Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.466
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 630(8016): 381-386, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811733

RESUMEN

Lignocellulose is mainly composed of hydrophobic lignin and hydrophilic polysaccharide polymers, contributing to an indispensable carbon resource for green biorefineries1,2. When chemically treated, lignin is compromised owing to detrimental intra- and intermolecular crosslinking that hampers downstream process3,4. The current valorization paradigms aim to avoid the formation of new C-C bonds, referred to as condensation, by blocking or stabilizing the vulnerable moieties of lignin5-7. Although there have been efforts to enhance biomass utilization through the incorporation of phenolic additives8,9, exploiting lignin's proclivity towards condensation remains unproven for valorizing both lignin and carbohydrates to high-value products. Here we leverage the proclivity by directing the C-C bond formation in a catalytic arylation pathway using lignin-derived phenols with high nucleophilicity. The selectively condensed lignin, isolated in near-quantitative yields while preserving its prominent cleavable ß-ether units, can be unlocked in a tandem catalytic process involving aryl migration and transfer hydrogenation. Lignin in wood is thereby converted to benign bisphenols (34-48 wt%) that represent performance-advantaged replacements for their fossil-based counterparts. Delignified pulp from cellulose and xylose from xylan are co-produced for textile fibres and renewable chemicals. This condensation-driven strategy represents a key advancement complementary to other promising monophenol-oriented approaches targeting valuable platform chemicals and materials, thereby contributing to holistic biomass valorization.


Asunto(s)
Compuestos de Bencidrilo , Biomasa , Fraccionamiento Químico , Lignina , Fenoles , Compuestos de Bencidrilo/química , Compuestos de Bencidrilo/metabolismo , Catálisis , Celulosa/química , Celulosa/metabolismo , Fraccionamiento Químico/métodos , Hidrogenación , Lignina/química , Lignina/metabolismo , Fenoles/química , Fenoles/metabolismo , Madera/química , Xilanos/química , Xilanos/metabolismo , Xilosa/química , Xilosa/metabolismo , Combustibles Fósiles , Textiles
2.
Nature ; 590(7844): 47-56, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536649

RESUMEN

Cellulose is the most abundant biopolymer on Earth, found in trees, waste from agricultural crops and other biomass. The fibres that comprise cellulose can be broken down into building blocks, known as fibrillated cellulose, of varying, controllable dimensions that extend to the nanoscale. Fibrillated cellulose is harvested from renewable resources, so its sustainability potential combined with its other functional properties (mechanical, optical, thermal and fluidic, for example) gives this nanomaterial unique technological appeal. Here we explore the use of fibrillated cellulose in the fabrication of materials ranging from composites and macrofibres, to thin films, porous membranes and gels. We discuss research directions for the practical exploitation of these structures and the remaining challenges to overcome before fibrillated cellulose materials can reach their full potential. Finally, we highlight some key issues towards successful manufacturing scale-up of this family of materials.


Asunto(s)
Biotecnología/métodos , Biotecnología/tendencias , Celulosa/química , Nanoestructuras/química , Desarrollo Sostenible/tendencias , Materiales Biocompatibles/química , Geles/química , Humanos , Porosidad
3.
Proc Natl Acad Sci U S A ; 121(2): e2316396121, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38165937

RESUMEN

Plant epidermal cell walls maintain the mechanical integrity of plants and restrict organ growth. Mechanical analyses can give insights into wall structure and are inputs for mechanobiology models of plant growth. To better understand the intrinsic mechanics of epidermal cell walls and how they may accommodate large deformations during growth, we analyzed a geometrically simple material, onion epidermal strips consisting of only the outer (periclinal) cell wall, ~7 µm thick. With uniaxial stretching by >40%, the wall showed complex three-phase stress-strain responses while cyclic stretching revealed reversible and irreversible deformations and elastic hysteresis. Stretching at varying strain rates and temperatures indicated the wall behaved more like a network of flexible cellulose fibers capable of sliding than a viscoelastic composite with pectin viscosity. We developed an analytic framework to quantify nonlinear wall mechanics in terms of stiffness, deformation, and energy dissipation, finding that the wall stretches by combined elastic and plastic deformation without compromising its stiffness. We also analyzed mechanical changes in slightly dehydrated walls. Their extension became stiffer and more irreversible, highlighting the influence of water on cellulose stiffness and sliding. This study offers insights into the structure and deformation modes of primary cell walls and presents a framework that is also applicable to tissues and whole organs.


Asunto(s)
Pared Celular , Celulosa , Celulosa/química , Pared Celular/química , Membrana Celular , Pectinas , Epidermis de la Planta
4.
Biochem J ; 481(18): 1221-1240, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39207824

RESUMEN

Cellulosic microfibrils in plant cell walls are largely ensheathed and probably tethered by hydrogen-bonded hemicelluloses. Ensheathing may vary developmentally as hemicelluloses are peeled to enable cell expansion. We characterised a simple method to quantify ensheathed versus naked cellulosic surfaces based on the ability to adsorb a radiolabelled 'cellulose-complementary oligosaccharide', [3H]cellopentaitol. Filter-paper (cellulose) adsorbed 40% and >80% of aqueous 5 nM [3H]cellopentaitol within ∼1 and ∼20 h respectively. When [3H]cellopentaitol was rapidly dried onto filter-paper, ∼50% of it was desorbable by water, whereas after ∼1 day annealing in aqueous medium the adsorption became too strong to be reversible in water. 'Strongly' adsorbed [3H]cellopentaitol was, however, ∼98% desorbed by 6 M NaOH, ∼50% by 0.2 M cellobiose, and ∼30% by 8 M urea, indicating a role for hydrogen-bonding reinforced by complementarity of shape. Gradual adsorption was promoted by kosmotropes (1.4 M Na2SO4 or 30% methanol), and inhibited by chaotropes (8 M urea), supporting a role for hydrogen-bonding. [3H]Cellopentaitol adsorption was strongly competed by non-radioactive cello-oligosaccharides (Cell2-6), the IC50 (half-inhibitory concentration) being highly size-dependent: Cell2, ∼70 mM; Cell3, ∼7 mM; and Cell4-6, ∼0.05 mM. Malto-oligosaccharides (400 mM) had no effect, confirming the role of complementarity. The quantity of adsorbed [3H]cellopentaitol was proportional to mass of cellulose. Of seven cottons tested, wild-type Gossypium arboreum fibres were least capable of adsorbing [3H]cellopentaitol, indicating ensheathment of their microfibrillar surfaces, confirmed by their resistance to cellulase digestion, and potentially attributable to a high glucuronoarabinoxylan content. In conclusion, [3H]cellopentaitol adsorption is a simple, sensitive and quantitative way of titrating 'naked' cellulose surfaces.


Asunto(s)
Pared Celular , Celulosa , Fibra de Algodón , Oligosacáridos , Celulosa/química , Celulosa/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Oligosacáridos/química , Oligosacáridos/metabolismo , Adsorción , Gossypium/química , Gossypium/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(24): e2200930119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35671425

RESUMEN

Biological functionality is often enabled by a fascinating variety of physical phenomena that emerge from orientational order of building blocks, a defining property of nematic liquid crystals that is also pervasive in nature. Out-of-equilibrium, "living" analogs of these technological materials are found in biological embodiments ranging from myelin sheath of neurons to extracellular matrices of bacterial biofilms and cuticles of beetles. However, physical underpinnings behind manifestations of orientational order in biological systems often remain unexplored. For example, while nematiclike birefringent domains of biofilms are found in many bacterial systems, the physics behind their formation is rarely known. Here, using cellulose-synthesizing Acetobacter xylinum bacteria, we reveal how biological activity leads to orientational ordering in fluid and gel analogs of these soft matter systems, both in water and on solid agar, with a topological defect found between the domains. Furthermore, the nutrient feeding direction plays a role like that of rubbing of confining surfaces in conventional liquid crystals, turning polydomain organization within the biofilms into a birefringent monocrystal-like order of both the extracellular matrix and the rod-like bacteria within it. We probe evolution of scalar orientational order parameters of cellulose nanofibers and bacteria associated with fluid-gel and isotropic-nematic transformations, showing how highly ordered active nematic fluids and gels evolve with time during biological-activity-driven, disorder-order transformation. With fluid and soft-gel nematics observed in a certain range of biological activity, this mesophase-exhibiting system is dubbed "biotropic," analogously to thermotropic nematics that exhibit solely orientational order within a temperature range, promising technological and fundamental-science applications.


Asunto(s)
Celulosa , Gluconacetobacter xylinus , Cristales Líquidos , Celulosa/biosíntesis , Celulosa/química , Geles , Gluconacetobacter xylinus/metabolismo , Cristales Líquidos/química , Agua/química
6.
Chem Soc Rev ; 53(14): 7363-7391, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38864385

RESUMEN

Nanocellulose is not only a renewable material but also brings functions that are opening new technological opportunities. Here we discuss a special subset of this material, in its fibrillated form, which is produced by aerobic microorganisms, namely, bacterial nanocellulose (BNC). BNC offers distinct advantages over plant-derived counterparts, including high purity and high degree of polymerization as well as crystallinity, strength, and water-holding capacity, among others. More remarkably, beyond classical fermentative protocols, it is possible to grow BNC on non-planar interfaces, opening new possibilities in the assembly of advanced bottom-up structures. In this review, we discuss the recent advances in the area of BNC-based biofabrication of three-dimensional (3D) designs by following solid- and soft-material templating. These methods are shown as suitable platforms to achieve bioadaptive constructs comprising highly interlocked biofilms that can be tailored with precise control over nanoscale morphological features. BNC-based biofabrication opens applications that are not possible by using traditional manufacturing routes, including direct ink writing of hydrogels. This review emphasizes the critical contributions of microbiology, colloid and surface science, as well as additive manufacturing in achieving bioadaptive designs from living matter. The future impact of BNC biofabrication is expected to take advantage of material and energy integration, residue utilization, circularity and social latitudes. Leveraging existing infrastructure, the scaleup of biofabrication routes will contribute to a new generation of advanced materials rooted in exciting synergies that combine biology, chemistry, engineering and material sciences.


Asunto(s)
Celulosa , Celulosa/química , Bacterias/metabolismo , Bacterias/química , Nanoestructuras/química , Biopelículas , Hidrogeles/química
7.
Nano Lett ; 24(35): 10883-10891, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39172995

RESUMEN

The development of electronic skin (e-skin) emulating the human skin's three essential functions (perception, protection, and thermoregulation) has great potential for human-machine interfaces and intelligent robotics. However, existing studies mainly focus on perception. This study presents a novel, eco-friendly, mechanically robust e-skin replicating human skin's three essential functions. The e-skin is composed of Ti3C2Tx MXene, polypyrrole, and bacterial cellulose nanofibers, where the MXene nanoflakes form the matrix, the bacterial cellulose nanofibers act as the filler, and the polypyrrole serves as a conductive "cross-linker". This design allows customization of the electrical conductivity, microarchitecture, and mechanical properties, integrating sensing (perception), EMI shielding (protection), and thermal management (thermoregulation). The optimal e-skin can effectively sense various motions (including minuscule artery pulses), achieve an EMI shielding efficiency of 63.32 dB at 78 µm thickness, and regulate temperature up to 129 °C in 30 s at 2.4 V, demonstrating its potential for smart robotics in complex scenarios.


Asunto(s)
Conductividad Eléctrica , Polímeros , Dispositivos Electrónicos Vestibles , Humanos , Polímeros/química , Pirroles/química , Nanofibras/química , Celulosa/química , Piel/química , Regulación de la Temperatura Corporal , Titanio/química , Robótica
8.
Nano Lett ; 24(33): 10016-10023, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39109676

RESUMEN

Food safety is vital to human health, necessitating the development of nondestructive, convenient, and highly sensitive methods for detecting harmful substances. This study integrates cellulose dissolution, aligned regeneration, in situ nanoparticle synthesis, and structural reconstitution to create flexible, transparent, customizable, and nanowrinkled cellulose/Ag nanoparticle membranes (NWCM-Ag). These three-dimensional nanowrinkled structures considerably improve the spatial-electromagnetic-coupling effect of metal nanoparticles on the membrane surface, providing a 2.3 × 108 enhancement factor for the surface-enhanced Raman scattering (SERS) effect for trace detection of pesticides in foods. Notably, the distribution of pesticides in the apple peel and pulp layers is visualized through Raman imaging, confirming that the pesticides penetrate the peel layer into the pulp layer (∼30 µm depth). Thus, the risk of pesticide ingestion from fruits cannot be avoided by simple washing other than peeling. This study provides a new idea for designing nanowrinkled structures and broadening cellulose utilization in food safety.


Asunto(s)
Celulosa , Inocuidad de los Alimentos , Nanopartículas del Metal , Plaguicidas , Espectrometría Raman , Celulosa/química , Plaguicidas/análisis , Plaguicidas/química , Nanopartículas del Metal/química , Espectrometría Raman/métodos , Plata/química , Malus/química , Humanos , Frutas/química , Nanotecnología/métodos , Propiedades de Superficie , Contaminación de Alimentos/análisis
9.
Biophys J ; 123(9): 1139-1151, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38571309

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) catalyze a reaction that is crucial for the biological decomposition of various biopolymers and for the industrial conversion of plant biomass. Despite the importance of LPMOs, the exact molecular-level nature of the reaction mechanism is still debated today. Here, we investigated the pH-dependent conformation of a second-sphere histidine (His) that we call the stacking histidine, which is conserved in fungal AA9 LPMOs and is speculated to assist catalysis in several of the LPMO reaction pathways. Using constant-pH and accelerated molecular dynamics simulations, we monitored the dynamics of the stacking His in different protonation states for both the resting Cu(II) and active Cu(I) forms of two fungal LPMOs. Consistent with experimental crystallographic and neutron diffraction data, our calculations suggest that the side chain of the protonated and positively charged form is rotated out of the active site toward the solvent. Importantly, only one of the possible neutral states of histidine (HIE state) is observed in the stacking orientation at neutral pH or when bound to cellulose. Our data predict that, in solution, the stacking His may act as a stabilizer (via hydrogen bonding) of the Cu(II)-superoxo complex after the LPMO-Cu(I) has reacted with O2 in solution, which, in fine, leads to H2O2 formation. Also, our data indicate that the HIE-stacking His is a poor acid/base catalyst when bound to the substrate and, in agreement with the literature, may play an important stabilizing role (via hydrogen bonding) during the peroxygenase catalysis. Our study reveals the pH titration midpoint values of the pH-dependent orientation of the stacking His should be considered when modeling and interpreting LPMO reactions, whether it be for classical LPMO kinetics or in industry-oriented enzymatic cocktails, and for understanding LPMO behavior in slightly acidic natural processes such as fungal wood decay.


Asunto(s)
Histidina , Oxigenasas de Función Mixta , Simulación de Dinámica Molecular , Histidina/química , Histidina/metabolismo , Concentración de Iones de Hidrógeno , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Dominio Catalítico , Polisacáridos/metabolismo , Polisacáridos/química , Cobre/química , Cobre/metabolismo , Celulosa/metabolismo , Celulosa/química
10.
J Biol Chem ; 299(5): 104655, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36990218

RESUMEN

Enzymatic deconstruction of lignocellulosic biomass is crucial to establishment of the renewable biofuel and bioproduct economy. Better understanding of these enzymes, including their catalytic and binding domains, and other features offer potential avenues for improvement. Glycoside hydrolase family 9 (GH9) enzymes are attractive targets because they have members that exhibit exo- and endo-cellulolytic activity, processivity of reaction, and thermostability. This study examines a GH9 from Acetovibrio thermocellus ATCC 27405, AtCelR containing a catalytic domain and a carbohydrate binding module (CBM3c). Crystal structures of the enzyme without substrate, bound to cellohexaose (substrate) or cellobiose (product), show the positioning of ligands to calcium and adjacent residues in the catalytic domain that may contribute to substrate binding and facilitate product release. We also investigated the properties of the enzyme engineered to contain an additional carbohydrate binding module (CBM3a). Relative to the catalytic domain alone, CBM3a gave improved binding for Avicel (a crystalline form of cellulose), and catalytic efficiency (kcat/KM) was improved 40× with both CBM3c and CBM3a present. However, because of the molecular weight added by CBM3a, the specific activity of the engineered enzyme was not increased relative to the native construct consisting of only the catalytic and CBM3c domains. This work provides new insight into a potential role of the conserved calcium in the catalytic domain and identifies contributions and limitations of domain engineering for AtCelR and perhaps other GH9 enzymes.


Asunto(s)
Calcio , Celulasa , Calcio/metabolismo , Dominio Catalítico , Celulasa/química , Celulasa/metabolismo , Celulosa/química , Celulosa/metabolismo , Especificidad por Sustrato , Ligandos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biocatálisis , Dominios Proteicos
11.
J Am Chem Soc ; 146(12): 7963-7970, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38483110

RESUMEN

Cellulose serves as a sustainable biomaterial for a wide range of applications in biotechnology and materials science. While chemical and enzymatic glycan assembly methods have been developed to access modest quantities of synthetic cellulose for structure-property studies, chemical polymerization strategies for scalable and well-controlled syntheses of cellulose remain underdeveloped. Here, we report the synthesis of precision cellulose via living cationic ring-opening polymerization (CROP) of glucose 1,2,4-orthopivalates. In the presence of dibutyl phosphate as an initiator and triflic acid as a catalyst, precision cellulose with well-controlled molecular weights, defined chain-end groups, and excellent regio- and stereospecificity was readily prepared. We further demonstrated the utility of this method through the synthesis of precision native d-cellulose and rare precision l-cellulose.


Asunto(s)
Celulosa , Glucosa , Celulosa/química , Polimerizacion , Glucosa/química , Polisacáridos , Cationes
12.
Small ; 20(30): e2309514, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38415913

RESUMEN

Sustainable, durable, and diverse photochromic smart textiles based on bacterial cellulose (BC) have emerged as attractive candidates in UV-sensing applications due to the green and easy functionalization of BC. However, existing BC-based photochromic textiles lack photochromic efficiency and combining fastness. In this study, a green strategy for in situ fermentation is developed to achieve the directional distribution of functional particles and remarkable photochromism in photochromic bacterial cellulose (PBC). The unique functional design obtained by regulating the photochromic dye distribution in 3D nanonetworks of PBCs during in situ growth affords a more uniform distribution and high fastness. Benefiting from the uniform distribution of photochromic dyes and adequate utilization of the 3D network structure, more surface area is provided to receive and utilize the photon energy from the UV rays, making the photochromic process more effective. The as-prepared PBCs exhibited rapid (within 1 min) and stable (30 cycles) discoloration and multicolor selectivity. Their simple preparation process and exceptional wearability, e.g., their flexibility, lightweight, and air permeability, make them suitable for various applications, including tunable color switching systems, photopatterning, and daily sunlight UV monitoring. This study provides empirical value for the biofabrication of photochromic textiles and wearable flexible UV sensors.


Asunto(s)
Celulosa , Luz Solar , Rayos Ultravioleta , Celulosa/química , Bacterias , Textiles , Color
13.
Small ; 20(22): e2308514, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38098438

RESUMEN

Highly robust flexible multifunctional film with excellent electromagnetic interference shielding and electrothermal/photothermal characteristics are highly desirable for aerospace, military, and wearable devices. Herein, an asymmetric gradient multilayer structured bacterial cellulose@Fe3O4/carbon nanotube/Ti3C2Tx (BC@Fe3O4/CNT/Ti3C2Tx) multifunctional composite film is fabricated with simultaneously demonstrating fast Joule response, excellent EMI shielding effectiveness (EMI SE) and photothermal conversion properties. The asymmetric gradient 6-layer composite film with 40% of Ti3C2Tx possesses excellent mechanical performance with exceptional tensile strength (76.1 MPa), large strain (14.7%), and good flexibility. This is attributed to the asymmetric gradient multilayer structure designed based on the hydrogen bonding self-assembly strategy between Ti3C2Tx and BC. It achieved an EMI SE of up to 71.3 dB, which is attributed to the gradient "absorption-reflection-reabsorption" mechanism. Furthermore, this composite film also exhibits excellent low-voltage-driven Joule heating (up to 80.3 °C at 2.5 V within 15 s) and fast-response photothermal performance (up to 101.5 °C at 1.0 W cm-2 within 10 s), which is attributed to the synergistic effect of heterostructure. This work demonstrates the fabrication of multifunctional bacterial cellulose@Fe3O4/carbon nanotube/Ti3C2Tx composite film has promising potentials for next-generation wearable electronic devices in energy conversion, aerospace, and artificial intelligence.


Asunto(s)
Celulosa , Nanotubos de Carbono , Dispositivos Electrónicos Vestibles , Celulosa/química , Nanotubos de Carbono/química , Titanio/química , Bacterias , Nanocompuestos/química
14.
Small ; 20(23): e2307603, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38213024

RESUMEN

Bacterial cellulose/oxidized bacterial cellulose nanofibrils (BC/oxBCNFs) macro-fibers are developed as a novel scaffold for vascular tissue engineering. Utilizing a low-speed rotary coagulation spinning technique and precise solvent control, macro-fibers with a unique heterogeneous structure with dense surface and porous core are created. Enhanced by a polydopamine (PDA) coating, these macro-fibers offer robust mechanical integrity, high biocompatibility, and excellent cell adhesion. When cultured with endothelial cells (ECs) and smooth muscle cells (SMCs), the macro-fibers support healthy cell proliferation and exhibit a unique spiral SMC alignment, demonstrating their vascular suitability. This innovative strategy opens new avenues for advances in tissue engineering.


Asunto(s)
Celulosa , Nanofibras , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Nanofibras/química , Andamios del Tejido/química , Celulosa/química , Humanos , Miocitos del Músculo Liso/citología , Proliferación Celular/efectos de los fármacos , Adhesión Celular , Células Endoteliales/citología , Células Endoteliales de la Vena Umbilical Humana , Indoles/química , Polímeros
15.
Small ; 20(30): e2311832, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38386283

RESUMEN

The molecular foundations of epidermal cell wall mechanics are critical for understanding structure-function relationships of primary cell walls in plants and facilitating the design of bioinspired materials. To uncover the molecular mechanisms regulating the high extensibility and strength of the cell wall, the onion epidermal wall is stretched uniaxially to various strains and cell wall structures from mesoscale to atomic scale are characterized. Upon longitudinal stretching to high strain, epidermal walls contract in the transverse direction, resulting in a reduced area. Atomic force microscopy shows that cellulose microfibrils exhibit orientation-dependent rearrangements at high strains: longitudinal microfibrils are straightened out and become highly ordered, while transverse microfibrils curve and kink. Small-angle X-ray scattering detects a 7.4 nm spacing aligned along the stretch direction at high strain, which is attributed to distances between individual cellulose microfibrils. Furthermore, wide-angle X-ray scattering reveals a widening of (004) lattice spacing and contraction of (200) lattice spacing in longitudinally aligned cellulose microfibrils at high strain, which implies longitudinal stretching of the cellulose crystal. These findings provide molecular insights into the ability of the wall to bear additional load after yielding: the aggregation of longitudinal microfibrils impedes sliding and enables further stretching of the cellulose to bear increased loads.


Asunto(s)
Pared Celular , Celulosa , Microscopía de Fuerza Atómica , Epidermis de la Planta , Pared Celular/química , Pared Celular/ultraestructura , Epidermis de la Planta/citología , Epidermis de la Planta/química , Celulosa/química , Microfibrillas/química , Difracción de Rayos X , Dispersión del Ángulo Pequeño , Cebollas/citología , Cebollas/química , Estrés Mecánico
16.
J Synchrotron Radiat ; 31(Pt 4): 936-947, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38917018

RESUMEN

X-ray and neutron scattering have long been used for structural characterization of cellulose in plants. Due to averaging over the illuminated sample volume, these measurements traditionally overlooked the compositional and morphological heterogeneity within the sample. Here, a scanning tomographic imaging method is described, using contrast derived from the X-ray scattering intensity, for virtually sectioning the sample to reveal its internal structure at a resolution of a few micrometres. This method provides a means for retrieving the local scattering signal that corresponds to any voxel within the virtual section, enabling characterization of the local structure using traditional data-analysis methods. This is accomplished through tomographic reconstruction of the spatial distribution of a handful of mathematical components identified by non-negative matrix factorization from the large dataset of X-ray scattering intensity. Joint analysis of multiple datasets, to find similarity between voxels by clustering of the decomposed data, could help elucidate systematic differences between samples, such as those expected from genetic modifications, chemical treatments or fungal decay. The spatial distribution of the microfibril angle can also be analyzed, based on the tomographically reconstructed scattering intensity as a function of the azimuthal angle.


Asunto(s)
Celulosa , Celulosa/química , Dispersión de Radiación , Difracción de Rayos X/métodos , Plantas/química
17.
Chemistry ; 30(45): e202400800, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38856089

RESUMEN

Depolymerization of the cellulose part in lignocellulose to glucose is a significant step for lignocellulose valorization. As one of the main by-products of agricultural biomass in crop-producing filed, valorization of corn straw has attracted considerable attention. In this study, a two-step depolymerizing strategy of high-pressure CO2-H2O pretreatment and oxidation-hydrolysis was applied for selective depolymerization of the cellulose component of corn straw to glucose production. Most part of the hemicellulose component could be removed through high-pressure CO2-H2O pretreatment in the presence of low concentration of acetic acid, and then as high as 32.2 % yield of glucose was achieved in water at 170 °C for 6 h without additional catalyst. The active acid sites generated during the partial oxidation of hydroxymethyl groups to carboxyl groups on glucose units of cellulose was shown to be crucial for the efficient valorization of corn straw for glucose production.


Asunto(s)
Biomasa , Celulosa , Glucosa , Lignina , Polimerizacion , Zea mays , Zea mays/química , Glucosa/química , Glucosa/metabolismo , Celulosa/química , Lignina/química , Hidrólisis , Oxidación-Reducción , Dióxido de Carbono/química , Agua/química , Ácido Acético/química , Catálisis , Polisacáridos/química
18.
Biopolymers ; 115(5): e23585, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38847141

RESUMEN

The pollution caused by petroleum-derived plastic materials has become a major environmental problem that has encouraged the development of new compostable and environmentally friendly materials for food packaging based on biomodified polymers with household residues. This study aims to design, synthesize, and characterize a biobased polymeric microstructure film from polyvinyl alcohol and chitosan reinforced with holocellulose from spent coffee grounds for food-sustainable packaging. Chemical isolation with a chlorite-based solution was performed to obtain the reinforced holocellulose from the spent coffee ground, and the solvent casting method was used to obtain the films to study. Physicochemical and microscopic characterizations were conducted to identify and select the best formulations using a simplex-centroid design analysis. The response surface methodology results indicate that the new packaging material obtained with equal amounts of polymers and reinforced material (1:1:1) possesses the appropriate barrier properties and microstructural character to prevent water attack and hydrophobic behavior and thus could be used as an alternative for food packaging materials.


Asunto(s)
Quitosano , Café , Embalaje de Alimentos , Alcohol Polivinílico , Embalaje de Alimentos/métodos , Café/química , Quitosano/química , Alcohol Polivinílico/química , Celulosa/química , Biopolímeros/química , Interacciones Hidrofóbicas e Hidrofílicas
19.
Biopolymers ; 115(4): e23577, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38526043

RESUMEN

Bacterial nanocellulose (BNC) has various unique qualities, including high mechanical strength, crystallinity, and high water-holding capacity, which makes it appropriate for a wide range of industrial applications. But its lower yield coupled with its high production cost creates a barrier to its usage. In this study, we have demonstrated the better yield of BNC from an indigenous strain Komagataeibacter rhaeticus MCC-0157 using a rotary disc bioreactor (RDB) having a wooden disc. The RDB was optimized based on the type of disc material, distance between the disc, and rotation speed to get the highest yield of 13.0 g/L dry material using Hestrin-Schramm (H-S) medium. Further, the bioreactor was compared for the BNC production using reported medium, which is used for static condition; the RDB showed up to fivefold increase in comparison with the static condition reported. Komagataeibacter rhaeticus MCC-0157 was previously reported to be one of the highest BNC producing stains, with 8.37 g/L of dry yield in static condition in 15 days incubation. The designed RDB demonstrated 13.0 g/L dry yield of BNC in just 5 days. Other characteristics of BNC remain same as compared with static BNC production, although the difference in the crystallinity index was observed in RDB (84.44%) in comparison with static (89.74%). For the first time, wooden disc was used for rotary bioreactor approach, which demonstrated higher yield of BNC in lesser time and can be further used for sustainable production of BNC at the industrial level.


Asunto(s)
Acetobacteraceae , Reactores Biológicos , Celulosa , Celulosa/química , Celulosa/biosíntesis , Acetobacteraceae/metabolismo , Acetobacteraceae/química , Madera/química , Biopolímeros/química , Biopolímeros/biosíntesis , Nanoestructuras/química , Fermentación
20.
Biopolymers ; 115(5): e23608, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38923469

RESUMEN

The paper reports on the preparation of cellulose nanocrystals/reduced graphene oxide matrix loaded with cuprous oxide nanoparticles (CNC/rGO-Cu2O) through a simple solvothermal method and its application for 4-nitrophenol reduction to 4-aminophenol using sodium borohydride. The CNC/rGO-Cu2O nanocomposite was formed chemically by first mixing CNC and graphene oxide (GO) followed by complexation of the negatively charged functional groups of CNC/GO with Cu2+ ions and subsequent heating at 100°C. This resulted in the simultaneous reduction of GO to rGO and the formation of Cu2O nanoparticles. The as-elaborated nanocomposite was firstly characterized using different techniques such as atomic force microscopy, scanning electron microscopy, transmission electron microscopy, UV-Vis spectrophotometry, Raman spectroscopy and x-ray photoelectron spectroscopy. Then, it was successfully applied for efficient catalytic reduction of 4-nitrophenol to 4-aminophenol using sodium borohydride: the reduction was completed in about 6 min. After eight times use, the catalyst still maintained good catalytic performance. Compared to CNC/rGO, rGO/Cu2O and free Cu2O nanoparticles, the CNC/rGO-Cu2O nanocomposite exhibits higher catalytic activity even at lower copper loading.


Asunto(s)
Celulosa , Cobre , Grafito , Nitrofenoles , Oxidación-Reducción , Grafito/química , Nitrofenoles/química , Cobre/química , Celulosa/química , Catálisis , Nanocompuestos/química , Aminofenoles/química , Borohidruros/química , Espectroscopía de Fotoelectrones , Nanopartículas/química , Óxidos/química , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA