells underwent a correct autoproteolytic processing with generation of functionally active enzymes and could be isolated with a high yield using one-step affinity chromatography.


Asunto(s)
Caulobacteraceae/enzimología , Escherichia coli/metabolismo , Penicilina Amidasa/biosíntesis , Quitina , Clonación Molecular , Enzimas Inmovilizadas , Escherichia coli/genética , Isoenzimas/biosíntesis , Isoenzimas/genética , Isoenzimas/aislamiento & purificación , Penicilina Amidasa/genética , Penicilina Amidasa/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
19.
Gene ; 379: 101-8, 2006 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16781830

RESUMEN

A Brevundimonas vesicularis strain DC263 isolated from surface soil was shown to produce hydroxylated astaxanthin. A carotenoid synthesis gene cluster containing ten genes was cloned from strain DC263, among which eight genes were involved in carotenoid synthesis. In addition to the crtW gene encoding the 4,4'-beta-ionone ring ketolase and the crtZ gene encoding the 3,3'-beta-ionone ring hydroxylase that were responsible for astaxanthin synthesis, the cluster also contained a novel gene crtG identified recently encoding the 2,2'-beta-ionone ring hydroxylase that further hydroxylate astaxanthin. The individual genes in the DC263 cluster showed the highest sequence similarities to the corresponding genes reported in Brevundimonas sp. strain SD212, a marine isolate that also produced hydroxylated astaxanthin. The genetic organization of the carotenoid synthesis gene clusters in the two Brevundimonas strains was identical. It is likely that the two Brevundimonas strains were evolved from the same ancestor and adapted later to growth in different environments. Expression of the crtW and crtZ from DC263 in a beta-carotene-accumulating E. coli produced astaxanthin as the predominant carotenoid. The crtG from DC263 and the crtG from another Brevundimonas aurantiaca strain were expressed in E. coli producing different carotenoid substrates. Both CrtG showed low activity on beta-carotene and high activity on zeaxanthin. The main difference was that the CrtG from B. aurantiaca worked well on canthaxanthin or astaxanthin, but the CrtG from DC263 did not work on either of the ketocarotenoids.


Asunto(s)
Proteínas Bacterianas/genética , Carotenoides/biosíntesis , Caulobacteraceae/enzimología , Oxigenasas/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Carotenoides/química , Carotenoides/genética , Caulobacteraceae/genética , Caulobacteraceae/metabolismo , Hidroxilación , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes , Oxigenasas/metabolismo , Alineación de Secuencia , Suelo , Especificidad por Sustrato , Xantófilas/biosíntesis
20.
FEMS Microbiol Lett ; 363(24)2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27915249

RESUMEN

Many toxic insecticides used worldwide as well as some chemical warfare agents are phosphotriester derivatives. Therefore, detoxification of organophosphorus compounds has become the subject of many studies and in particular bioremediation, based on the phosphotriesterase catalysed hydrolysis of these compounds, has shown to be an effective and ecological methodology. In order to identify new bacterial phosphotriesterases, a simple and sensitive fluorimetric screening method on solid media was employed that allowed the selection of six strains with phosphotriesterase activity. Since pH and temperature are important parameters for bioremediation of contaminated soils and waters, the influence of these variables on the rate of the enzymatic hydrolysis was assessed. This study afforded notable results, being the most remarkable one the increased activity exhibited by Nocardia asteroides and Streptomyces setonii strains at 50°C, 7 and 30 times higher than at 30°C, respectively. Compared with the results obtained with Brevundimonas diminuta, whose activity is usually considered as reference, an increase of 26 and 75 times is observed, respectively.


Asunto(s)
Caulobacteraceae/enzimología , Hidrolasas de Triéster Fosfórico/análisis , Streptomyces/enzimología , Técnicas Bacteriológicas/métodos , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Tamizaje Masivo/métodos , Nocardia asteroides/enzimología , Hidrolasas de Triéster Fosfórico/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA